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Introduction

The study of polynomial equations is a canonical subject in mathematics education,
as is illustrated by the following examples: Quadratic equations in one variable (high
school), systems of linear equations (linear algebra), polynomial equations in one vari-
able and their symmetries (algebra, Galois theory), diophantine equations (number the-
ory) and systems of polynomial equations (algebraic geometry, commutative algebra).

In contrast to this, the study of polynomial inequalities (in the sense of “greater than” or
“greater or equal than”) is mostly neglected even though it is much more important for
applications: Indeed, in applications one often searches for a real solution rather than a
complex one (as in classical algebraic geometry) and this solution must not necessarily
be exact but only approximate.

In a course about linear algebra there is frequently no time for linear optimization. An
introductory course about algebra usually treats groups, rings and fields but disregards
ordered and real closed fields as well as preorders or prime cones of rings. In a first
course on algebraic geometry there is often no special attention paid to the real part of
a variety and in commutative algebra quadratic modules are practically never treated.

Most algebraists do not even know the notion of a preorder although it is as important
for the study of systems of polynomial inequalities as the notion of an ideal is for the
study of systems of polynomial equations. People from more applied areas such as
numerical analysis, mathematical optimization or functional analysis know often more
about real algebraic geometry than some algebraists, but often do not even recognize
that polynomials play a decisive role in what they are doing. There are for example
countless articles from functional analysis which are full of equations with binomial
coefficients which turn out to be just disguised simple polynomial identities.

In the same way as the study of polynomial systems of equations leads to the study of
rings and their generalizations (such as modules), the study of systems of polynomial
inequalities leads to the study of rings which are endowed with something that re-
sembles an order. This additional structure raises many new questions that have to be
clarified. These questions arise already at a very basic level so that we need as prereq-
uisites only basic linear algebra, algebra and analysis. In particular, this course is really
extremely well suited to students heading for a teaching degree. It includes several
topics which are directly relevant for high school teaching.

To arouse the reader’s curiosity, we present the following table. It contains on the left
column notions we assume the reader is familiar with. On the right column we name
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what could be seen more or less as their real counterparts mostly introduced in this
course.

Algebra Real Algebra
Algebraic Geometry Real Algebraic Geometry

systems of polynomial equations systems of polynomial inequalities
“=” “≥”

complex solutions real solutions
C R

algebraically closed fields real closed fields
fields ordered fields
ideals preorders

prime ideals prime cones
spectrum real spectrum

Noetherian quasi-compact
radical real radical

fundamental theorem of algebra fundamental theorem of algebra
Aachen, Aalborg, Aarhus, . . . Dortmund, Dublin, Innsbruck, . . .

. . . , Zagreb, Zürich . . . , Konstanz, Ljubljana, Rennes

It is intended that the fundamental theorem of algebra appears on both sides of the
table. In its usual form, it says that each non-constant univariate complex polynomial
has a complex root. In Section 1.4, we will formulate it in a “real” way. The difficulties
one has to deal with in the “real world” become already apparent when one asks the
corresponding “real question”: When does a univariate complex polynomial have a
real root? The answer to this will be given in Section 1.6 and requires already quite
some thoughts.

Traditionally, Real Algebraic Geometry has many ties with fields like Model Theory,
Valuation Theory, Quadratic Form Theory and Algebraic Topology. In this lecture, we
mainly emphasize however connections to fields like Optimization, Functional Analy-
sis and Convexity that came up during the recent years and are now fully established.

Throughout the lecture, N := {1, 2, 3, . . . } and N0 := {0}∪N denote the set of positive
and nonnegative integers, respectively.
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§1 Ordered fields

1.1 Orders of fields

Reminder 1.1.1. Let M be a set. An order on M is a relation ≤ on M such that for all
a, b, c ∈ M:

a ≤ a (reflexivity)
(a ≤ b & b ≤ c) =⇒ a ≤ c (transitivity)
(a ≤ b & b ≤ a) =⇒ a = b (antisymmetry)

and a ≤ b or b ≤ a (linearity)

In this case, (M,≤) (or simply M if ≤ is clear from the context) is called an ordered set.
For a, b ∈ M, one defines

a < b :⇐⇒ a ≤ b & a 6= b,
a ≥ b :⇐⇒ b ≤ a

and so on.

Definition 1.1.2. Let (M,≤1) and (N,≤2) be ordered sets and ϕ : M → N be a map.
Then ϕ is called a homomorphism (of ordered sets) or monotonic if

a ≤1 b =⇒ ϕ(a) ≤2 ϕ(b)

for all a, b ∈ M. If ϕ is
{

injective
bijective

}
and if

a ≤1 b ⇐⇒ ϕ(a) ≤2 ϕ(b)

for all a, b ∈ M, then ϕ is called an
{

embedding
isomorphism

}
(of ordered sets).

Proposition 1.1.3. Let (M,≤1) and (N,≤2) be ordered sets and ϕ : M → N a homomor-
phism. Then the following are equivalent:

(a) ϕ is an embedding

(b) ϕ is injective

(c) ∀a, b ∈ M : (ϕ(a) ≤2 ϕ(b) =⇒ a ≤1 b)

1
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Proof. (c) =⇒ (b) Suppose (c) holds and let a, b ∈ M such that ϕ(a) = ϕ(b). Then
ϕ(a) ≤2 ϕ(b) and ϕ(a) ≥2 ϕ(b). Now (c) implies a ≤1 b and a ≥1 b. Hence a = b.

(b) =⇒ (c) Suppose (b) holds and let a, b ∈ M with a 6≤1 b. To show: ϕ(a) 6≤2 ϕ(b).
We have a >1 b and it suffices to show ϕ(a) >2 ϕ(b). From a ≥1 b it follows by
the monotonicity of ϕ that ϕ(a) ≥2 ϕ(b). From a 6= b and the injectivity of ϕ we get
ϕ(a) 6= ϕ(b).

From (b)⇐⇒ (c) and (a)⇐⇒ ((b)&(c)) [→ 1.1.5] the claim now follows.

Definition 1.1.4. Let K be a field. An order of K is an order ≤ on K such that for all
a, b, c ∈ K we have:

a ≤ b =⇒ a + c ≤ b + c (monotonicity of addition)
and (a ≤ b & c ≥ 0) =⇒ ac ≤ bc (monotonicity of multiplication).

In this case, (K,≤) (or simply K when ≤ is clear from the context) is called an ordered
field.

Definition 1.1.5. Let (K,≤1) and (L,≤2) be ordered fields.
A field homomorphism (or equivalently, field embedding!) ϕ : K → L is called a

homomorphism or embedding of ordered fields if ϕ is monotonic (pay attention to 1.1.3
together with the fact that field homomorphisms are injective). If ϕ is moreover surjec-
tive, then ϕ is called an isomorphism of ordered fields.

If there exists an embedding of ordered fields from (K,≤1) into (L,≤2), then (K,≤1
) is called embeddable in (L,≤2) and one denotes (K,≤1) ↪→ (L,≤2). If there is an
isomorphism of ordered fields from (K,≤1) to (L,≤2), then (K,≤1) and (L,≤2) are
called isomorphic. This is denoted by (K,≤1) ∼= (L,≤2).
(K,≤1) is called an ordered subfield of (L,≤2), or equivalently (L,≤2) an ordered ex-

tension field of (K,≤1), if (K,≤1) → (L,≤2), a 7→ a is an embedding, that is if K is
a subfield of L and (≤1) = (≤2) ∩ K × K. For every subfield of L there is obviously
a unique order making it into an ordered subfield of (L,≤2). This order is called the
order induced by (L,≤2).

Proposition 1.1.6. Let (K,≤) be an ordered field. Then a2 ≥ 0 for all a ∈ K.

Proof. Let a ∈ K. When a ≥ 0 this follows immediately from the monotonicity of
multiplication [→ 1.1.4]. When a ≤ 0 the monotonicity of addition [→ 1.1.4] yields
0 = a− a ≤ −a, whence −a ≥ 0 and therefore a2 = (−a)2 ≥ 0.

Proposition 1.1.7. Let (K,≤) be an ordered field. Then K is of characteristic 0 and the uniquely
determined field homomorphism Q→ K is an embedding of ordered fields (Q,≤Q) ↪→ (K,≤).
Hence (K,≤) can be seen as an ordered extension field of (Q,≤Q). In particular, for K = Q it
follows that (≤Q) = (≤), i.e., Q can only be ordered in the familiar way.

Proof. From 1.1.6 we have 0 ≤ 12 = 1 in (K,≤). Using the monotonicity of the addition,
we deduce

(∗) 0 ≤ 1 ≤ 1 + 1 ≤ 1 + 1 + 1 ≤ . . .

Tentative Lecture Notes
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If we had char K 6= 0, then (∗) would give 0 ≤ 1 ≤ 0 by the transitivity of ≤ which
would imply 0 = 1 in K by the antisymmetry of ≤, contradicting the definition of a
field. Let ϕ denote the field homomorphism Q → K and let a, b ∈ Q with a ≤Q b. To
show: ϕ(a) ≤ ϕ(b). Write a = k

n and b = `
n with k, ` ∈ Z and n ∈N. Then

ϕ(n) = 1 + · · ·+ 1︸ ︷︷ ︸
n times

(∗)
>

char K=0
0

and, by the monotonicity of multiplication and Proposition 1.1.6, also

1
ϕ(n)

=

(
1

ϕ(n)

)2

ϕ(n) ≥ 0.

Hence it suffices to show that ϕ(a)ϕ(n) ≤ ϕ(b)ϕ(n). This reduces to ϕ(an) ≤ ϕ(bn),
that is ϕ(k) ≤ ϕ(`), or equivalently ϕ(`− k) ≥ 0. But due to `− k ≥Q 0 this follows
from (∗).

Proposition and Notation 1.1.8. Let (K,≤) be an ordered field. Then for every a ∈ K× there
are uniquely determined sgn a ∈ {−1, 1} (“sign” of a) and |a| ∈ K≥0 := {x ∈ K | x ≥ 0}
(“absolute value” of a) such that

a = (sgn a)|a|.
One declares sgn 0 := |0| := 0. It follows that |ab| = |a||b|, sgn(ab) = (sgn a)(sgn b) and
|a + b| ≤ |a|+ |b| for all a, b ∈ K.

Proof. The first part is very easy. Let now a, b ∈ K. Then ab = (sgn a)(sgn b)|a||b|,
implying |ab| = |a||b| as well as sgn(ab) = (sgn a)(sgn b). For the claimed triangle
inequality, we can suppose a + b ≥ 0 (otherwise replace a by −a and b by −b). Then
|a + b| = a + b ≤ a + |b| ≤ |a|+ |b|.

Definition 1.1.9. Let (K,≤) be an ordered field.

(a) (K,≤) is called Archimedean if ∀a ∈ K : ∃N ∈ N : a ≤ N (or equivalently, ∀a ∈ K :
∃N ∈N : −N ≤ a).

(b) A sequence (an)n∈N in K is called

• a Cauchy sequence if ∀ε ∈ K>0 : ∃N ∈N : ∀m, n ≥ N : |am − an| < ε,

• convergent to a ∈ K if ∀ε ∈ K>0 : ∃N ∈ N : ∀n ≥ N : |an − a| < ε (one easily
shows that a is then uniquely determined and writes limn→∞ an = a),

• convergent if there is some a ∈ K such that limn→∞ an = a.

We call (K,≤) Cauchy complete if every Cauchy sequence converges in K (by the way
it is immediate that every convergent sequence is a Cauchy sequence).

