Geometry of Linear Matrix Inequalities - Exercise Sheet 2

Exercise 1 (2P) For a matrix $A \in \mathbb{R}^{k \times k}$, we write $A \succeq 0$ to denote that A is psd, i.e., $A \in S \mathbb{R}^{k \times k}[\rightarrow 1.6 .1$ (c) $]$ and $x^{T} A x \geq 0$ for all $x \in \mathbb{R}^{k}[\rightarrow 2.3 .1$ (b) $]$. A spectrahedron in \mathbb{R}^{n} is a set of the form

$$
S=\left\{x \in \mathbb{R}^{n} \mid A_{0}+\sum_{i=1}^{n} x_{i} A_{i} \succeq 0\right\}
$$

for some $k \in \mathbb{N}_{0}$ and $A_{0}, \ldots, A_{n} \in S \mathbb{R}^{k \times k}[\rightarrow 1.6 .1(\mathrm{c})]$. A cone in \mathbb{R}^{n} that is a spectrahedron is called a spectrahedral cone. Fix $S \subseteq \mathbb{R}^{n}$. Show that the following are equivalent:
(a) S is a spectrahedral cone.
(b) There is $k \in \mathbb{N}_{0}$ and $A_{1}, \ldots, A_{n} \in S \mathbb{R}^{k \times k}$ such that

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i} A_{i} \succeq 0\right\}
$$

Exercise 2 (4P) Show that the map $S \mathbb{R}^{k \times k} \rightarrow \mathbb{R}^{k}$ sending $A \in S \mathbb{R}^{k \times k}$ to $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ whenever $\operatorname{det}\left(X I_{k}-A\right)=\prod_{i=1}^{k}\left(X-\lambda_{i}\right)$ with $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ with $\lambda_{1} \geq \ldots \geq \lambda_{k}$ is continuous.

Exercise 3 (4P) Suppose $S \subseteq \mathbb{R}^{n}$ is compact, $x_{1}, \ldots, x_{k} \in S^{\circ}$ are pairwise distinct, $u \in \mathbb{R}[\underline{X}]$ is defined as in Theorem 9.1.12, $f \in \mathbb{R}[\underline{X}]$ and $f\left(x_{1}\right)=\ldots=f\left(x_{k}\right)=0$. Show again [$\rightarrow 9.2 .5$] that the following are equivalent, this time only using basic multivariate analysis:
(a) $f>0$ on $S \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ and Hess $f\left(x_{1}\right), \ldots$, Hess $f\left(x_{k}\right)$ are pd.
(b) There is some $\varepsilon \in \mathbb{R}_{>0}$ such that $f \geq \varepsilon u$ on S.

Exercise 4 (4P) Let $g_{1}, \ldots, g_{m} \in \mathbb{R}[\underline{X}]$ such that $M\left(g_{1}, \ldots, g_{m}\right)$ is Archimedean. Set $S:=\left\{x \in \mathbb{R}^{n} \mid g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$. Fix $\varepsilon>0$ and set $B:=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq \varepsilon\right\}$. Using only Putinar's Positivstellensatz (Example 8.2.14) but not the degree bounds for it (Corollary 9.2.4), show that there is $N \in \mathbb{N}$ such that

$$
S \subseteq\left\{x \in \mathbb{R}^{n} \mid \forall f \in \mathbb{R}[\underline{X}]_{1} \cap M_{N}\left(g_{1}, \ldots, g_{m}\right): f(x) \geq 0\right\} \subseteq S+B
$$

Exercise 5 (6P)

(a) Suppose $k, n \in \mathbb{N}_{0}, A_{1}, \ldots, A_{n} \in S \mathbb{R}[\underline{X}]^{k \times k}$ and

$$
S:=\left\{x \in \mathbb{R}^{n} \mid I_{n}+A_{1} x_{1}+\ldots+A_{n} x_{n} \succeq 0\right\}
$$

is compact. Show that A_{1}, \ldots, A_{n} are linearly independent.
(b) For fixed $k \in \mathbb{N}$, determine the largest $n \in \mathbb{N}_{0}$ for which there exist $A_{1}, \ldots, A_{n} \in$ $S \mathbb{R}[\underline{X}]^{k \times k}$ such that $\left\{x \in \mathbb{R}^{n} \mid I_{n}+A_{1} x_{1}+\ldots+A_{n} x_{n} \succeq 0\right\}$ is compact.

Please submit until Tuesday, July 18, 2017, 9:55 in the box named RAG II near to the room F411.

