Real Algebraic Geometry II - Exercise Sheet 7

Exercise 1 (4P) Let K be a subfield of \mathbb{R}, V a finite-dimensional K-vector space, $A \subseteq V$ convex and F a maximal nontrivial face of A. Show that F is exposed.

Exercise 2 (8P) Let $n \in \mathbb{N}_{0}$ and $d \in \mathbb{N}$ be even, $V \subseteq \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the \mathbb{R}-vector space of all d-forms in n variables. Let $P \subseteq V$ be the cone of all positive semidefinite d-forms of n variables. Show:
(a) P is closed.
(b) P° consists exactly of the positive definite d-forms in n variables.
(c) For every $x \in \mathbb{R}^{n} \backslash\{0\}$ the set $F_{x}:=\{f \in P \mid f(x)=0\}$ is a maximal non-trivial face of P.
(d) For every maximal non-trivial face F of V there exists an $x \in \mathbb{R}^{n} \backslash\{0\}$ such that $F=F_{x}$.

Exercise 3 (8P) Suppose K is a subfield of $\mathbb{R}, n \in \mathbb{N}_{0}$ and V is an n-dimensional topological K-vector space. Let $A \subseteq V$ be a convex set and $x \in V \backslash A$. Show that there exist K-linear functions $\varphi_{1}, \ldots, \varphi_{n}: V \rightarrow \mathbb{R}$ such that for every $y \in A$, there exists $j \in\{1, \ldots, n\}$ satisfying

$$
\varphi_{1}(x)=\varphi_{1}(y), \ldots, \varphi_{j-1}(x)=\varphi_{j-1}(y) \text { and } \varphi_{j}(x)<\varphi_{j}(y)
$$

Exercise 4 (4P)
(a) Prove or disprove the following: For any $n \in \mathbb{N}_{0}$ and closed $A \subseteq \mathbb{R}^{n}$, $\operatorname{conv}(A)$ is also closed.
(b) Find $n \in \mathbb{N}$ and two nonempty disjoint convex sets $A, B \subseteq \mathbb{R}^{n}$ such that there exists no linear function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying $\varphi(a)<\varphi(b)$ for all $a \in A$ and $b \in B$.

Please submit until Tuesday, June 13, 2017, 9:55 in the box named RAG II near to the room F411.

