Real Algebraic Geometry I - Exercise Sheet 9

Exercise 1 (4P). Give an algorithm deciding if a polynomial $f \in \mathbb{Q}[X, Y]$ has only finitely many roots in \mathbb{R}^{2}.

Exercise 2 (4P). Let R be a real closed field and $n \in \mathbb{N}_{0}$. Show that a semialgebraic set $A \subseteq R^{n}$ has nonempty interior \AA if and only if A is Zariski-dense in R^{n} (i.e., if no polynomial $f \in R\left[X_{1}, \ldots, X_{n}\right] \backslash\{0\}$ vanishes on A).

Exercise 3 (8P). Show that the following sets are not K-semialgebraic:
(a) the garden fence $\left\{(x, y) \in \mathbb{R}^{2}\left|y \geq 0, y \leq\left|\lfloor x\rfloor-x+\frac{1}{2}\right|+10\right\}\right.$ where $K:=\mathbb{R}$,
(b) $\left\{\left(x, 2^{x}\right) \mid x \in \mathbb{R}\right\}$ where $K:=\mathbb{Q}$,
(c) the set of all infinitesimal elements in an arbitrary fixed non-archimedean real closed field R where $K:=R$, and
(d) the set $\left\{(x, y, z) \in R_{>0}^{3} \mid \forall n \in \mathbb{N}: x \geq y n \geq z n^{2}\right\}$ for an arbitrary fixed nonarchimedean real closed extension field R of $K:=\mathbb{R}$.

Bonus exercise (4BP). Let R be a real closed field and A a finitely generated R-algebra. Suppose there exists an algebra homomorphism $\varphi: A \rightarrow S$ where S into a real closed extension field S of R.
(a) Show that there exists also an algebra homomorphism $A \rightarrow R$.
(b) Give a counterexample to (a) in the case where one drops the requirement that R is real closed.

Hint: For (a), find an ideal I with $\psi: A \xlongequal{\cong} R[\underline{X}] / I$ and analyze the algebra homomorphism $\gamma: R[\underline{X}] \rightarrow R_{1}, f \mapsto \varphi\left(\psi^{-1}\left(\bar{f}^{\prime}\right)\right)$ which is a point evaluation.

Please submit until Thursday, January 12, 2017, 11:44 in the box named RAG I, Number 10, near to the room F411.