(c) We call a subset A ⊆ K bounded from above if K contains an upper bound for A
(meaning some b ∈ K such that ∀a ∈ A : a ≤ b). We call (K,≤) complete if every
nonempty subset of K bounded from above possesses a lowest upper bound, i.e., a
supremum.

Version of Thursday 30th August, 2018, 22:11



4

Proposition 1.1.10. Let (K,≤) be an ordered field. Then the following are equivalent:

(a) (K,≤) is Archimedean

(b) ∀a, b ∈ K : (a < b =⇒ ∃c ∈ Q : a < c < b)

Proof. (b) =⇒ (a) Suppose (b) holds and let a ∈ K. To show: ∃N ∈ N : a ≤ N.
WLOG a > 0. To show: ∃N ∈ N : 1

N ≤
1
a . Choose c ∈ Q such that 0 < c < 1

a . Write
c = m

N for certain m, N ∈N. Then 1
N ≤

m
N = c < 1

a .
(a) =⇒ (b) Suppose (a) holds and let a, b ∈ K such that a < b. Choose N ∈ N such

that 1
b−a < N. Then 1

N < b− a and hence a + 1
N < b. Now choose the smallest m ∈ Z

such that a < m
N . If we had m

N ≥ b, then a+ 1
N < m

N and therefore a < m−1
N , contradicting

our choice of m. Therefore a < m
N < b.

Lemma 1.1.11. Let (K,≤) be an Archimedean ordered field. Then

K =
{

lim
n→∞

an | (an)n∈N sequence in Q that converges in K
}

.

Proof. Let a ∈ K. We have to show that there is a sequence (an)n∈N in Q that converges
in K to a. Choose for every n ∈ N according to 1.1.10 some an ∈ Q such that a ≤
an < a + 1

n . Let ε ∈ K>0. Choose N ∈ N such that 1
ε < N. For n ≥ N we now have

|an − a| = an − a < 1
n ≤

1
N < ε.

Lemma 1.1.12. Suppose (K,≤) is an Archimedean ordered field and (an)n∈N is a se-
quence in Q. Then the following are equivalent:

(a) (an)n∈N is a Cauchy sequence in (Q,≤Q)

(b) (an)n∈N is a Cauchy sequence in (K,≤)

Proof. This follows easily from 1.1.10.

Exercise 1.1.13. Suppose (K,≤) is an ordered field and (an)n∈N, (bn)n∈N are convergent
sequences in K. Then

lim
n→∞

(an + bn) =
(

lim
n→∞

an

)
+
(

lim
n→∞

bn

)
and lim

n→∞
(anbn) =

(
lim
n→∞

an

) (
lim
n→∞

bn

)
.

Theorem 1.1.14. Let (K,≤) be an ordered field. Then the following are equivalent:

(a) (K,≤) is Archimedean and Cauchy complete

(b) (K,≤) is complete

Proof. (a) =⇒ (b) Suppose (a) holds and let A ⊆ K be a nonempty subset bounded
from above. Choose for every n ∈N the smallest kn ∈ Z such that ∀a ∈ A : a ≤ kn

n and
set an := kn

n ∈ Q (use the Archimedean property!). Using again the Archimedean prop-
erty, one can show easily that (an)n∈N is a Cauchy sequence and therefore convergent

Tentative Lecture Notes
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by hypothesis. We leave it as an exercise to the reader to show that a := limn→∞ an is
the lowest upper bound of A in (K,≤).

(b) =⇒ (a) We prove the contraposition.
First, suppose that (K,≤) is not Archimedean, i.e., the set

A := {a ∈ K | ∀N ∈N : a ≤ −N}

is not empty. We claim that A does not have a lowest upper bound: Indeed, if a ∈ K
is an upper bound of A, then so is a− 1 < a since A = {a ∈ K | ∀N ∈ Z : a ≤ N} =
{a ∈ K | ∀N ∈ Z : a + 1 ≤ N} = {a− 1 | a ∈ K, ∀N ∈N : a ≤ N} = A− 1.

Finally, suppose that (K,≤) is not Cauchy complete, say (an)n∈N is a Cauchy se-
quence in K that does not converge. We claim that

A := {a ∈ K | ∃N ∈N : ∀n ≥ N : a ≤ an}

is nonempty and bounded from above but does not possess a lowest upper bound. We
leave this as an exercise to the reader.

Lemma 1.1.15. Suppose (K,≤) is an Archimedean ordered field and (R,≤R) a complete
ordered field. Then there is exactly one embedding (K,≤) ↪→ (R,≤R). This embedding
is an isomorphism if and only if (K,≤) is complete.

Proof. Exercise.

Theorem 1.1.16. There is a complete ordered field (R,≤). It is essentially unique, for if
(K,≤K) is another complete ordered field, then there is exactly one isomorphism from (K,≤K)
to (R,≤).

Proof. The uniqueness is clear from 1.1.15 together with 1.1.14. We only sketch the proof
of existence and leave the details as an exercise to the reader: Show that the Cauchy
sequences in Q form a subring C of QN and that

I :=
{
(an)n∈N ∈ C | lim

n→∞
an = 0

}
is a maximal ideal of C. Set R := C/I. Show that

a ≤ b :⇐⇒ ∃(an)n∈N, (bn)n∈N in C : (a = (an)n∈N
I & b = (bn)n∈N

I & ∀n ∈N : an ≤ bn)

(a, b ∈ R) defines an order ≤ on R. It is clear that (R,≤) is Archimedean. By Theorem
1.1.14 it suffices to show that (R,≤) is Cauchy complete. To this end, let (an)n∈N be a
Cauchy sequence in (R,≤). By 1.1.10, there exists a sequence (qn)n∈N in Q such that
|an − qn| < 1

n for n ∈ N. Now deduce from the fact that (an)n∈N is a Cauchy sequence
in (R,≤) that (qn)n∈N is such in (R,≤) and hence also in (Q,≤). Now (qn)n∈N ∈ C. Set
a := (qn)n∈N

I . It is enough to show limn→∞ an = a. Finally show that this is equivalent
to limn→∞ qn = a in (K,≤) and prove the latter.

Corollary 1.1.17. (R,≤) is an Archimedean ordered field into which every Archimedean or-
dered field can be embedded. Up to isomorphy it is the only such ordered field.

Version of Thursday 30th August, 2018, 22:11
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Proof. The first statement is clear from 1.1.14, 1.1.15 and 1.1.16. Uniqueness: Let (K,≤K)
be another such ordered field. Then

(R,≤)
ϕ
↪→ (K,≤K)

ψ
↪→ (R,≤)

and ψ ◦ ϕ is the by 1.1.15 unique embedding (R,≤) ↪→ (R,≤), i.e., ψ ◦ ϕ = id. This
implies that ψ is surjective. Hence (K,≤K) ∼= (R,≤).

Notation 1.1.18. Let A be a ring. Then we often use suggestive notation to describe
certain subsets of A such as the following:

• A2 = {a2 | a ∈ A} (“squares”)

• ∑ A2 = {∑`
i=1 a2

i | ` ∈N0, ai ∈ A} (“sums of squares”)

• ∑ A2T =
{

∑`
i=1 a2

i ti | ` ∈N0, ai ∈ A, ti ∈ T
}

(T ⊆ A)

(“sums of elements of T weighted by squares”)

• T + T = {s + t | s, t ∈ T} (T ⊆ A)

• TT = {st | s, t ∈ T} (T ⊆ A)

• −T = {−t | t ∈ T} (T ⊆ A)

• T + aT = {s + at | s, t ∈ T} (T ⊆ A, a ∈ A)

Proposition 1.1.19. Let K be a field.

(a) If ≤ is an order of K [→ 1.1.4], then P := K≥0 = {a ∈ K | a ≥ 0} has the following
properties:

(∗) P + P ⊆ P, PP ⊆ P, P ∪−P = K and P ∩−P = {0}.

(b) If P is a subset of K satisfying (∗), then the relation ≤P on K defined by

a ≤P b :⇐⇒ b− a ∈ P (a, b ∈ K)

is an order of K.

(c) The correspondence

(≤) 7→ K≥0

(≤P)← [ P

defines a bijection between the set of all orders on K and the set of all subsets of K satisfying
(∗).

Tentative Lecture Notes
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Proof. (a) We get P +
· P ⊆ P from the monotonicity of

{
addition

multiplication

}
[→ 1.1.4], P ∪

−P = K from the linearity [→ 1.1.1] and P ∩ −P = {0} from the antisymmetry [→
1.1.1].

(b) We get reflexivity from 0 ∈ P, transitivity from P + P ⊆ P, antisymmetry from
P∩−P = {0}, linearity from P∪−P = K, monotonicity of addition from the definition
of ≤P and monotonicity of multiplication PP ⊆ P.

(c) Suppose first that ≤ is an order of K and set P := K≥0. Then (≤) = (≤P) since
a ≤ b ⇐⇒ b− a ≥ 0 ⇐⇒ b− a ∈ P ⇐⇒ a ≤P b for all a, b ∈ K. Conversely, let
P ⊆ K be given such that P satisfies (∗). We show K≥P 0 = P. Indeed,

K≥P 0 = {a ∈ K | 0 ≤P a} = {a ∈ K | a ∈ P} = P.

Remark 1.1.20. 1.1.19(c) allows us to view orders of fields K as subsets of K. We refor-
mulate some of the preceding notions and results in this new language:

(a) Definition 1.1.4: Let K be a field. An order of K is a subset P of K satisfying

P + P ⊆ P, PP ⊆ P, P ∪−P = K and P ∩−P = {0}.

(b) Definition 1.1.5: Let (K, P) and (L, Q) be ordered fields. A field homomorphism
ϕ : K → L is called a homomorphism or an embedding of ordered fields if ϕ(P) ⊆
Q. One calls (K, P) an ordered subfield of (L, Q) if K is a subfield of L and P = Q∩K
(or equivalently P ⊆ Q).

(c) Proposition 1.1.6: Let (K, P) be an ordered field. Then K2 ⊆ P.

(d) Definition 1.1.9: An ordered field (K, P) is called Archimedean if

∀a ∈ K : ∃N ∈N : N + a ∈ P,

(⇐⇒ P−N = K ⇐⇒ P + Z = K ⇐⇒ P + Q = K).

1.2 Preorders

Definition 1.2.1. Let A be a commutative ring and T ⊆ A. Then T is called a preorder
of A if A2 ⊆ T, T + T ⊆ T and TT ⊆ T. If moreover −1 /∈ T, then T is called a proper
preorder of A.

Example 1.2.2. (a) If A is a commutative ring, then ∑ A2 is the smallest preorder of A.

(b) Every order of a field is a proper preorder.
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Proposition 1.2.3. Let A be a commutative ring with 1
2 ∈ A (i.e., 2 ∈ A×). Then

a =

(
a + 1

2

)2

−
(

a− 1
2

)2

for all a ∈ A. In particular, A = A2 − A2.

Definition and Proposition 1.2.4. Let A be a commutative ring with 1
2 ∈ A and T ⊆ A a

preorder. Then the support T ∩−T of T is an ideal of A.

Proof. T ∩−T is obviously a subgroup of (the additive group of) A and we have

A(T ∩−T) 1.2.3
= (A2 − A2)(T ∩−T)
⊆ (T − T)(T ∩−T)
⊆ (T(T ∩−T))− (T(T ∩−T))
⊆ ((TT) ∩ (−TT)) + ((−TT) ∩ TT)
⊆ (T ∩−T) + ((−T) ∩ T) = (T ∩−T) + (T ∩−T) ⊆ T ∩−T.

