Tom-Lukas Kriel María López Quijorna Markus Schweighofer

Real Algebraic Geometry II – Exercise Sheet 10

Exercise 1 (4P) Let $f \in \mathbb{R}[\underline{X}]$ be homogeneous and positive definite. Show that there exists $k \in \mathbb{N}$ such that $(\sum_{i=1}^{n} X_i^2)^k f \in \sum \mathbb{R}[\underline{X}]^2$.

Hint: Try to imitate the proof of Example 8.2.15. Use the substitution $X_i \mapsto \frac{X_i}{\sqrt{X_1^2 + ... + X_n^2}}$ and calculate in the field $\mathbb{R}(\underline{X}) \left(\sqrt{X_1^2 + ... + X_n^2}\right)$.

Exercise 2 (4P) Let *K* be a subfield of \mathbb{R} equipped with the induced order and let *A* be a commutative ring containing *K*. Suppose *T* is a preorder or Archimedean semiring of *A*, $K_{>0} \subseteq T$ and $M \subseteq A$ is an Archimedean *T*-module of *A*. Set

$$S := \{ x \in \mathbb{R}^n \mid \forall f \in M : f(x) \ge 0 \}.$$

Suppose that there are $a_1, ..., a_m \in A$ and $f_1, ..., f_m \in T$ such that $f = \sum_{i=1}^m f_i a_i$, $f \ge 0$ on *S* and $a_i(x) > 0$ for all $x \in S$ with f(x) = 0. Show that $f \in M$.

Exercise 3 (4P) Let A be a commutative ring. We say that a preorder T is *saturated* if it is an intersection of prime cones.

- (a) Show that a preorder *T* of *A* is saturated if and only if for all $f \in A$, $m \in \mathbb{N}$, $s, t \in T$ the equality $sf = t + f^{2m}$ implies $f \in T$.
- (b) Suppose now that $A = \mathbb{R}[\underline{X}]$ and that *T* is finitely generated. Define

$$S = \{ x \in \mathbb{R}^n \mid \forall t \in T : t(x) \ge 0 \}.$$

Show that *T* is saturated if and only if every polynomial $f \in \mathbb{R}[\underline{X}]$ fulfilling $f \ge 0$ on *S* is contained in *T*.

Exercise 4 (4P) Let *A* be a commutative ring containing Q. Show that an Archimedean preorder *T* of *A* is saturated if and only if $T_{\mathfrak{m}} := (A \setminus \mathfrak{m})^{-2}T$ is saturated in

$$A_{\mathfrak{m}} := (A \setminus \mathfrak{m})^{-1} A$$

for every maximal ideal $\mathfrak{m} \subseteq A$.

Exercise 5 (4P) Suppose that *T* is an Archimedean preorder of $\mathbb{R}[\underline{X}]$,

$$S = \{ x \in \mathbb{R}^n \mid \forall g \in T : g(x) \ge 0 \}$$

and $f \in T + (f^2)$ satisfies $f \ge 0$ on *S*. Show that $f \in T$.

Hint: Write $f = t + hf^2$ with $t \in T$ and $h \in \mathbb{R}[\underline{X}]$. Work with $I := (t, f^2)$.

Exercise 6 (6P) Decide if the preorder generated by

(a) $1 - X^2$ (b) $-1 + X^2$

in $\mathbb{R}[X]$ is saturated.

Please submit until Tuesday, July 4, 2017, 9:55 in the box named RAG II near to the room F411.