Tom-Lukas Kriel María López Quijorna Markus Schweighofer

Real Algebraic Geometry I – Exercise Sheet 12

Exercise 1 (4P). Let *R* be a real closed field and $p \in R[\underline{X}]$. Show that the following are equivalent:

- (a) $p \ge 0$ on \mathbb{R}^n
- (b) $\hat{p} \ge 0$ on sper $R[\underline{X}]$

Hint: Consider *R* as a ordered subfield of all representations fields R_P of prime cones *P* of *A*.

Exercise 2 (4P). Let *A* and *B* be commutative rings, $\varphi \colon A \to B$ a ring homomorphism and *P* a prime cone of *A*. Show that the following are equivalent:

- (a) There exists a prime cone *Q* of *B* with $\varphi^{-1}(Q) = P$.
- (b) For all $r \in \mathbb{N}$, all $a, a_1, ..., a_r \in P$ with $a \notin -P$ and all $b_1, ..., b_r \in B$

$$\varphi(a) + \sum_{i=1}^r \varphi(a_i)b^2 \neq 0.$$

Exercise 3 (4P). Let *A* be a commutative ring and $P, Q_1, Q_2 \in \text{sper}(A)$ with respective supports $\mathfrak{p}, \mathfrak{q}_1, \mathfrak{q}_2$. Prove:

- (a) $P \subseteq Q_1 \cup Q_2$ implies that there is an *i* such that $\mathfrak{p} \subseteq \mathfrak{q}_i$.
- (b) $P = Q_1 \cup Q_2$ implies that there is an *i* such that $P = Q_i$.

Exercise 4 (4P). Let *A* be a commutative ring and *P* a prime cone of *A*. Show that the following are equivalent:

- (a) *P* is a minimal element of sper *A* (partially ordered by inclusion).
- (b) $\forall a \in \operatorname{supp}(P) : \exists k \in \mathbb{N}_0 : \exists b \in P \setminus -P : \exists c \in \sum (P \setminus -P) A^2 : a^{2k}b + c = 0$

Please submit until Thursday, February 2, 2017, 11:44 in the box named RAG I, Number 10, near to the room F411.