Corollary 1.2.5. Suppose A is a commutative ring with 1
2 ∈ A and T ⊆ A is a preorder. Then

T is proper ⇐⇒ T 6= A.

Proof. “=⇒” trivial
“⇐=” Suppose T 6= A. Then of course also T ∩ −T 6= A. Since T ∩ −T is an ideal,

we have 1 /∈ T ∩−T. Since 1 = 12 ∈ T, it follows that 1 /∈ −T, i.e., −1 /∈ T.

Example 1.2.6. In 1.2.3, 1.2.4 and 1.2.5, it is essential to require 1
2 ∈ A. Take for example

A = F2(X). Then A2 = F2(X2) since F2(X) → F2(X), p 7→ p2 is a homomorphism
(Frobenius). Therefore A2 − A2 = F2(X2) 6= F2(X). Moreover T := F2(X2) = ∑ A2 is
a preorder of A but T ∩−T = F2(X2) is not an ideal of A (since 1 ∈ T ∩−T 6= F2(X)).
Also T is not proper although T 6= A. The same is true for F2[X] instead of F2(X) and
from this one can get similar examples in the ring Z[X] (exercise).

Proposition 1.2.7. Let K be a field and T ⊆ K a preorder. Then

T is proper ⇐⇒ T ∩−T = {0}.

Proof. If char K = 2, then −1 = 1 ∈ T ∩−T. Therefore suppose now char K 6= 2. Then

−1 /∈ T 1∈T⇐⇒ 1 /∈ T ∩−T 1.2.4⇐⇒
K field

char K 6=2

T ∩−T = {0}.

Lemma 1.2.8. Suppose A is a commutative ring, T ⊆ A a preorder and a ∈ A. Then
T + aT is again a preorder.
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Proof. A2 ⊆ T ⊆ T + aT, (T + aT) + (T + aT) ⊆ (T + T) + a(T + T) ⊆ T + aT and
(T + aT)(T + aT) ⊆ TT + aTT + aTT + a2TT ⊆ T + aT + aT + A2T ⊆ T + a(T + T) +
TT ⊆ T + aT + T ⊆ T + aT

Theorem 1.2.9. Let K be a field and P ⊆ K. Then the following are equivalent:

(a) P is an order of K [→ 1.1.20].

(b) P is a proper preorder of K [→ 1.2.1] such that P ∪−P = K.

(c) P is a maximal proper preorder of K.

Proof. (a) =⇒ (b) 1.2.2(b)

(b) =⇒ (c) Suppose (b) holds and let T be a proper preorder of K with P ⊆ T. To
show: T ⊆ P. To this end, let a ∈ T. If a was not in P, then −a ∈ P ⊆ T (since
P ∪−P = K) and therefore a ∈ T ∩−T 1.2.7

= {0} in contradiction to 0 = 02 ∈ P.

(c) =⇒ (a) Suppose (c) holds. Because of 1.2.7, we have to show only P ∪−P = K.
Assume P ∪ −P 6= K. Choose then a ∈ K such that a /∈ P and −a /∈ P. Then P + aP
and P− aP are preorders according to Lemma 1.2.8 and both contain P properly (note
that 0, 1 ∈ P). Because of the maximality of P none of P + aP and P − aP is proper,
i.e., −1 ∈ P + aP and −1 ∈ P− aP. Write −1 = s + as′ and −1 = t− at′ for certain
s, s′, t, t′ ∈ P. Then −as′ = 1 + s and at′ = 1 + t. It follows that −a2s′t′ = 1 + s + t + st
and therefore −1 = s + t + st + a2s′t′ ∈ P + P + PP + A2PP ⊆ P  .

Theorem 1.2.10. Let K be a field and T ⊆ K a proper preorder. Then there is an order P of K
such that T ⊆ P and we have T =

⋂{P | P order of K, T ⊆ P}.

Proof. Consider the partially ordered set of all proper preorders of K containing T. In
this partially ordered set, every chain has an upper bound (the empty chain has T as an
upper bound and every nonempty chain possesses its union as an upper bound). By
Zorn’s lemma, the partially ordered set has a maximal element. Every such element is
obviously a maximal proper preorder and therefore by 1.2.9 an order. Now we turn to
the second statement:

“⊆” is clear.
“⊇” Let a ∈ K \ T. To show: There is an order P of K with T ⊆ P and a /∈ P. By 1.2.8,

T− aT is a preorder. It is proper for otherwise there would be s, t ∈ T with −1 = s− at
and it would follow that t 6= 0, at = 1 + s and a =

( 1
t

)2 t(1 + s) ∈ K2TT ⊆ T. By
the already proved, there is an order P of K with T − aT ⊆ P. If a lied in P, then
a ∈ P ∩−P = {0} in contradiction to a /∈ T.

Definition 1.2.11. A field is called real (in older literature mostly formally real) if it admits
an order.

Theorem 1.2.12. Let K be a field. Then the following are equivalent:

(a) K is real.
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(b) −1 /∈ ∑ K2

(c) ∀n ∈N : ∀a1, . . . , an ∈ K : (a2
1 + · · ·+ a2

n = 0 =⇒ a1 = 0)

Proof. (a) =⇒ (b) follows from 1.1.6.

(b) =⇒ (a) By 1.2.2, ∑ K2 is a preorder. If it is proper, then it is contained in an order
by 1.2.10.

(b)⇐⇒ (c)

−1 ∈∑ K2 ⇐⇒ ∃n ∈N : ∃a2, . . . , an ∈ K : −1 = a2
2 + · · ·+ a2

n

⇐⇒ ∃n ∈N : ∃a2, . . . , an ∈ K : 12 + a2
2 + · · ·+ a2

n = 0

⇐⇒ ∃n ∈N : ∃a1 ∈ K× : ∃a2, . . . , an ∈ K : a2
1 + a2

2 + · · ·+ a2
n = 0

Example 1.2.13. Because of −1 = i
2 ∈ ∑ C2, the field C := R(i) does not admit an

ordering.

1.3 Extensions of orders

Definition 1.3.1. Let (K, P) be an ordered field and L an extension field of K (or in other
words: let L|K be a field extension and P be an order of K). We call Q an extension of the
order P to L if the following equivalent conditions are fulfilled [→ 1.1.20(b)]:

(a) (L, Q) is an ordered extension field of (K, P).

(b) Q is an order of L such that P ⊆ Q.

(c) Q is an order of L such that Q ∩ K = P.

Theorem 1.3.2. Let (K, P) be an ordered field and L an extension field of K. Then the order P
of K can be extended to L if and only if −1 /∈ ∑ L2P.

Proof. Since every order is a preorder [→ 1.2.2], an order of L contains P if and only if it
contains the preorder generated in L by P (i.e., the smallest preorder of L containing P,
or in other words, the intersection of all preorders of L containing P), namely ∑ L2P. If
∑ L2P is not proper, then there is of course no order of L containing it. On the contrary,
if ∑ L2P is proper, then there is such an order by Theorem 1.2.10.

Reminder 1.3.3. Let L|K be a field extension with char K 6= 2. Then

[L : K] ≤ 2 ⇐⇒ ∃d ∈ K : L = K(
√

d)

since for x ∈ L and a, b, c ∈ K with a 6= 0 and ax2 + bx + c = 0 we have (2ax + b)2 =
4a(ax2 + bx) + b2 = b2 − 4ac =: d and therefore K(x) = K(2ax + b) = K(

√
d).
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Theorem 1.3.4. Let (K, P) be an ordered field and d ∈ K. The order P can be extended to
K(
√

d) if and only if d ∈ P.

Proof. If
√

d ∈ K, then d = (
√

d)2 ∈ P. Suppose now that
√

d /∈ K. Because of P + dP ⊆
∑ L2P ⊆ P + dP + K

√
d, we have−1 /∈ ∑ L2P ⇐⇒ −1 /∈ P + dP. Since P is a maximal

proper preorder by 1.2.9 and P+ dP is a preorder by 1.2.8, we obtain−1 /∈ P+ dP ⇐⇒
P = P + dP ⇐⇒ d ∈ P. Combining, we get−1 /∈ ∑ L2P ⇐⇒ d ∈ P and we conclude
by Theorem 1.3.2.

Example 1.3.5. In 1.3.3, the extension is in general not unique: Q(
√

2) admits exactly
two orders, namely the ones induced by the two field embeddings Q(

√
2) ↪→ R (in the

one
√

2 is positive, in the other negative). That it does not admit a third one, follows
from the fact that for every order P of Q(

√
2) we have by 1.1.16 (Q(

√
2), P) ↪→ (R, R≥0)

because P is Archimedean since Q(
√

2) = Q + Q
√

2 and

|
√

2|P − 1 1.2.3
=

(
|
√

2|P
2

)2

−
(
|
√

2|P − 2
2

)2
1.1.6
≤ P

(
|
√

2|P
2

)2

=
1
2

[→ 1.1.9(a)].

Theorem 1.3.6. If L|K is a field extension of odd degree, then each order of K can be extended
to L.

Proof. Assume the claim does not hold. Then there is a counterexample L|K with [L :
K] = 2n + 1 for some n ∈ N. We choose the counterexample in a way such that n
is as small as possible. We will now produce another counterexample L′|K with [L′ :
K] ≤ 2n − 1 which will contradict the minimality of n. Due to char K = 0, we have
that L|K is separable. By the primitive element theorem, there is some a ∈ L with
L = K(a) = K[a]. The condition −1 ∈ ∑ L2P which is satisfied by 1.3.2 translates via
the isomorphism K[X]/( f )→ L, g 7→ g(a) in

(*) 1 +
`

∑
i=1

aig2
i = h f

with ` ∈ N, ai ∈ P, gi, h ∈ K[X], where f denotes the minimal polynomial of a over K
(in particular deg f = [K(a) : K] = [L : K] = 2n + 1) and the gi are chosen in such a
way that deg gi ≤ 2n. Each of the `+ 1 terms in the sum on the left hand side of (∗)
has an even degree ≤ 4n and a leading coefficient from PK2 ⊆ P (except those terms
that are zero of course). Since P is an order, the monomials of highest degree appearing
on the left hand side of (∗) cannot cancel out. So the left hand side and therefore also
the right hand side of (∗) has an even degree ≤ 4n. It follows that h has an odd degree
≤ 2n− 1. Choose an irreducible divisor h1 of h in K[X] of odd degree and a root b of h1 in
an extension field of K (e.g., in the splitting field of h1 over K or in the algebraic closure
of K). Set L′ := K(b). Substituting b in (∗) yields −1 = ∑`

i=1 aigi(b)2 ∈ ∑ PL′2. By 1.3.2,
P cannot be extended to L′. Since [L′ : K] = [K(b) : K] = deg irrK b = deg h1 ≤ 2n− 1
is odd, we gain the desired still smaller counterexample.

Version of Thursday 30th August, 2018, 22:11



12

Theorem 1.3.7. Let K be a field. Then every order of K can be extended to K(X).

Proof. Let P be an order of K. Assume that P cannot be extended to K(X). By 1.3.2 we
then have−1 ∈ ∑ K(X)2P. Because of #K = ∞ [→ 1.1.7] we can plug in a suitable point
from K (“avoid finitely many poles”) and get −1 ∈ ∑ K2P = P  .

Example 1.3.8. Due to 1.3.7 there is an order on R(X). If P is such an order, then by the
completeness of (R,≤) [→ 1.1.16], the set R≤PX = {a ∈ R | a ≤P X} is either empty or
not bounded from above (in which case it is R) or it has a supremum t in R (in which
case it equals (−∞, t) if t >P X or (−∞, t] if t <P X). Hence

R≤PX = {a ∈ R | a ≤P X} ∈ {∅} ∪ {(−∞, t) | t ∈ R} ∪ {(−∞, t] | t ∈ R} ∪ {R} =: C.

