Real Algebraic Geometry II – Exercise Sheet 7

Exercise 1 (4P) Let *K* be a subfield of \mathbb{R} , *V* a finite-dimensional *K*-vector space, $A \subseteq V$ convex and *F* a maximal nontrivial face of *A*. Show that *F* is exposed.

Exercise 2 (8P) Let $n \in \mathbb{N}_0$ and $d \in \mathbb{N}$ be even, $V \subseteq \mathbb{R}[X_1, \ldots, X_n]$ the \mathbb{R} -vector space of all *d*-forms in *n* variables. Let $P \subseteq V$ be the cone of all positive semidefinite *d*-forms of *n* variables. Show:

- (a) *P* is closed.
- (b) P° consists exactly of the positive definite *d*-forms in *n* variables.
- (c) For every $x \in \mathbb{R}^n \setminus \{0\}$ the set $F_x := \{f \in P \mid f(x) = 0\}$ is a maximal non-trivial face of *P*.
- (d) For every maximal non-trivial face *F* of *V* there exists an $x \in \mathbb{R}^n \setminus \{0\}$ such that $F = F_x$.

Exercise 3 (8P) Suppose *K* is a subfield of \mathbb{R} , $n \in \mathbb{N}_0$ and *V* is an *n*-dimensional topological *K*-vector space. Let $A \subseteq V$ be a convex set and $x \in V \setminus A$. Show that there exist *K*-linear functions $\varphi_1, \ldots, \varphi_n \colon V \to \mathbb{R}$ such that for every $y \in A$, there exists $j \in \{1, \ldots, n\}$ satisfying

$$\varphi_1(x) = \varphi_1(y), \ldots, \varphi_{j-1}(x) = \varphi_{j-1}(y)$$
 and $\varphi_j(x) < \varphi_j(y)$.

Exercise 4 (4P)

- (a) Prove or disprove the following: For any $n \in \mathbb{N}_0$ and closed $A \subseteq \mathbb{R}^n$, conv(A) is also closed.
- (b) Find $n \in \mathbb{N}$ and two nonempty disjoint convex sets $A, B \subseteq \mathbb{R}^n$ such that there exists no linear function $\varphi : \mathbb{R}^n \to \mathbb{R}$ satisfying $\varphi(a) < \varphi(b)$ for all $a \in A$ and $b \in B$.

Please submit until Tuesday, June 13, 2017, 9:55 in the box named RAG II near to the room F411.