Tom-Lukas Kriel María López Quijorna Markus Schweighofer

Real Algebraic Geometry II – Exercise Sheet 6

Exercise 1 (8P) Let *K* be a subfield of \mathbb{R} and *V* be a *K*-vector space. We call a map $p: V \to \mathbb{R}_{>0}$ a *seminorm* on *V* if

$$\forall x, y \in V : p(x+y) \le p(x) + p(y)$$
 and
 $\forall \lambda \in K : \forall x \in V : p(\lambda x) = |\lambda| p(x).$

Now let *V* be a topological *K*-vector space.

(a) Show that any neighborhood *U* of 0 in *V* is *absorbing*, i.e.,

$$V = \bigcup_{\lambda \in K_{>0}} \lambda U$$

(b) Show that for any convex balanced neighborhood U of 0 in V, the function

$$p_U: V \to \mathbb{R}, x \mapsto \inf\{\lambda \in K_{>0} \mid x \in \lambda U\}$$

is a seminorm on *V* with

$$U^{\circ} = \{x \in V \mid p(x) < 1\} \subseteq U \subseteq \{x \in V \mid p(x) \le 1\} = \overline{U}.$$

(c) Prove that the correspondence

$$U \mapsto p_{U}$$
$$\{x \in V \mid p(x) < 1\} \leftarrow p$$

defines a bijection between the set of all open convex balanced neighborhoods of 0 in *V* and the set of all continuous seminorms on *V*.

Exercise 2 (6P) Let *K* be a subfield of \mathbb{R} and *V* be a *K*-vector space. If *P* is a set of seminorms on *V*, we denote by \mathcal{O}_P the topology on *V* generated by the sets

$$\{x \in V \mid p(x-y) < \varepsilon\}$$
 $(p \in P, y \in V, \varepsilon > 0).$

We call *P* separating if for all $x \in V \setminus \{0\}$ there exists $p \in P$ such that $p(x) \neq 0$. Now let \mathcal{O} be a topology on the set *V*. Show that the following are equivalent:

(a) (V, \mathcal{O}) is a locally convex *K*-vector space.

(b) There exists a separating set *P* of seminorms on *V* such that $\mathcal{O} = \mathcal{O}_P$.

Exercise 3 (6P) Let $n \in \mathbb{N}_{\geq 2}$. The one-dimensional affine subspaces of \mathbb{R}^n are called *lines*.

- (a) Show that the following defines a topology on \mathbb{R}^n : A set $A \subseteq \mathbb{R}^n$ is open if and only if for every line *G* the intersection $G \cap A$ is open in *G* with respect to the topology induced on *G* by \mathbb{R}^n .
- (b) Is the addition $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, $(x, y) \mapsto x + y$ continuous with respect to this topology?
- (c) Is the scalar multiplication $\mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, $(\lambda, x) \mapsto \lambda x$ continuous with respect to this topology?

Exercise 4 (8P+2BP) This exercise should be done without using the separation theorems in §7 of the lecture notes. Let *A* be a nonempty closed convex subset of \mathbb{R}^n .

(a) Show that for each $x \in \mathbb{R}^n$, there is a unique $\pi(x) := y$ in \mathbb{R}^n such that

$$||x - y|| < ||x - z||$$

for all $z \in A \setminus \{x\}$.

(b) Show that the corresponding map $\pi \colon \mathbb{R}^n \to A$ is contractive, i.e.,

$$\|\pi(x) - \pi(y)\| \le \|x - y\|$$

for all $x, y \in \mathbb{R}^n$.

- (c) Let $A \subseteq \mathbb{R}^n$ be closed and convex and $x \in \mathbb{R}^n \setminus A$. Show that there is an \mathbb{R} -linear $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ with $\varphi(x) < \varphi(a)$ for all $a \in A$.
- (d) (Bonus) Let $C \subseteq \mathbb{R}^n$ be compact and convex. Let $A \subseteq \mathbb{R}^n$ be closed and convex such that $A \cap C = \emptyset$. Prove: There are $\varepsilon > 0$ and an \mathbb{R} -linear function $\varphi \colon \mathbb{R}^n \to \mathbb{R}$ such that $\varphi(x) + \varepsilon \leq \varphi(a)$ for all $a \in A$ and $x \in C$.

Please submit until Tuesday, June 6, 2017, 9:55 in the box named RAG II near to the room F411.