We claim now that the map

Φ : {P | P order of R(X)} → C
P 7→ R≤PX

is a bijection. It is easy to see that for all I, J ∈ C there is a ring automorphism ϕI,J of
R(X) such that for all orders P of R(X), we have

Φ(P) = I ⇐⇒ Φ(ϕI,J(P)) = J :

• I = R & J = (−∞, 0] ϕI,J : X 7→ 1
X

• I = ∅ & J = (−∞, 0) ϕI,J : X 7→ 1
X

• I = (−∞, t) & J = (−∞, 0) ϕI,J : X 7→ X + t

• I = (−∞, t] & J = (−∞, 0] ϕI,J : X 7→ X + t

• I = (−∞, 0) & J = (−∞, 0] ϕI,J : X 7→ −X

• other I and J composition of the above automorphisms

From this we get the surjectivity of Φ, since as already mentioned there is an order P of
R(X) and if we set I := Φ(P), then Φ(ϕI,J(P)) = J for all J ∈ C. For the injectivity of
Φ, it suffices to show that there is some I ∈ C having only one preimage under Φ since
then

#{P | Φ(P) = J} = #{P | Φ(ϕJ,I(P)) = I}
= #{ϕI,J(P) | Φ(ϕJ,I(P)) = I} = #{P | Φ(P) = I} = 1

for all J ∈ C. We therefore fix I := R ∈ C and show that there at most (and therefore
exactly) one order P of R(X) such that Φ(P) = I. To this end, suppose Φ(P) = I. If
f , g ∈ R[X] \ {0}, then one easily verifies that

f
g
∈ P

R(X)2⊆P⇐⇒ f g ∈ P ⇐⇒ the leading coefficient of f g is positive.
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This uniquely determines P. Consequently, Φ is a bijection. We fix the following nota-
tion:

P−∞ := Φ−1(∅)

Pt− := Φ−1((−∞, t)) for t ∈ R

Pt+ := Φ−1((−∞, t]) for t ∈ R

P∞ := Φ−1(R)

Now {P | P order of R(X)} = {P−∞} ∪ {Pt−, Pt+ | t ∈ R} ∪ {P∞}. By easy considera-
tions one obtains,

P−∞ = {r ∈ R(X) | ∃c ∈ R : ∀x ∈ (−∞, c) : r(x) ≥ 0},
Pt− = {r ∈ R(X) | ∃ε ∈ R>0 : ∀x ∈ (t− ε, t) : r(x) ≥ 0} (t ∈ R),
Pt+ = {r ∈ R(X) | ∃ε ∈ R>0 : ∀x ∈ (t, t + ε) : r(x) ≥ 0} (t ∈ R),
P∞ = {r ∈ R(X) | ∃c ∈ R : ∀x ∈ (c, ∞) : r(x) ≥ 0}.

None of these orders is Archimedean.

1.4 Real closed fields

Proposition 1.4.1. Let K be a field. Then the following are equivalent:

(a) K admits exactly one order.

(b) ∑ K2 is an order of K.

(c) (∑ K2) ∪ (−∑ K2) = K and −1 /∈ ∑ K2

Proof. (a) =⇒ (b) Suppose P is the unique order of K. By 1.2.2 and 1.2.10, we then get
∑ K2 = P.

(b) =⇒ (c) is trivial.

(c) =⇒ (a) Suppose (c) holds. Using 1.1.20(a) and 1.2.7, we see that ∑ K2 is an order
of K, and it is the only one by 1.2.2 and 1.2.9(c).

Example 1.4.2. Q and R possess exactly one order.

Convention 1.4.3. If K is a field admitting exactly one order, then we will often under-
stand K as an ordered field, that is we speak of K but mean (K, ∑ K2).

Definition 1.4.4. A field K is called Euclidean if K2 is an order of K.

Remark 1.4.5. If K is Euclidean, then K2 is the unique order of K.

Example 1.4.6. R is Euclidean but not Q.
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Notation and Remark 1.4.7. (a) Let (K,≤) be an ordered field. If a, b ∈ K such that
a = b2, then we write

√
a := |b| ∈ K≥0 [→ 1.1.8] (this is obviously well-defined). If

a ∈ K \ K2, we continue to denote by
√

a ∈ K \ K an arbitrary but fixed square root
of a in the algebraic closure K of K. One shows easily that a ≤ b ⇐⇒

√
a ≤
√

b for
all a, b ∈ K2.

(b) If K is an Euclidean field (with order≤ [→ 1.4.3, 1.4.5]), then in particular
√

a ∈ K≥0
and (

√
a)2 = a for all a ∈ K≥0 = K2 = ∑ K2.

(c) We write i :=
√
−1. If K is a real field, then K(i) = K⊕ Ki as a K-vector space

Proposition 1.4.8. Let K be a real field. Then the following are equivalent:

(a) K is Euclidean.

(b) K = −K2 ∪ K2

(c) K(i) = K(i)2

(d) Every polynomial of degree 2 in K(i)[X] has a root in K(i).

Proof. (d) =⇒ (c) is trivial.

(c) =⇒ (b) Suppose (c) holds and let a ∈ K. Write a = (b + ic)2 for some b, c ∈ K.
Then a = b2 − c2 and bc = 0 [→ 1.4.7(c)]. Therefore a = b2 or a = −c2.

(b) =⇒ (a) Suppose (b) holds. It suffices to show K2 + K2 ⊆ K2. For this purpose,
let a, b ∈ K. To show: a2 + b2 ∈ K2. If we had a2 + b2 /∈ K2, then a2 + b2 ∈ −K2, say
a2 + b2 + c2 = 0 for some c ∈ K and 1.2.12(c) would imply c = 0  .

(a) =⇒ (c) Suppose (a) holds and let a, b ∈ K. By 1.4.7(c), we have to show a + bi ∈
K(i)2. Set r :=

√
a2 + b2 ∈ K≥0 according to 1.4.7(b). Then r2 = a2 + b2 ≥ a2 = |a|2 and

therefore r ≥ |a| by 1.4.7(a), i.e., r ± a ≥ 0. It follows that
√

r+a
2 ,
√

r−a
2 ∈ K≥0 and the

calculation(√
r + a

2
±
√

r− a
2

i

)2

=
r + a

2
± 2

√
r2 − a2

2
i− r− a

2
= a± 2

∣∣∣∣ b2
∣∣∣∣ i = a± |b|i

shows a + bi ∈ K(i)2.

(c) =⇒ (d) follows from X2 + bX + c = (X + b
2 )

2 + (c− b2

4 ) for b, c ∈ K(i).

Definition 1.4.9. Let R be a field. Then R is called real closed if R is Euclidean [→ 1.4.4,
1.4.8] and every polynomial of odd degree from R[X] has a root in R.

Example 1.4.10. R is real closed by the intermediate value theorem from calculus and
by 1.4.4.

Remark 1.4.11. We now generalize the fundamental theorem of algebra from C = R(i)
to R(i) for any real closed field R. The usual Galois theoretic proof goes through as we
will see immediately.
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Theorem 1.4.12 (“generalized fundamental theorem of algebra”). Let R be a real closed
field. Then C := R(i) is algebraically closed.

Proof. Let z ∈ C. To show: z ∈ C. Choose an intermediate field L of C|C with z ∈ L
such that L|R is a finite Galois extension (e.g., the splitting field of (X2 + 1) irrR z over
R). We show L = C. Choose a 2-Sylow subgroup H of the Galois group G := Aut(L|R).
From Galois theory we know that [LH : R] = [G : H] is odd. Hence LH = R since every
element of LH has over R a minimal polynomial of odd degree which has a root in R
and therefore must be linear. Galois theory then implies G = H. Hence G is a 2-group.
Therefore the subgroup I := Aut(L|C) of G is also a 2-group. By Galois theory, it is
enough to show I = {1}. If we had I 6= {1}, then there would exist, as one knows
from algebra, a subgroup J of I with [I : J] = 2. From this we get with Galois theory
[LJ : C] = [LJ : LI ] = [I : J] = 2, contradicting 1.4.8(d).

Theorem 1.4.13. Let R be a field. Then the following are equivalent:

(a) R is real closed.

(b) R 6= R(i) and R(i) is algebraically closed.

(c) R is real but there is no real extension field L 6= R of R such that L|R is algebraic.

Proof. (a) =⇒ (b) follows from 1.4.12.

(b) =⇒ (c) Suppose (b) holds. In order to show that R is real, it is enough to show
by Theorem 1.2.12 that ∑ R2 = R2 since −1 /∈ R2 because R 6= R(i). To this end, let
a, b ∈ R. To show: a2 + b2 ∈ R2. Since R(i) is algebraically closed, we have a + bi ∈
R(i)2, that is there are c, d ∈ R such that a + bi = (c + di)2 and it follows that a2 + b2 =
(a + bi)(a − bi) = (c + di)2(c − di)2 = ((c + di)(c − di))2 = (c2 + d2)2 ∈ R2. Now
let L|R be an algebraic field extension and suppose L is real. To show: L = R. Since
L(i)|R(i) is again algebraic and R(i) is algebraically closed, we obtain L(i) = R(i). For
this reason L is a real intermediate field of R(i)|R and it follows that L = R.

(c) =⇒ (a) Suppose (c) holds. Choose an order P of R according to Definition 1.2.11.
For all d ∈ P, R(

√
d) is real by 1.3.4 and therefore R(

√
d) = R. It follows that P ⊆ R2 ⊆

P and hence P = R2, i.e., R is Euclidean. According to Definition 1.4.9 it remains to
show that each polynomial f ∈ R[X] of odd degree has a root in R. Let f ∈ R[X] be of
odd degree. Choose an irreducible divisor g of f in R[X] of odd degree. Choose a root
a of g in an extension field of R. Since [R(a) : R] = deg g is odd, R(a) is real by 1.3.6
and therefore R(a) = R. Thus a ∈ R satisfies g(a) = 0 and hence f (a) = 0.

Theorem 1.4.14 (“real version of the generalized fundamental theorem of algebra”). Let
R be a field. Then the following are equivalent:

(a) R is real closed.

(b) { f ∈ R[X] | f is irreducible and monic} =
{X− a | a ∈ R} ∪ {(X− a)2 + b2 | a, b ∈ R, b 6= 0}
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Proof. (a) =⇒ (b) Suppose (a) holds.
“⊇” is clear since R is real.
“⊆” Let f ∈ R[X] be irreducible and monic of degree ≥ 2. Since R(i) is algebraically

closed by 1.4.12, there are a, b ∈ R such that f (a + bi) = 0. Due to R 6= R(i) we can
apply the automorphism of the field extension R(i)|R given by i 7→ −i in order to
obtain f (a− bi) = 0. By observing a + bi 6= a− bi (since b 6= 0 because f ∈ R[X] is
irreducible of degree ≥ 2), we get

f = (X− (a + bi))(X− (a− bi))︸ ︷︷ ︸
(X−a)2+b2∈R[X]

g

for some g ∈ R(i)[X]. But then g ∈ R[X] and hence even g = 1.
(b) =⇒ (a) Suppose (b) holds. We will show 1.4.13(b), i.e., that R 6= R(i) and R(i) is

algebraically closed. The first claim R 6= R(i) follows from the irreducibility of X2 + 1 =
(X − 0)2 + 12 ∈ R[X]. Now suppose f ∈ R(i)[X] is of degree ≥ 1. Consider the ring
automorphism

R(i)[X]→ R(i)[X], p 7→ p∗

given by a∗ = a for a ∈ R, i
∗ = −i and X∗ = X. Then f ∗ f ∈ R[X]. If f ∗ f has a root

a ∈ R, then f (a) = 0 or f ∗(a) = 0 and then again f (a) = 0. Suppose therefore that f ∗ f
has no root in R. Then there exist a, b ∈ R with b 6= 0 such that (X − a)2 + b2 divides
f ∗ f in R[X]. Because of (X− a)2 + b2 = (X− (a + bi))(X− (a− bi)), a + bi is a root of
f or of f ∗. If f ∗(a + bi) = 0, then f (a− ib) = f ∗∗((a + ib)∗) = ( f ∗(a + ib))∗ = 0∗ = 0.
Therefore a + ib or a− ib is a root of f in R(i).

