Real Algebraic Geometry I – Exercise Sheet 9

Exercise 1 (4P). Give an algorithm deciding if a polynomial $f \in \mathbb{Q}[X,Y]$ has only finitely many roots in \mathbb{R}^2 .

Exercise 2 (4P). Let R be a real closed field and $n \in \mathbb{N}_0$. Show that a semialgebraic set $A \subseteq R^n$ has nonempty interior \mathring{A} if and only if A is Zariski-dense in R^n (i.e., if no polynomial $f \in R[X_1, ..., X_n] \setminus \{0\}$ vanishes on A).

Exercise 3 (8P). Show that the following sets are not *K*-semialgebraic:

- (a) the garden fence $\{(x,y) \in \mathbb{R}^2 \mid y \ge 0, y \le |\lfloor x \rfloor x + \frac{1}{2}| + 10\}$ where $K := \mathbb{R}$,
- (b) $\{(x,2^x) \mid x \in \mathbb{R}\}$ where $K := \mathbb{Q}$,
- (c) the set of all *infinitesimal* elements in an arbitrary fixed non-archimedean real closed field R where K := R, and
- (d) the set $\{(x,y,z) \in R^3_{>0} \mid \forall n \in \mathbb{N} : x \geq yn \geq zn^2\}$ for an arbitrary fixed non-archimedean real closed extension field R of $K := \mathbb{R}$.

Bonus exercise (4BP). Let R be a real closed field and A a finitely generated R-algebra. Suppose there exists an algebra homomorphism $\varphi \colon A \to S$ where S into a real closed extension field S of R.

- (a) Show that there exists also an algebra homomorphism $A \to R$.
- (b) Give a counterexample to (a) in the case where one drops the requirement that *R* is real closed.

Hint: For (a), find an ideal I with $\psi \colon A \stackrel{\cong}{\to} R[\underline{X}]/I$ and analyze the algebra homomorphism $\gamma \colon R[\underline{X}] \to R_1, f \mapsto \varphi(\psi^{-1}(\overline{f}^I))$ which is a point evaluation.

Please submit until Thursday, January 12, 2017, 11:44 in the box named RAG I, Number 10, near to the room F411.