## Real Algebraic Geometry I - Exercise Sheet 13

Exercise 1 (4P). We call a commutative ring $A$ semireal if $-1 \notin \sum A^{2}$. Let $R$ be a real closed field and $I \subseteq A:=R\left[X_{1}, \ldots, X_{n}\right]$ be an ideal. Show that the following are equivalent:
(a) $A / I$ is semireal.
(b) $I \subseteq \operatorname{supp}(P)$ for some $P \in \operatorname{sper}(A)$
(c) $V_{R}(I):=\left\{x \in R^{n} \mid \forall f \in I: f(x)=0\right\} \neq \varnothing$

Exercise 2 (5P). Let $A$ be a commutative ring. For every ideal $I \subseteq A$ we define

$$
\sqrt[2]{I}:=\left\{a \in A \mid \exists s \in \sum A^{2}: a^{2}+s \in I\right\}
$$

and inductively for $k \in \mathbb{N}$

$$
\sqrt[2^{k+1}]{I}:=\sqrt[2]{\sqrt[2^{k}]{I}}
$$

(a) Show that $\left\{a \in A \mid a^{2} \in I\right\}$ is in general no ideal of $A$.
(b) Show that $\sqrt[2]{I}$ is an ideal. We call it the square root ideal of $I$.
(c) Show that for all $k \in \mathbb{N}$

$$
\sqrt[2^{k}]{I}=\left\{a \in A \mid \exists s \in \sum A^{2}: a^{2^{k}}+s \in I\right\} .
$$

(d) Show $\operatorname{rrad}(I)=\bigcup_{k \in \mathbb{N}} \sqrt[2^{k}]{I}$.
(e) Show that there is a $k \in \mathbb{N}$ with $\operatorname{rrad}(I)=\sqrt[2^{k}]{I}$ if $A$ is Noetherian.

Exercise 3 (5P). Let $A:=C([0,1])$ be the commutative ring of continuous real-valued functions on the interval $[0,1] \subseteq \mathbb{R}$.
(a) Which of the following sets are prime cones of $A$ ?

$$
\begin{aligned}
P & :=\left\{f \in A \mid \exists \varepsilon>0: f((0, \varepsilon)) \subseteq \mathbb{R}_{\geq 0}\right\} \\
Q & :=\left\{f \in A \mid \exists\left(a_{n}\right)_{n \in \mathbb{N}} \text { in } f^{-1}\left(\mathbb{R}_{\geq 0}\right): \lim _{n \rightarrow \infty} a_{n}=0\right\}
\end{aligned}
$$

(b) Show that the maximal prime cones of $C([0,1])$ are not minimal.
(c) Let $f, g \in A$ with

$$
\forall x \in[0,1]:(g(x)=0 \Longrightarrow f(x)>0)
$$

Show that

$$
\forall P \in \operatorname{sper} A:(\widehat{g}(P)=0 \Longrightarrow \widehat{f}(P)>0)
$$

Conclude that there are $s, t \in A^{2}$ and $u \in A$ with $(1+s) f=1+t+g u$.

Exercise 4 (2P). Let $R$ be a real closed field, $C:=R(i)$ its algebraic closure and $I$ a real radical ideal of $R[\underline{X}]$. Consider $V_{R}(I):=\left\{x \in R^{n} \mid \forall f \in I: f(x)=0\right\}$ and $V_{C}(I):=\left\{x \in C^{n} \mid \forall f \in I: f(x)=0\right\}$. Prove:
(a) $V_{R}(I)$ is Zariski-dense in $V_{C}(I)$, i.e., if an arbitrary polynomial of $C[\underline{X}]$ vanishes on $V_{R}(I)$, then it vanishes also on $V_{C}(I)$.
(b) Now let $I$ be a prime ideal of $R[\underline{X}]$. Show that also the ideal $J$ generated by $I$ in $C[\underline{X}]$ is a prime ideal of $C[\underline{X}]$.

## Hint:

(a) Apply 3.7.9.
(b) Take $a, b, c, d \in R[\underline{X}]$ with $(a+i b)(c+i d) \in J$ and show $b\left(d^{2}+c^{2}\right), a\left(c^{2}+d^{2}\right) \in I$.

Please submit until Thursday, February 9, 2017, 11:44 in the box named RAG I, Number 10, near to the room F411.