Notation and Terminology 1.4.15. Let (K,≤) be an ordered field.

(a) We extend the order ≤ in the obvious way to the set {−∞} ∪ K ∪ {∞} by declaring
−∞ < a < ∞ for all a ∈ K.

(b) We adopt the usual notation for intervals

(a, b) := (a, b)K := {x ∈ K ∪ {±∞} | a < x < b} (a, b ∈ K ∪ {±∞})
(“interval from a to b without endpoints”)

[a, b) := [a, b)K := {x ∈ K ∪ {±∞} | a ≤ x < b} (a, b ∈ K ∪ {±∞})
(“interval from a to b with a and without b”)

and so forth.

(c) We use terminology like

f ≥ 0 on S :⇐⇒ ∀x ∈ S : f (x) ≥ 0 ( f ∈ K[X1, . . . , Xn], S ⊆ Kn)

(“ f is nonnegative on S”)
f > 0 on S :⇐⇒ ∀x ∈ S : f (x) > 0 ( f ∈ K[X1, . . . , Xn], S ⊆ Kn)

(“ f is positive on S”).
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Corollary 1.4.16 (“intermediate value theorem for polynomials”). Let R be a real closed
field, f ∈ R[X] and a, b ∈ R such that a ≤ b and sgn( f (a)) 6= sgn( f (b)). Then there is
c ∈ [a, b]R with f (c) = 0.

Proof. WLOG f is monic. By 1.4.14, all nonlinear monic irreducible polynomials in
R[X] are positive on R. Hence f = g ∏k

i=1(X − ai)
αi with k ∈ N0, ai ∈ R, αi ∈ N,

a1 < · · · < ak and some g ∈ R[X] that is positive on R. On the sets (−∞, a1), (a1, a2),
. . . , (ak−1, ak) and (ak, ∞) each X − ai and therefore f has constant sign. Hence a and b
cannot lie both in the same such set. Consequently, there is an i ∈ {1, . . . , m} such that
ai ∈ [a, b]. Set c := ai.

Corollary 1.4.17 (“Rolle’s theorem for polynomials”). Suppose R is a real closed field, f ∈
R[X] and a, b ∈ R with a < b and f (a) = f (b). Then there exists a c ∈ (a, b)R such that
f ′(c) = 0.

Proof. WLOG f 6= 0, f (a) = 0 = f (b) and @x ∈ (a, b) : f (x) = 0. Write

f = (X− a)α(X− b)βg

for some α, β ∈N and g ∈ R[X] with ∀x ∈ [a, b] : g(x) 6= 0. We find

f ′ = (X− a)αβ(X− b)β−1g + α(X− a)α−1(X− b)βg + (X− a)α(X− b)βg′

= (X− a)α−1(X− b)β−1h

where h := β(X − a)g + α(X − b)g + (X − a)(X − b)g′. Hence it suffices to find c ∈
(a, b) such that h(c) = 0. We can apply the intermediate value theorem 1.4.16 because

h(a) = α(a− b)g(a) and h(b) = β(b− a)g(b)

and again by 1.4.16 we have sgn(g(a)) = sgn(g(b)).

Corollary 1.4.18 (“mean value theorem for polynomials”). Let R be a real closed field,
f ∈ R[X] and a, b ∈ R with a < b. Then there is some c ∈ (a, b)R satisfying f ′(c) = f (b)− f (a)

b−a .

Proof. Setting g := (X − a)( f (b)− f (a))− (b− a)( f − f (a)), we get g(a) = 0 = g(b)
and g′ = f (b) − f (a) − (b − a) f ′. Rolle’s theorem 1.4.17 yields c ∈ (a, b) such that
g′(c) = 0.

Definition 1.4.19. (a) Let (M,≤1) and (N,≤2) be ordered sets. A map ϕ : M → N is
called anti-monotonic [→ 1.1.5] if

a ≤1 b =⇒ ϕ(a) ≥2 ϕ(b)

for all a, b ∈ M.

Version of Thursday 30th August, 2018, 22:11



18

(b) If (K,≤) is an ordered field, f ∈ K[X] and I ⊆ K, then we say that f is


monotonic

injective
anti-monotonic


on I if I → K, x 7→ f (x) is


monotonic

injective
anti-monotonic

.

Corollary 1.4.20. Let R be a real closed field, f ∈ R[X] and a, b ∈ R. If
{

f ′ ≥ 0
f ′ ≤ 0

}
on (a, b)

[→ 1.4.15(c)], then f is
{

anti-

}
monotonic on [a, b]. If f ′ has no root on (a, b), then f is

injective on [a, b].

Proof. The statement is empty in case a > b, trivial in the case a = b and it follows from
the mean value theorem 1.4.18 in case a < b.

1.5 Descartes’ rule of signs

Notation 1.5.1. Let A be a commutative ring with 0 6= 1 and d ∈ R. We denote

A[X1, . . . , Xn]d := { f ∈ A[X1, . . . , Xn] | deg f ≤ d}

(where deg 0 := −∞).

Proposition 1.5.2 (“Taylor formula for polynomials”). Suppose K is a field of characteristic
0, d ∈N0, f ∈ K[X]d and a ∈ K. Then

f =
d

∑
k=0

f (k)(a)
k!

(X− a)k.

Proof. Since K[X] → K[X], p 7→ p′ commutes with the ring automorphism K[X] →
K[X], p 7→ p(X + a), we can WLOG suppose a = 0. But then the claim follows from
the definition of the (formal) derivative.

Lemma 1.5.3. Suppose (K,≤) is an ordered field, k ∈ N, c1, . . . , ck ∈ K×, α1, . . . , αk ∈
N0, α1 < . . . < αk and f = ∑k

i=1 ciXαi .

(a) sgn( f (x)) = (sgn x)αk sgn(ck) for all x ∈ K satisfying |x| > max
{

1, |c1|+...+|ck−1|
|ck |

}
(b) sgn( f (x)) = (sgn x)α1 sgn(c1) for all x ∈ K× satisfying 1

|x| > max
{

1, |c2|+...+|ck |
|c1|

}
Proof. (a) For all x ∈ K with |x| > max

{
1, |c1|+...+|ck−1|

|ck |

}
, we have∣∣∣∣∣k−1

∑
i=1

cixαi

∣∣∣∣∣ 1.1.8
≤

k−1

∑
i=1
|ci||x|αi

1≤|x|
≤

k−1

∑
i=1
|ci||x|αk−1 = |ck|

(
∑k−1

i=1 |ci|
|ck|

)
|x|αk−1 < |ckxαk |.
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(b) For all x ∈ K× with 1
|x| > max

{
1, |c2|+...+|ck |

|c1|

}
, we have∣∣∣∣∣ k

∑
i=2

cixαi

∣∣∣∣∣ 1.1.8
≤

k

∑
i=2
|ci||x|αi

|x|≤1
≤

k

∑
i=2
|ci||x|α1+1 = |c1|

(
∑k

i=2 |ci|
|c1|

)
|x|α1+1 < |c1xα1 |.

Reminder 1.5.4. Let K be a field, f ∈ K[X] and a ∈ K. Then

µ(a, f ) := sup{k ∈N0 | (X− a)k divides f in K[X]} ∈N0 ∪ {∞}

is called the multiplicity of a in f . We have

µ(a, f ) = ∞ ⇐⇒ f = 0

and
µ(a, f ) ≥ 1 ⇐⇒ f (a) = 0.

We call a a multiple root of f if µ(a, f ) ≥ 2 and we call it a k-fold root of f (k ∈ N) if
µ(a, f ) = k. In case char K = 0, one has

µ(a, f ) = sup{k ∈N0 | f (0)(a) = . . . = f (k−1)(a) = 0}

as one can see easily.

Definition 1.5.5. Let (K,≤) be an ordered field and 0 6= f ∈ K[X].

(a) The number of positive roots counted with multiplicity of f is

µ( f ) := ∑
a∈K>0

µ(a, f ) ∈N0.

Writing f = g ∏m
i=1(X − ai) with a1, . . . , am ∈ K>0 and g ∈ K[X] with g(x) 6= 0 for

all x ∈ K>0, we therefore have µ( f ) = m.

(b) Writing f = ∑k
i=1 ciXαi with c1, . . . , ck ∈ K× and α1, . . . , αk ∈N0 such that

α1 < . . . < αk,

we define the number of sign changes in the coefficients of f

σ( f ) := #{i ∈ {1, . . . , k− 1} | sgn(ci) 6= sgn(ci+1)} ∈N0.

Proposition 1.5.6. Let R be a real closed field and f ∈ R[X] \ {0}. Then µ( f ) and σ( f ) have
the same parity.

Proof. Write f = ∑k
i=1 ciXαi = g ∏m

i=1(X − ai) with c1, . . . , ck ∈ R×, α1, . . . , αk ∈ N0,
a1, . . . , am ∈ R>0 and g ∈ R[X] such that α1 < . . . < αm and g(x) 6= 0 for all x ∈ R>0.
Since R is real closed, WLOG g(x) > 0 for all x ∈ R>0 by the intermediate value
theorem 1.4.16. But then by Lemma 1.5.3, both the lowest and highest coefficient of g is
positive. Now the claim follows from µ( f ) = m, sgn(c1) = (−1)m and sgn(ck) = 1.
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Lemma 1.5.7. Let R be a real closed field and f ∈ R[X] \ R. Then µ( f ) ≤ µ( f ′) + 1 and
σ( f ) ≤ σ( f ′) + 1.

Proof. The second statement is easy to prove. For the first statement, suppose a1, . . . , am ∈
R are the positive roots of f and a1 < . . . < am. Since R is real closed, there ex-
ist roots b1, . . . , bm−1 ∈ R of f ′ such that a1 < b1 < a2 < . . . < bm−1 < am by
Rolle’s Theorem 1.4.17. Now µ( f ′) = ∑a∈K>0

µ(a, f ′) ≥ ∑m
i=1 µ(ai, f ′)+∑m−1

i=1 µ(bi, f ′) ≥
∑m

i=1 µ(ai, f ′) + m− 1 = ∑m
i=1(µ(ai, f )− 1) + m− 1 = ∑m

i=1 µ(ai, f )− 1 = µ( f )− 1.

Remark 1.5.8. In the situation of Lemma 1.5.7, σ( f ′) ≤ σ( f ) holds trivially but µ( f ′) ≤
µ( f ) fails in general as the example f = (X− 1)2 + 1 shows.

Theorem 1.5.9 (Descartes’ rule of signs). Let R be a real closed field. Then µ( f ) ≤ σ( f ) for
all f ∈ R[X] \ {0}.

