Real Algebraic Geometry II - Exercise Sheet 6

Exercise 1 (8P) Let K be a subfield of \mathbb{R} and V be a K-vector space. We call a map $p: V \rightarrow \mathbb{R}_{\geq 0}$ a seminorm on V if

$$
\begin{aligned}
& \forall x, y \in V: p(x+y) \leq p(x)+p(y) \quad \text { and } \\
& \forall \lambda \in K: \forall x \in V: p(\lambda x)=|\lambda| p(x) .
\end{aligned}
$$

Now let V be a topological K-vector space.
(a) Show that any neighborhood U of 0 in V is absorbing, i.e.,

$$
V=\bigcup_{\lambda \in K_{>0}} \lambda U
$$

(b) Show that for any convex balanced neighborhood U of 0 in V, the function

$$
p_{U}: V \rightarrow \mathbb{R}, x \mapsto \inf \left\{\lambda \in K_{>0} \mid x \in \lambda U\right\}
$$

is a seminorm on V with

$$
U^{\circ}=\{x \in V \mid p(x)<1\} \subseteq U \subseteq\{x \in V \mid p(x) \leq 1\}=\bar{U}
$$

(c) Prove that the correspondence

$$
\begin{aligned}
U & \mapsto p_{U} \\
\{x \in V \mid p(x)<1\} & \hookleftarrow p
\end{aligned}
$$

defines a bijection between the set of all open convex balanced neighborhoods of 0 in V and the set of all continuous seminorms on V.

Exercise $2(6 \mathrm{P})$ Let K be a subfield of \mathbb{R} and V be a K-vector space. If P is a set of seminorms on V, we denote by \mathscr{O}_{P} the topology on V generated by the sets

$$
\{x \in V \mid p(x-y)<\varepsilon\} \quad(p \in P, y \in V, \varepsilon>0)
$$

We call P separating if for all $x \in V \backslash\{0\}$ there exists $p \in P$ such that $p(x) \neq 0$. Now let \mathscr{O} be a topology on the set V. Show that the following are equivalent:
(a) (V, \mathscr{O}) is a locally convex K-vector space.
(b) There exists a separating set P of seminorms on V such that $\mathscr{O}=\mathscr{O}_{P}$.

Exercise 3 (6P) Let $n \in \mathbb{N}_{\geq 2}$. The one-dimensional affine subspaces of \mathbb{R}^{n} are called lines.
(a) Show that the following defines a topology on \mathbb{R}^{n} : A set $A \subseteq \mathbb{R}^{n}$ is open if and only if for every line G the intersection $G \cap A$ is open in G with respect to the topology induced on G by \mathbb{R}^{n}.
(b) Is the addition $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(x, y) \mapsto x+y$ continuous with respect to this topology?
(c) Is the scalar multiplication $\mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(\lambda, x) \mapsto \lambda x$ continuous with respect to this topology?

Exercise $4(8 \mathrm{P}+2 \mathrm{BP})$ This exercise should be done without using the separation theorems in $\S 7$ of the lecture notes. Let A be a nonempty closed convex subset of \mathbb{R}^{n}.
(a) Show that for each $x \in \mathbb{R}^{n}$, there is a unique $\pi(x):=y$ in \mathbb{R}^{n} such that

$$
\|x-y\|<\|x-z\|
$$

for all $z \in A \backslash\{x\}$.
(b) Show that the corresponding map $\pi: \mathbb{R}^{n} \rightarrow A$ is contractive, i.e.,

$$
\|\pi(x)-\pi(y)\| \leq\|x-y\|
$$

for all $x, y \in \mathbb{R}^{n}$.
(c) Let $A \subseteq \mathbb{R}^{n}$ be closed and convex and $x \in \mathbb{R}^{n} \backslash A$. Show that there is an \mathbb{R}-linear $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\varphi(x)<\varphi(a)$ for all $a \in A$.
(d) (Bonus) Let $C \subseteq \mathbb{R}^{n}$ be compact and convex. Let $A \subseteq \mathbb{R}^{n}$ be closed and convex such that $A \cap C=\varnothing$. Prove: There are $\varepsilon>0$ and an \mathbb{R}-linear function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\varphi(x)+\varepsilon \leq \varphi(a)$ for all $a \in A$ and $x \in C$.

Please submit until Tuesday, June 6, 2017, 9:55 in the box named RAG II near to the room F411.

