Real Algebraic Geometry I - Exercise Sheet 11

Exercise 1 (4P). Let $S \subseteq \mathbb{R}^{n}$ and $y \in S$. The set S is called star-shaped relative to y if for all points $x \in S$ the straight line segment between x and y lies in S (i.e., $\operatorname{conv}\{x, y\} \subseteq S$). Prove the following:
(a) Let $K \subseteq \mathbb{R}^{n}$ be an unbounded set which is closed and star-shaped relative to y. Then K contains a half-line starting from y (i.e., $y+\mathbb{R}_{\geq 0} u \subseteq K$ for some $u \in \mathbb{R}^{n} \backslash\{0\}$).
(b) Let $f \in \mathbb{R}[\underline{X}]$ be a polynomial with Newton polytope $N(f)$ and $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}=$ $\frac{1}{2} N(f) \cap \mathbb{N}_{0}^{n}$. Set $v=\left(\underline{X}^{\alpha_{1}} \ldots \underline{X}^{\alpha_{m}}\right)^{T}$. Show that the Gram spectrahedron

$$
\left\{G \in S \mathbb{R}^{m \times m} \mid G \text { psd, } f=v^{T} G v\right\}
$$

of f is a convex compact subset of $\mathbb{R}^{m \times m} \cong \mathbb{R}^{m^{2}}$.

Exercise 2 (4P). Let A be a commutative ring and $P \subseteq A$. Show that the following are equivalent:
(a) P is a prime cone of A.
(b) P is a proper preorder of A and for all $a, b \in A$

$$
a b \in P \Longrightarrow(a \in P \text { or }-b \in P) .
$$

(c) P is a proper preorder and for all $a, b \in A$

$$
a b \in P \Longrightarrow(a, b \in P \text { or }-a,-b \in P) .
$$

Exercise 3 (4P). A commutative ring A is called real if $a_{1}^{2}+\ldots+a_{n}^{2}=0$ implies $a_{1}=0$ for all $n \in \mathbb{N}$ and $a_{1}, \ldots, a_{n} \in A$. Prove:
(a) If A is real, then so is $S^{-1} A$ for any multiplicative set $S \subseteq A$.
(b) Show that A is real if and only if A is reduced and $A_{\mathfrak{p}}$ is real for all minimal prime ideals \mathfrak{p} of A.
(c) Show that if A is Noetherian, then every ascending sequence of prime cones gets eventually constant.

Exercise 4 (4P). Determine what the maximal prime cones of $A=C([0,1], \mathbb{R})$ are.
Hint: Show first that if $I \subseteq A$ is a prime ideal, the set $\{x \in[0,1] \mid \forall f \in I: f(x)=0\}$ contains exactly one element.

Please submit until Thursday, January 26, 2017, 11:44 in the box named RAG I, Number 10, near to the room F411.