Proof. Induction on d := deg f ∈N0.
d = 0 µ( f ) = 0 = σ( f )

d− 1→ d (d ∈N0) µ( f )
1.5.7
≤ µ( f ′) + 1

induction
≤

hypothesis
σ( f ′) + 1

1.5.8
≤ σ( f ) + 1 and

therefore µ( f ) ≤ σ( f ) by Proposition 1.5.6.

Example 1.5.10. Let R be a real closed field and f := X4 − 5X3 − 21X2 + 115X− 150 ∈
R[X]. Then σ( f ) = 3 and therefore µ( f ) ∈ {1, 3} by 1.5.9 and 1.5.6. For f (−X) =
X4 + 5X3 − 21X2 − 115X − 150, we have σ( f (−X)) = 1 and therefore µ( f (−X)) = 1.
One can verify that µ((1 + X)22 f ) = 1 from which we get µ( f ) = µ((1 + X)22 f ) = 1.
Hence f has exactly two roots in R, namely two simple (i.e., 1-fold [→ 1.5.4]) ones, one
positive and one negative.

Definition 1.5.11. Let R be a real closed field. We call a polynomial f ∈ R[X] real-rooted
if it has no root in R(i) \ R [→ 1.4.12].

Proposition 1.5.12. Let R be real closed field and f ∈ R[X]. Then the following are equivalent:

(a) f is real-rooted.

(b) There are d ∈N0, c ∈ R× and a1, . . . , ad ∈ R such that f = c ∏d
i=1(X− ai).

Proof. For (a) =⇒ (b) use the fundamental theorem 1.4.12 or 1.4.14.

Theorem 1.5.13. [→ 1.5.8] Suppose R is a real closed field and f ∈ R[X] \ R is real-rooted.
Then f ′ is real-rooted and µ( f ′) ≤ µ( f ).

Proof. Using 1.5.12, write f = c ∏n
i=1(X− ai)

αi with c, a1, . . . , an ∈ R and α1, . . . , αn ∈N

such that c 6= 0 and
a1 < . . . < an.

Since R is real closed, there exist roots b1, . . . , bn−1 ∈ R of f ′ such that

a1 < b1 < a2 < . . . < bn−1 < an
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by Rolle’s Theorem 1.4.17. We have µ(ai, f ) = αi and therefore

µ(ai, f ′) = αi − 1

for all i ∈ {1, . . . , n}. It follows that

deg( f ′) ≥
n

∑
i=1

µ(ai, f ′) +
n−1

∑
i=1

µ(bi, f ′) ≥
n

∑
i=1

µ(ai, f ′) + n− 1

=
n

∑
i=1

(αi − 1) + n− 1 = deg( f )− 1 = deg( f ′),

whence

deg( f ′) =
n

∑
i=1

µ(ai, f ′) +
n−1

∑
i=1

µ(bi, f ′)

and
µ(bi, f ′) = 1

for all i ∈ {1, . . . , n− 1}. It follows that

{x ∈ R(i) | f ′(x) = 0} ⊆ {a1, b1, a2, . . . , bn−1, an} ⊆ R,

in particular f ′ is real-rooted. Choose k ∈ {1, . . . , n + 1} such that ak, . . . , an are the
positive roots of f ′. Then

{x ∈ R | f ′(x) = 0, x > 0}
{
⊆ {bk−1, ak, . . . , bn−1, an} if k ≥ 2
= {a1, b1, . . . , bn−1, an} if k = 1

.

If k ≥ 2, then

µ( f ′) ≤
n

∑
i=k

(µ(bi−1, f ′)︸ ︷︷ ︸
=1

+ µ(ai, f ′)︸ ︷︷ ︸
=µ(ai , f )−1

) = µ( f ).

If k = 1, then one sees similarly that µ( f ′) = µ( f )− 1 ≤ µ( f ).

Theorem 1.5.14 (Descartes’ rule of signs for real-rooted polynomials). Let R be a real
closed field. Then µ( f ) = σ( f ) for all real-rooted f ∈ R[X].

Proof. By Theorem 1.5.9, it is enough to show µ( f ) ≥ σ( f ) for all real-rooted f ∈ R[X]
by induction on d := deg f ∈N0.

d = 0 µ( f ) = 0 = σ( f )

d− 1→ d (d ∈N0) µ( f )
1.5.13
≥ µ( f ′)

induction
hypothesis
≥

1.5.13
σ( f ′)

1.5.7
≥ σ( f )− 1 and therefore

µ( f ) ≥ σ( f ) by Proposition 1.5.6.
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Example 1.5.15.

det

1− X 0 1
0 −2− X 1
1 1 −X

 = (1− X)(2 + X)X + 2 + X + X− 1

= (2 + X− 2X− X2)X + 2X + 1 = −X3 − X2 + 4X + 1 ∈ R[X]

is real-rooted since it is the characteristic polynomial of a symmetric matrix. By Descartes’
rule 1.5.14, it has exactly one positive root.

1.6 Counting real zeros with Hermite’s method

Reminder 1.6.1. (a) Let A be a commutative ring with 0 6= 1 and f ∈ A[X1, . . . , Xn].
Then f is called homogeneous if f is a an A-linear combination of monomials of the
same degree. Moreover, f is called a k-form (k ∈N0) if f is an A-linear combination
of monomials of degree k (i.e., if f = 0 or f is homogeneous of degree k). One often
says linear form instead of 1-form and quadratic form instead of 2-form.

(b) If K is a field, one can identify the K-vector subspace of K[X1, . . . , Xn] consisting

of the
{

linear
quadratic

}
forms introduced in (a) via the isomorphism f 7→ (x 7→ f (x))

with the K-vector space
{
(Kn)∗

Q(Kn)

}
introduced in linear algebra. Hence the notion

of a linear or quadratic form introduced in (a) differs only insignificantly from the
corresponding notion from linear algebra.

(c) Let A be a set and M = (aij)1≤i≤m
1≤j≤n

∈ Am×n a matrix. Then MT := (aji)1≤j≤n
1≤i≤m

∈ An×m

is called the transpose of M. The elements of SAn×n := {M ∈ An×n | M = MT} are
called symmetric matrices.

(d) Let K be a field. Then (a1, . . . , an) 7→ a1X1 + . . . + anXn (ai ∈ K) defines an isomor-
phism between K1×n ∼= Kn and the K-vector space of the linear forms in K[X1, . . . , Xn].
If char K 6= 2, then (aij)1≤i,j≤n 7→ ∑n

i,j=1 aijXiXj (aij ∈ K) defines an isomorphism be-
tween SKn×n and the K-vector space of the quadratic forms in K[X1, . . . , Xn]. If
f ∈ K[X1, . . . , Xn] is a linear of quadratic form, then we call the preimage M( f )
of f under the respective isomorphism the representing matrix of f . This is the rep-
resenting matrix of f in the sense of linear algebra with respect to the canonical
bases.

(e) Suppose K is a field satisfying char K 6= 2, q ∈ K[X1, . . . , Xn] a quadratic form,
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`1, . . . , `m ∈ K[X1, . . . , Xn] linear forms and λ1, . . . , λm ∈ K. Then

q =
m

∑
k=1

λk`
2
k ⇐⇒ M(q) = PT


λ1

λm

0
0

 P

where

P :=

M(`1)
...

M(`m)

 ∈ Km×n.

Here P is invertible if and only if m = n and `1, . . . , `m are linearly independent.

(f) Let K be a field satisfying char K 6= 2 and q ∈ K[X1, . . . , Xn] a quadratic form. One
can easily calculate linearly independent linear forms `1, . . . , `m ∈ K[X1, . . . , Xn] and
λ1, . . . , λm ∈ K such that q = ∑m

k=1 λk`
2
k . Indeed, one can write

X2
1 + a2X1X2 + · · ·+ anX1Xn (ai ∈ K)

as
(

X1 +
a2

2
X2 + · · ·+

an

2
Xn︸ ︷︷ ︸

`1

)2
−
( a2

2
X2 + · · ·+

an

2
Xn

)2

︸ ︷︷ ︸
∈K[X2,...,Xn]

and

X1X2 + a3X1X3 + . . . + anX1Xn + b3X2X3 + . . . + bnX2Xn

as(
X1 + b3X3 + . . . + bnXn︸ ︷︷ ︸

h1

)(
X2 + a3X3 + . . . + anXn︸ ︷︷ ︸

h2

)
− (a3X3 + . . . + anXn) (b3X3 + . . . + bnXn)︸ ︷︷ ︸

∈K[X3,...,Xn]

where h1h2 =
( h1 + h2

2︸ ︷︷ ︸
`1

)2
−
( h1 − h2

2︸ ︷︷ ︸
`2

)2
[→ 1.2.3]. In this way one can in each step

place one or two variables in one or two squares and the arising linear forms are
obviously linearly independent. Consider q := 2X1X2 + 2X1X3 + 2X2X3 + 2X3X4
as an example:

q := 2(X1X2 + X1X3 + X2X3) + 2X3X4

= 2((X1 + X3︸ ︷︷ ︸
h1

)(X2 + X3︸ ︷︷ ︸
h2

))− 2X2
3 + 2X3X4

=
1
2︸︷︷︸

λ1=−λ2

((h1 + h2︸ ︷︷ ︸
`1

)2 − (h1 − h2︸ ︷︷ ︸
`2

)2) −2︸︷︷︸
λ3

(
X3 −

1
2

X4︸ ︷︷ ︸
`3

)2
+

2
4︸︷︷︸
λ4

X4︸︷︷︸
`4

2.
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Hence q = ∑4
k=1 λk`

2
k = 1

2 (X1 + X2 + 2X3)2 − 1
2 (X1 − X2)2 − 2(X3 − 1

2 X4)
2 + 1

2 X2
4

and by (e) 
0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 = PTDP

where

P :=


1 1 2 0
1 −1 0 0
0 0 1 − 1

2
0 0 0 1

 and D :=


1
2 0 0 0
0 − 1

2 0 0
0 0 −2 0
0 0 0 1

2

 .

(g) Translating (f) into the language of matrices, one obtains for each field K with
char K 6= 2 and each M ∈ SKn×n the following: One can easily find a P ∈ GLn(K) =
(Kn×n)× and a diagonal matrix D ∈ Kn×n such that M = PTDP. This is the diago-
nalization of M as a quadratic form which is much simpler than the diagonalization
of M as an endomorphism where one wants to reach M = P−1DP (in case K = R

perhaps even with P−1 = PT).

(h) Let K be an Euclidean field [→ 1.4.4] and q ∈ K[X1, . . . , Xn] a quadratic form. Ac-
cording to (f), one can then easily compute linearly independent linear forms

`1, . . . , `s, `s+1, . . . , `s+t ∈ K[X1, . . . , Xn]

satisfying q = ∑s
i=1 `

2
i − ∑t

j=1 `
2
s+j. By completing `1, . . . , `s+t to a basis `1, . . . , `n

of the vector space of all linear forms in K[X1, . . . , Xn] and by writing q = 1 ·
∑s

i=1 `
2
i + (−1)∑t

j=1 `
2
s+j + 0 · ∑n

k=t+1 `
2
k , one sees for the rank rk(q) := rk M(q) of

q that rk(q)
(e)
= s + t. We define the signature of q as sg(q) := s − t. This is well-

defined by Sylvester’s law of inertia: If `′1, . . . , `′s′ , `
′
s′+1, . . . , `′s′+t′ ∈ K[X1, . . . , Xn] are

other linearly independent linear forms satisfying q = ∑s′
i=1 `

′2
i − ∑t′

j=1 `
′2
s′+j, then

s′ + t′ = rk(q) = s + t and one sees again by completing to a basis and (e) that
there are subspaces U, W, U′, W ′ of Kn such that q(U) ⊆ K≥0, dim U = n − t,
q(W \ {0}) ⊆ K<0, dim W = t, q(U′) ⊆ K≥0, dim U′ = n− t′, q(W ′ \ {0}) ⊆ K<0,
dim W ′ = t′. One deduces U ∩W ′ = {0} and U′ ∩W = {0}, whence (n− t) + t′ ≤
n and (n− t′) + t ≤ n. Therefore t = t′ and thus s = s′.

