Real Algebraic Geometry II - Exercise Sheet 4

Exercise 1 (6P) Consider $(\mathbb{R}(X, Y), \leq)$ where \leq is the unique order on $\mathbb{R}(X, Y)$ such that

$$
\begin{aligned}
\{r \in \mathbb{R} \mid r \geq X\} & =\mathbb{R}_{>0} \quad \text { and } \\
\{r \in \mathbb{R}(X) \mid r \geq Y\} & =\mathbb{R}(X)_{>0}
\end{aligned}
$$

(see Exercise 1 on Sheet 3 from Real Algebraic Geometry I).
(a) Show that the elements of the quotient group $\mathbb{R}(X, Y)^{\times} / \mathscr{O}_{(\mathbb{R}(X, Y), \leq)}^{\times}$are clopen in $\mathbb{R}(X, Y)$ with respect to the order topology.
(b) Show that $\mathbb{Z}^{2} \rightarrow \mathbb{R}(X, Y)^{\times} / \mathscr{O}_{(\mathbb{R}(X, Y), \leq)^{\prime}}^{\times}(i, j) \mapsto \overline{X^{i} Y^{j}}$ is a bijection.
(c) Find a continuous function (with respect to the order topology)

$$
f:[-1,1]_{(\mathbb{R}(X, Y), \leq)} \rightarrow \mathbb{R}(X, Y)
$$

for which there is no $a \in \mathbb{R}(X, Y)$ such that the image of f is contained in $[-a, a]_{(\mathbb{R}(X, Y), \leq)}$.

Exercise 2 (6P) Is the semialgebraic set

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\} \cup\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<1,-1<y<1\right\} \subseteq \mathbb{R}^{2}
$$

\mathbb{R}-basic open?
Exercise 3 (4P) Let $n \in \mathbb{N}$. We call $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a test function if f is infinitely often differentiable and $\left\{x \in \mathbb{R}^{n} \mid f(x) \neq 0\right\}$ is bounded in \mathbb{R}^{n}. Show that the constant zero function is the only semialgebraic test function.

Exercise 4 (2P) Let (K, \leq) be an ordered subfield of $\mathbb{R}, n \in \mathbb{N}_{0}$ and $\varnothing \neq S \subseteq \mathbb{R}^{n}$ K-semialgebraic. Show that the function

$$
\mathbb{R}^{n} \rightarrow \mathbb{R}, x \mapsto \operatorname{dist}(x, S)=\inf \{\|x-y\| \mid y \in S\}
$$

is continuous and K-semialgebraic.
Exercise 5 (6P) Let S be a closed semialgebraic subset of \mathbb{R}^{2} with

$$
\Gamma_{\exp }=\left\{\left(x, e^{x}\right) \mid x \in \mathbb{R}\right\} \subseteq S .
$$

Show that there is $c \in \mathbb{R}$ with

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq c, 0 \leq y \leq e^{x}\right\} \subseteq S
$$

Please submit until Tuesday, May 23, 2017, 11:44 in the box named RAG II near to the room F411.

