Real Algebraic Geometry II - Exercise Sheet 2

Exercise 1 (5P) Suppose M is a set, define $\mathscr{F}_{0}:=\{U \in \mathscr{P}(M) \mid M \backslash U$ is finite $\}$. Show the following:
(a) Let \mathscr{F} be an ultrafilter on M. Then either $\mathscr{F}_{0} \subseteq \mathscr{F}$ or there exists an $s \in M$ such that $\mathscr{F}=\{U \in \mathscr{P}(M) \mid s \in U\}$. An ultrafilter of the $\left\{\begin{array}{c}\text { first } \\ \text { second }\end{array}\right\}$ type is called $\left\{\begin{array}{c}\text { free } \\ \text { principal }\end{array}\right\}$.
(b) Show that M is finite if and only if every ultrafilter on M is principal.
(c) Determine $\{\bigcap \mathscr{F} \mid \mathscr{F}$ ultrafilter on $M\}$.

Exercise 2 (5P) Let M be a set.
(a) Find a condition that characterizes when a subset of $\mathscr{P}(M)$ generates a filter on M (in the sense that there is a smallest filter on M containing it).
(b) Show that a countably infinite subset of $\mathscr{P}(M)$ never generates a free ultrafilter on M.
(c) Show that every filter on M is an intersection of ultrafilters.

Exercise $3(14 \mathrm{P})$ Let I be a set, $\left(K_{i}, \leq_{i}\right)_{i \in I}$ a family of ordered fields and \mathscr{U} an ultrafilter on I.
(a) Show that

$$
\mathfrak{m}:=\left\{\left(a_{i}\right)_{i \in I} \in \prod_{i \in I} K_{i} \mid\left\{i \in I \mid a_{i}=0\right\} \in \mathscr{U}\right\}
$$

is a maximal ideal of the ring $\prod_{i \in I} K_{i}$ so that

$$
R:=\left(\prod_{i \in I} K_{i}\right) / \mathscr{U}:=\left(\prod_{i \in I} K_{i}\right) / \mathfrak{m}
$$

is a field.
(b) Show that

$$
{\overline{\left(a_{i}\right)_{i \in I}} \mathrm{~m}}_{\mathrm{m}}^{{\overline{\left(b_{i}\right)_{i \in I}}}^{\mathrm{m}}: \Longleftrightarrow\left\{i \in I \mid a_{i} \leq b_{i}\right\} \in \mathscr{U} \quad\left(\left(a_{i}\right)_{i \in I}\left(b_{i}\right)_{i \in I} \in \prod_{i \in I} K_{i}\right), ~}
$$

defines an order \leq of the field R so that

$$
\left(\prod_{i \in I}\left(K_{i}, \leq_{i}\right)\right) / \mathscr{U}:=(R, \leq)
$$

is an ordered field. We call this ordered field the ultraproduct of the ordered fields $\left(K_{i}, \leq_{i}\right), i \in I$, along the ultrafilter \mathscr{U}.
(c) Show that R is Euclidean if K_{i} is Euclidean for each $i \in I$.
(d) Show that R is real closed if K_{i} is real closed for each $i \in I$.

Now let \mathscr{U} be a free ultrafilter on $I:=\mathbb{N}$.
(e) Show that (R, \leq) is not Archimedean.
(f) Show that every convergent $[\rightarrow 1.1 .9$ (b) $]$ sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in R is eventually constant.
(g) Endow R with the topology induced by the order \leq in the sense that it is generated by $\{\{x \in R \mid a<x\} \mid a \in R\} \cup\{\{x \in R \mid x<a\} \mid a \in R\}$. Show that 1 is then in the closure of $I:=\{x \in R \mid 0 \leq x<1\}$ but it is not the limit of any sequence in I. This gives the counterexample that was promised in Exercise 4 of Sheet 1.

Please submit until Tuesday, May 9, 2017, 11:44 in the box named RAG II near to the room F411.