(i) Let K be a field and f = Xd + ad−1Xd−1 + . . . + a0 ∈ K[X] with d ∈ N0 and ai ∈
K. The companion matrix C f of f is the representing matrix of the K-vector space
endomorphism

K[X]/( f )→ K[X]/( f ), p 7→ Xp (p ∈ K[X])

Tentative Lecture Notes



25

with respect to the basis 1, . . . , Xd−1, i.e.,

C f =

0 0 0 −a0

1 0 −a1

0 1 −a2

0 0

0
0 0 0 1 −ad−1




∈ Kd×d.

One sees easily that f is the minimal polynomial and therefore for degree reasons
also the characteristic polynomial of C f . Now suppose furthermore that f splits
into linear factors, i.e.,

f =
m

∏
k=1

(X− xk)
αk

for some m ∈ N0, αk ∈ N and pairwise distinct x1, . . . , xm ∈ K. Then C f is similar
to a triangular matrix with diagonal entries

x1, . . . , x1︸ ︷︷ ︸
α1

, x2, . . . , x2︸ ︷︷ ︸
α2

, . . . , xm, . . . , xm︸ ︷︷ ︸
αm

.

Then Ci
f is for every i ∈ N0 similar to a triangular matrix whose diagonal entries

are
xi

1, . . . , xi
1︸ ︷︷ ︸

α1

, xi
2, . . . , xi

2︸ ︷︷ ︸
α2

, . . . , xi
m, . . . , xi

m︸ ︷︷ ︸
αm

.

In particular, we have tr(Ci
f ) = ∑m

k=1 αkxi
k for all i ∈N0 and consequently

tr(g(C f )) =
m

∑
k=1

αkg(xk)

for all g ∈ K[X].

(j) If K is a field and x1, . . . , xm ∈ K are pairwise distinct, then the Vandermonde matrix1 x1 . . . xm−1
1

...
...

...
1 xm . . . xm−1

m

 ∈ Km×m

is invertible since it is the representing matrix of the injective and therefore bijective
linear map

K[X]m−1 → Km, p 7→

 p(x1)
...

p(xm)


[→ 1.5.1] with respect to the canonical bases.
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(k) Let K be a field and let x1, . . . , xm ∈ K be pairwise distinct. Furthermore, let d ∈N0
with m ≤ d. Consider for k ∈ {1, . . . , m} the linear forms `k := ∑d

i=1 xi−1
k Ti ∈

K[T1, . . . , Td]. Then `1, . . . , `m are linearly independent. Indeed, because of (d) this is
equivalent to the linear independence of the vectors (x0

k , . . . , xd−1
k ) (k ∈ {1, . . . , m})

in Kd. But already the truncated vectors (x0
k , . . . , xm−1

k ) (k ∈ {1, . . . , m}) are linearly
independent by (j).

Definition 1.6.2. Let K be a field and f , g ∈ K[X] where f is monic of degree d. Then
the quadratic form

H( f , g) :=
d

∑
i,j=1

tr(g(C f )C
i+j−2
f )TiTj ∈ K[T1, . . . , Td]

is called the Hermite form of f with respect to g. The quadratic form H( f ) := H( f , 1) is
simply called the Hermite form of f .

Remark 1.6.3. Let K be a field with char K 6= 2 and let f , g ∈ K[X] where f is monic of
degree d. Then M(H( f , g)) [→ 1.6.1(d)] is called the Hermite matrix of f with respect to g.
This is a Hankel matrix, i.e., of the form  .

Furthermore, M(H( f )) is called the Hermite matrix of f .

Proposition 1.6.4. Let K be a field and f , g ∈ K[X]. Suppose x1, . . . , xm ∈ K and α1, . . . , αm ∈
N0 such that f = ∏m

k=1(X− xk)
αk and d := deg f . Then

H( f , g) =
d

∑
i,j=1

(
m

∑
k=1

αkg(xk)xi+j−2
k

)
TiTj =

m

∑
k=1

αkg(xk)

(
d

∑
i=1

xi−1
k Ti

)2

.

Proof. 1.6.2 and 1.6.1(i).

Theorem 1.6.5 (Counting roots with one side condition). Let R be a real closed field, C :=
R(i), f , g ∈ R[X] and f monic. Then

rk H( f , g) = #{x ∈ C | f (x) = 0, g(x) 6= 0} and
sg H( f , g) = #{x ∈ R | f (x) = 0, g(x) > 0}

− #{x ∈ R | f (x) = 0, g(x) < 0}.

Proof. Denote by p 7→ p∗ again the ring automorphism of C[T1, . . . , Td] with x∗ = x for
all x ∈ R, i∗ = −i and X∗ = X. Using the fundamental theorem of algebra 1.4.14 and
this automorphism, we can write

f =
m

∏
k=1

(X− xk)
αk

n

∏
t=1

(X− zt)
βt

n

∏
t=1

(X− z∗t )
βt
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for some m, n ∈ N0 αk, βt ∈ N, xk ∈ R, zt ∈ C \ R and x1, . . . , xm, z1, . . . , zn, z∗1 , . . . , z∗n
pairwise distinct. By renumbering the zt, we can find r ∈ {0, . . . , n} such that g(z1) 6=
0, . . . , g(zr) 6= 0 and g(zr+1) = 0, . . . , g(zn) = 0. By 1.6.4, 1.6.1(k) and 1.4.8(c), we obtain
linear forms `1, . . . , `m, g1, . . . , gr, h1, . . . hr ∈ R[T1, . . . , Td] such that

H( f , g) =
m

∑
k=1

αkg(xk)`
2
k +

r

∑
t=1

(gt + iht)
2 +

r

∑
t=1

(gt − iht)
2

=
m

∑
k=1

αkg(xk)`
2
k + 2

r

∑
t=1

g2
t − 2

r

∑
t=1

h2
t

where `1, . . . , `m, g1 + ih1, g1 − ih1, . . . , gr + ihr, gr − ihr ∈ C[T1, . . . , Td] are linearly in-
dependent. Due to C(gi + ihi) + C(gi − ihi) = Cgi + Chi, we have that

`1, . . . , `m, g1, . . . , gr, h1, . . . , hr

are also linearly independent in C[T1, . . . , Td] and therefore also in R[T1, . . . , Td]. It fol-
lows that

rk H( f , g) = #{k ∈ {1, . . . , m} | g(xk) 6= 0}+ 2r
= #{k ∈ {1, . . . , m} | g(xk) 6= 0}+ 2#{t ∈ {1, . . . , n} | g(zt) 6= 0}
= #{x ∈ C | f (x) = 0, g(x) 6= 0} and

sg H( f , g) = #{k ∈ {1, . . . , m} | g(xk) > 0} − #{k ∈ {1, . . . , m} | g(xk) < 0}+ r− r
= #{x ∈ R | f (x) = 0, g(x) > 0} − #{x ∈ R | f (x) = 0, g(x) < 0}.

Corollary 1.6.6 (Counting roots without side conditions). Let R be a real closed field, C :=
R(i) and suppose f ∈ R[X] is monic. Then

rk H( f ) = #{x ∈ C | f (x) = 0} and
sg H( f ) = #{x ∈ R | f (x) = 0}.

Corollary 1.6.7 (Counting roots with several side conditions). Let R be a real closed field,
m ∈N0, f , g1, . . . , gm ∈ R[X] and f monic. Then

1
2m ∑

α∈{1,2}m

sg H( f , gα1
1 . . . gαm

m ) = #{x ∈ R | f (x) = 0, g1(x) > 0, . . . , gm(x) > 0}

Proof. The left hand side equals

1
2m ∑

α∈{1,2}m
∑
x∈R

f (x)=0

sgn((gα1
1 . . . gαm

m )(x)) =
1

2m ∑
x∈R

f (x)=0

m

∏
k=1

(sgn(gk(x)) + (sgn(gk(x)))2︸ ︷︷ ︸
=

{
0 if gk(x) ≤ 0
2 if gk(x) > 0

).
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1.7 The real closure

Definition 1.7.1. Let (K, P) be an ordered field. An extension field R of K is called a real
closure of (K, P) if R is real closed, R|K is algebraic and the order of R [→ 1.4.3, 1.4.4] is
an extension of P [→ 1.3.1].

Proposition 1.7.2. Let (R, P) be an ordered field. Then R is real closed if and only if there is
no ordered extension field (L, Q) of (R, P) such that L 6= R and L|R is algebraic.

Proof. One direction follows from 1.4.13(c). Conversely, suppose that every ordered
extension field (L, Q) of (R, P) with L|R algebraic satisfies L = R. To show:

(a) R is Euclidean.

(b) Every polynomial of odd degree from R[X] has a root in R.

For (a), we show P = R2. To this end, let a ∈ P. By 1.3.4, we can extend P to R(
√

a).
Due to the hypothesis, this implies R(

√
a) = R and therefore a = (

√
a)2 ∈ R2.

To show (b), let f ∈ R[X] be of odd degree. Choose in R[X] an irreducible divisor g
of f of odd degree. Choose a root x of g in some extension field of R. Then R(x) is an
extension field of R with odd [R(x) : R] so that P can be extended to R(x) by 1.3.6. By
hypothesis, this gives R(x) = R. In particular, g and therefore f has a root in R.

Theorem 1.7.3. Every ordered field has a real closure.

Proof. Let (K, P) be an ordered field. Consider the algebraic closure K of K and the set

M := {(L, Q) | L subfield of K, Q order of L, (K, P) is an ordered subfield of (L, Q)}

which is partially ordered by declaring

(L, Q) � (L′, Q′) :⇐⇒ (L, Q) is an ordered subfield of (L′, Q′)
1.1.20(b)⇐⇒ (L ⊆ L′ & Q ⊆ Q′)

for all (L, Q), (L′, Q′) ∈ M. In M every chain possesses an upper bound: The empty
chain has (K, P) as an upper bound. A nonempty chain C ⊆ M has(⋃

{L | (L, Q) ∈ C},
⋃
{Q | (L, Q) ∈ C}

)
∈ M

as an upper bound. By Zorn’s lemma, M possesses a maximal element (R, Q). Of
course, K is also the algebraic closure of R and therefore each algebraic extension of R
is (up to R-isomorphy) an intermediate field of K|R. The maximality of (R, Q) in M
signifies by 1.7.2 just that R is real closed. Because of (R, Q) ∈ M, the field extension
R|K is algebraic and the order Q is an extension of P.

Lemma 1.7.4. Let (K, P) be an ordered subfield of the real closed fields R and R′ [→ 1.4.3]
and f ∈ K[X]. Then f has the same number of roots in both R and R′.
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Proof. WLOG f is monic. The number in question is by 1.6.6 equal to the signature of
H( f ) that can be calculated already in (K, P) [→ 1.6.1(h)].

Theorem 1.7.5. Let (K, P) be an ordered subfield of (L, Q) such that L|K is algebraic. Let ϕ
be a homomorphism of ordered fields from (K, P) into a real closed field R. Then there is exactly
one homomorphism ψ of ordered fields from (L, Q) to R with ψ|K = ϕ.

Proof. Choose a real closure R′ of (L, Q) according to 1.7.3.
Existence: Using Zorn’s lemma, one reduces easily to the case where L|K is finite.

