Tom-Lukas Kriel María López Quijorna Markus Schweighofer

Real Algebraic Geometry II – Exercise Sheet 3

Exercise 1 (4P) An subset of a topological space is called *clopen* if it is closed and open. Let *A* be a commutative ring.

- (a) Show that every constructible subset of sper *A* is quasicompact.
- (b) Show that the constructible subsets of sper *A* are exactly the clopen subsets of sper *A* with respect to the constructible topology.

Exercise 2 (4P) Let A be a commutative ring. Show that the set of maximal prime cones of A is a compact subset of sper A.

Exercise 3 (4P) Let *A* be a commutative ring. Let $S \subseteq \text{sper } A$ be closed with respect to the constructible topology. Prove that $\overline{S} = \{P \in \text{sper}(A) \mid \exists Q \in S : Q \subseteq P\}$.

Exercise 4 (6P) Let A be a commutative ring. Show that the correspondence

$$\mathscr{F} \mapsto \bigcap \mathscr{F},$$

 $\{B \in \mathscr{C} \mid A \subseteq B\} \leftarrow A$

defines a bijection between the set of filters in the Boolean algebra \mathscr{C}_A of constructible subsets of sper *A* and the set of nonempty closed subsets of sper *A* with respect to the constructible topology.

Exercise 5 (4P) Show the following:

- (a) If $P \in \operatorname{sper} \mathbb{R}[\underline{X}]$ and $\mathscr{U} := \mathscr{U}_P$, then *P* is Archimedean if and only if the ultrafilter \mathscr{U} contains a bounded semialgebraic set.
- (b) $\mathscr{U} := \{S \in \mathscr{S}_2 \mid \exists N \in \mathbb{N} : \{(x^2, x) \mid x \in \mathbb{R}, x \ge N\} \subseteq S\}$ is an ultrafilter on the Boolean algebra of semialgebraic subsets of \mathbb{R}^2 such that $P := P_{\mathscr{U}}$ is a maximal element of sper $\mathbb{R}[X_1, X_2]$ but *P* is not Archimedean.

Exercise 6 (2P) Let *R* be a real closed field, $m \in \mathbb{N}$ and $P_1, \ldots, P_m \in \text{sper } R[\underline{X}]$. Show that there exists a real closed extension field *H* of *R* and $x_1, \ldots, x_m \in H^n$ such that $P_i = \{f \in H[\underline{X}] \mid f(x_i) \ge 0\}$ for all $i \in \{1, \ldots, m\}$.

Please submit until Tuesday, May 16, 2017, 11:44 in the box named RAG II near to the room F411.