Real Algebraic Geometry I – Exercise Sheet 8

Exercise 1 (4P). Let (K, P) be an ordered field with real closure R. Fix a class \mathscr{R} of real closed extension fields of R. Show that all R-semialgebraic classes in \mathscr{R}_n are K-semialgebraic classes as well.

Exercise 2 (6P). Which of the following statements are valid for all real closed fields *R*? Give a proof or a counterexample!

(a) Let $n \in \mathbb{N}$. Every polynomial in $R[X_1, \ldots, X_n]$ attains a minimum on

$$\left\{x \in \mathbb{R}^n \mid \sum_{i=1}^n x_i^2 = 1\right\}.$$

- (b) In *R* we have $\lim_{n\to\infty} \sqrt[n]{n} = 1$, where for every $n \in \mathbb{N}$ the notation $\sqrt[n]{n}$ stands for the $x \in R_{>0}$ with $x^n = n$ which exists and is unique by Descartes' rule of signs.
- (c) Let $f \in R[X]$ and $a, b \in R$. Then there are $c, d \in R$ with $\{f(x) \mid x \in [a, b]_R\} = [c, d]_R$.
- (d) $\forall n \in \mathbb{N} : \forall x \in R : \forall \varepsilon \in R_{>0} : \exists \delta \in R_{>0} : \forall y \in R \setminus \{x\} :$

$$\left(|x-y|<\delta\implies \left|\frac{x^n-y^n}{x-y}-nx^{n-1}\right|<\varepsilon\right)$$

Exercise 3 (6P+3BP). Let *R* be a real closed field and $n \in \mathbb{N}_0$. Consider the "distance function" $d: \mathbb{R}^n \to \mathbb{R}, x \mapsto \sum_{i=1}^n x_i^2$ and set $B(x, \varepsilon) = \{y \in \mathbb{R}^n \mid d(x, y) < \varepsilon\}$ for $x \in \mathbb{R}^n$ and $\varepsilon \in \mathbb{R}$. Which of the following sets are semialgebraic for all semialgebraic $S \subseteq \mathbb{R}^n$?

- (a) The interior $\mathring{S} := \{ x \in \mathbb{R}^n \mid \exists \varepsilon \in \mathbb{R}_{>0} : B(x, \varepsilon) \subseteq S \}$ of S.
- (b) The affine hull

$$\operatorname{aff}(S) := \left\{ \sum_{i=1}^k \lambda_i x_i \mid k \in \mathbb{N}, \ x_1, \dots, x_k \in S, \ \lambda_1, \dots, \lambda_k \in R, \ \sum_{i=1}^k \lambda_i = 1 \right\}.$$

(c) The set

$$\Sigma(S) := \left\{ \sum_{i=1}^k x_i \mid k \in \mathbb{N}, \ x_1, \dots, x_k \in S \right\}.$$

- (d) Every *spectrahedron* $\{x \in \mathbb{R}^n | L(x) \text{ has signature } m\}$ where $L \in S(R[X_1, ..., X_n]_1)^{m \times m}$ (i.e. $L \in R[X_1, ..., X_n]_1^{m \times m}$ and $L = L^T$)
- (e) (Bonus) The *R*-Zariski closure of *S* in \mathbb{R}^n
- (f) (Bonus) The convex hull of S

$$\operatorname{conv}(S) := \left\{ \sum_{i=1}^k \lambda_i x_i \mid k \in \mathbb{N}, \ x_1, \dots, x_k \in S, \ \lambda_1, \dots, \lambda_k \in R_{\geq 0}, \ \sum_{i=1}^k \lambda_i = 1 \right\}.$$

Please submit until Thursday, December 22, 2016, 11:44 in the box named RAG I, Number 10, near to the room F411.