Geometry of linear matrix inequalities - Exercise sheet 3

Exercise 1 (10P) Set $g := 1 - X^4 - Y^4$ and $S := \{(x, y) \in \mathbb{R}^2 \mid g(x) \ge 0\}$.

- (a) Show that *S* is convex.
- (b) Show that *S* is a not a spectrahedron.
- (c) Show that every $f \in \mathbb{R}[X, Y]_1$ with $f \ge 0$ on *S* is an element of $M_4(g)$.
- (d) Find a spectrahedron $S' \subseteq \mathbb{R}^4$ such that

 $S = \{ (x,y) \in \mathbb{R}^2 \mid \exists s,t \in \mathbb{R} : (x,y,s,t) \in S' \}.$

Hint: For (c), use Hilbert's 1888 Theorem 7.5.10 and Lagrange multipliers.

Exercise 2 (10P) Let $n \in \mathbb{N}$, $g \in \mathbb{R}[\underline{X}]$ and $x \in \mathbb{R}^n$ such that g(x) = 0 and $\nabla g(x) \neq 0$. Suppose v_1, \ldots, v_n form a basis of \mathbb{R}^n , U is an open neighborhood of 0 in \mathbb{R}^{n-1} and $\varphi \colon U \to \mathbb{R}$ is smooth and satisfies $\varphi(0) = 0$ and

(*) $g(x + \xi_1 v_1 + \ldots + \xi_{n-1} v_{n-1} + \varphi(\xi) v_n) = 0$

for all $\xi = (\xi_1, \dots, \xi_{n-1}) \in U$. Then the following hold:

- (a) $(\nabla g(x))^T v_1 = \ldots = (\nabla g(x))^T v_{n-1} = 0 \iff \nabla \varphi(0) = 0$
- (b) If $\nabla \varphi(0) = 0$ and $(\nabla g(x))^T v_n > 0$, then

g is strictly quasiconcave at $x \iff \text{Hess } \varphi(0) \succ 0$.

Exercise 3 (10P) Let $n \in \mathbb{N}$, $g \in \mathbb{R}[\underline{X}]$ and $x \in \mathbb{R}^n$ such that g(x) = 0. Let *V* be a neighborhood of *x* and v_1, \ldots, v_n be a basis of \mathbb{R}^n . the following are equivalent:

- (a) $\nabla g(x)v_n > 0$
- (b) $g(x + \lambda v_n) > 0$ for all small enough $\lambda \in \mathbb{R}_{>0}$.
- (c) $x + \lambda v_n \in (S(g) \setminus Z(g)) \cap V$ for all small enough $\lambda \in \mathbb{R}_{>0}$.

If the equivalent conditions (a)–(c) are satisfied, then the following conditions are also equivalent:

- (e) *g* is strictly quasiconcave at *x*.
- (f) There is an open neighborhood *U* of 0 in \mathbb{R}^{n-1} and a smooth function $\varphi \colon U \to \mathbb{R}$ such that $\varphi(0) = 0$, $\nabla \varphi(0) = 0$, Hess $\varphi(0) \succ 0$ and

(*)
$$g(x + \xi_1 v_1 + \ldots + \xi_{n-1} v_{n-1} + \varphi(\xi) v_n) = 0$$

for all $\xi = (\xi_1, ..., \xi_{n-1}) \in U$.

(g) Condition (f) holds with (*) replaced by

$$(**) \qquad x + \xi_1 v_1 + \ldots + \xi_{n-1} v_{n-1} + \varphi(\xi) v_n \in Z(g) \cap V.$$

If the equivalent conditions (e)–(g) are satisfied, then $\nabla g(x)v_i = 0$ for all $i \in \{1, ..., n-1\}$.

Please submit until Tuesday, July 25, 2017, 9:55 in the box named RAG II near to the room F411.