We denote the different field homomorphisms from L to R extending ϕ by ψ1, . . . , ψm
(m ∈ N0). Assume that none of these is a homomorphism of ordered fields from
(L, Q) to R (for example if m = 0). Then there are b1, . . . , bm ∈ Q such that ψ1(b1) /∈
R2, . . . , ψm(bm) /∈ R2. By the primitive element theorem there exists

a ∈ L′ := L(
√

b1, . . . ,
√

bm)
bi∈Q⊆R′2

⊆ R′

such that L′ = K(a). The minimal polynomial of a over K has by 1.7.4 the same number
of roots in R′ and R and therefore in particular a root in R. Hence there is a field
homomorphism ψ : L′ → R extending ϕ. Choose i ∈ {1, . . . , m} with ψ|L = ψi (in
particular m > 0). Then ψi(bi) = ψ(bi) = ψ(

√
bi)

2 ∈ R2  .
Unicity: Let a ∈ L. Choose f ∈ K[X] \ {0}with f (a) = 0. Choose a1, . . . , am ∈ R′ with

a1 < . . . < am such that {x ∈ R′ | f (x) = 0} = {a1, . . . , am}. Since ϕ : K → ϕ(K) ⊆ R
is an isomorphism of ordered fields, we can suppose WLOG that (K, P) is an ordered
subfield of R and ϕ = id. By 1.7.4 there are b1, . . . , bm ∈ R such that b1 < . . . < bm
and {x ∈ R | f (x) = 0} = {b1, . . . , bm}. Choose now i ∈ {1, . . . , m} such that a = ai.
We show that each homomorphism ψ of ordered fields from (L, Q) to R with ψ|K = id
satisfies ψ(a) = bi. To this end, fix such a ψ. By the already proved existence statement,
there is a homomorphism of ordered fields $ : R′ → R such that $|L = ψ. Since $ is
an embedding, we have {$(a1), . . . , $(am)} = {b1, . . . , bm} and by the monotonicity we
even get $(aj) = bj for all j ∈ {1, . . . , m}. We deduce ψ(a) = ψ(ai) = $(ai) = bi.

Corollary 1.7.6. Let R and R′ be real closures of the ordered field (K, P). Then there is exactly
one K-isomorphism from R to R′.

Proof. The K-isomorphisms from R to R′ are obviously exactly the isomorphisms of or-
dered fields from R to R′ whose restriction to K is the identity. For this reason, the claim
follows easily from 1.7.5 (for the surjectivity in the existence part use either 1.4.13(c) or
the unicity of K-automorphisms of R and of R′ [→ 1.7.5]).

Notation and Terminology 1.7.7. Because of 1.7.6, we speak of the real closure (K, P) of
(K, P). It contains by 1.7.5 (up to K-isomorphy) every ordered field extension (L, Q) of
(K, P) with L|K algebraic.
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Theorem 1.7.8. Suppose (K, P) is an ordered field, L|K an algebraic extension, R a real closed
field and ϕ a homomorphism of ordered fields from (K, P) to R. Then

{ψ | ψ : L→ R homomorphism, ψ|K = ϕ} → {Q | Q is an extension of P to L}
ψ 7→ ψ−1(R2)

is a bijection.

Proof. The well-definedness is easy to see. To verify the bijectivity, let Q be an extension
of P to L. We have to show that there is exactly one homomorphism ψ : L → R with
ψ|K = ϕ fulfilling the condition ψ−1(R2) = Q that is equivalent to ψ being a homomor-
phism of ordered fields from (L, Q) to R since

ψ−1(R2) = Q ⇐⇒ ψ−1(R2 ∩ ψ(L)) = Q
ψ : L→ψ(L)⇐⇒

bijective
R2 ∩ ψ(L) = ψ(Q)

R2∩ψ(L)⇐⇒
order of ψ(L)

ψ(Q) ⊆ R2 ∩ ψ(L) ⇐⇒ ψ(Q) ⊆ R2.

Hence we get the unicity and existence of ψ from 1.7.5.

Corollary 1.7.9. Suppose (K, P) is an ordered field, R := (K, P) and L|K a finite extension.
Let a ∈ L with L = K(a) and f be the minimal polynomial of a over K. Then

{x ∈ R | f (x) = 0} → {Q | Q is an extension of P to L}
x 7→ {g(a) | g ∈ K[X], g(x) ∈ R2}

is a bijection.

Proof. By 1.7.8 it is enough to see that

{x ∈ R | f (x) = 0} → {ψ | ψ : L→ R is a K-homomorphism}
x 7→ (g(a) 7→ g(x)) (g ∈ K[X])

is a bijection. This is easy to see.

Example 1.7.10. Let (K, P) be an ordered field with 2 /∈ K2. Denote by
√

2 one of the
two square roots of 2 in the algebraic closure K of K [→ 1.4.7(a)]. Then there are exactly
2 orders of K(

√
2) that extend P, namely the two induced by the field embeddings

K(
√

2) ↪→ (K, P) (in one of which
√

2 is positive and in one of which it is negative).
In particular, this is true if (K, P) is not Archimedean [→ 1.1.20(d)] and in this case we
cannot argue with R instead of (K, P) as we did in 1.3.5.

Proposition 1.7.11. Let R be a real closed field and K a subfield of R that is (relatively) alge-
braically closed in R (i.e., no element of R is algebraic over K). Then K is real closed.

Proof. Apply the criterion from 1.7.2: Every ordered extension field (L, Q) of (K, R2∩K)
such that L|K is algebraic is contained in R up to K-isomorphy [→ 1.7.5, 1.7.7] and
therefore equal to K.
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Example 1.7.12. The field Ralg := {x ∈ R | x algebraic over Q} of real algebraic numbers
is the algebraic closure of Q in R. By 1.7.11, Ralg is real closed and therefore the real
closure of Q [→ 1.4.3]. Hence Ralg is uniquely embeddable in every real closed field by
1.7.5. In this sense, Ralg is the smallest real closed field.

1.8 Real quantifier elimination

Remark 1.8.1. Let M, I and Ji for each i ∈ I be sets and suppose Aij ⊆ M for all i ∈ I
and j ∈ Ji. Defining the empty intersection as M (that is

⋂
i∈∅ . . . :=

⋂
∅ := M), one has⋃

i∈I

⋂
j∈Ji

Aij =
⋂

(ji)i∈I∈∏i∈I Ji

⋃
i∈I

Aiji ,⋂
i∈I

⋃
j∈Ji

Aij =
⋃

(ji)i∈I∈∏i∈I Ji

⋂
i∈I

Aiji ,

{
⋃
i∈I

⋂
j∈Ji

Aij =
⋂
i∈I

⋃
j∈Ji

{Aij and

{
⋂
i∈I

⋃
j∈Ji

Aij =
⋃
i∈I

⋂
j∈Ji

{Aij

where the complement of A ⊆ M is given by {A := {M A := M \ A.

Definition and Proposition 1.8.2. Let M be a set and P(M) its power set.

(a) We call S ⊆P(M) a Boolean algebra on M if

• ∅ ∈ S ,

• ∀S ∈ S : {S ∈ S ,

• ∀S1, S2 ∈ S : S1 ∩ S2 ∈ S and

• ∀S1, S2 ∈ S : S1 ∪ S2 ∈ S .

(b) Let G ⊆ P(M). Then the set of all finite
{

unions
intersections

}
of finite

{
intersections

unions

}
of

elements of G and their complements (with
⋂

∅ := M) is obviously the smallest Boolean
algebra S on M with G ⊆ S . It is called the Boolean algebra generated by G (on M). Its
elements are called the Boolean combinations of elements of G .

Definition and Remark 1.8.3. In the sequel, we let (K, P) always be an ordered field,
for example (K, P) = (Q, Q≥0) unless otherwise stated. Moreover, we let R be a set of
real closed fields containing (K, P) as an ordered subfield. For n ∈N0, we set

Rn := {(R, x) | R ∈ R, x ∈ Rn}.

Thereby we have R0 = {∅} = {0} and we identify R0 with R. A Boolean combination
of sets of the form

{(R, x) ∈ Rn | p(x) ≥ 0 (in R)} (p ∈ K[X1, . . . , Xn])

is called a
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• K-semialgebraic set in Rn if R = {R}, and

• an n-ary (K, P)-semialgebraic class if R is “potentially very big” (in any case big
enough to contain all real closed ordered extension fields of (K, P) that are cur-
rently in the game).

We identify K-semialgebraic sets in Rn with subsets of Rn. Thus these are simply the
subsets of Rn that can be defined by combining finitely many polynomial inequalities
with coefficients in K by the logical connectives “not”, “and” and “or”. A semialgebraic
set in Rn is an R-semialgebraic set in Rn. A semialgebraic class is a Q-semialgebraic class.

Remark 1.8.4. (a) On the first reading, the reader might want to think of R = {R} or
even of R = {R} in order to have a good geometric perception. Initially one can
therefore think of (K, P)-semialgebraic classes as K-semialgebraic sets.

(b) One can conceive R as the “set” of all real closed ordered extension fields of (K, P).
Unfortunately, this is not a set (otherwise Zorn’s lemma would yield real closed
fields having no proper real closed extension field in contradiction to 1.3.7 com-
bined with 1.7.3) but a proper class. But we do not want to get into the formal no-
tion of a class and instead adopt a naïve point of view from which sets and classes
are synonymous where “big” sets often tend to be called classes.

(c) Whoever gets vertiginous from (b), has several ways out: Our resort here is that
R is a honest set that is at any one time sufficiently big (often #R = 1 is enough
and almost always #R = 2 is enough). Alternatively, one could learn the subtle
non-naïve handling of sets and classes. As a third option, one could work, instead
of with (K, P)-semialgebraic classes, with formulas of first-order logic in the lan-
guage of ordered fields with additional constants for the elements of K. The last
two options are technically very involved.

Remark 1.8.5. Obviously, ∅ and R are the only 0-ary (K, P)-semialgebraic classes

Proposition 1.8.6. Every (K, P)-semialgebraic class is of the form

k⋃
i=1

{(R, x) ∈ Rn | fi(x) = 0, gi1(x) > 0, . . . , gim(x) > 0}

for some n, k, m ∈N0, fi, gij ∈ K[X1, . . . , Xn].
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Proof. By 1.8.3 and 1.8.2(b) such a class is a finite union of classes of the form

{(R, x) ∈ Rn | h1(x) ≥ 0, . . . , hs(x) ≥ 0, hs+1(x) < 0, . . . , hs+t(x) < 0}

=
⋃

δ∈{0,1}s

(R, x) ∈ Rn |
sgn(h1(x)) = δ1, . . . , sgn(hs(x)) = δs,

−hs+1(x) > 0, . . . ,−hs+t(x) > 0



=
⋃

δ∈{0,1}s

(R, x) ∈ Rn |

 s

∑
i=1
δi=0

h2
i

 (x) = 0,
s

&
i=1
δi=1

hi(x) > 0,

−hs+1(x) > 0, . . . ,−hs+t(x) > 0


for some s, t ∈N0 and hi ∈ K[X1, . . . , Xn]

Proposition 1.8.7. Let m, n ∈ N0, h1, . . . , hm ∈ K[X1, . . . , Xn] and S ⊆ Rm a (K, P)-
semialgebraic class. Then {(R, x) ∈ Rn | (R, (h1(x), . . . , hm(x))) ∈ S} is a (K, P)-semialgebraic
class.

Proof. If S =
⋃k

i=1{(R, y) ∈ Rm | fi(y) = 0, gi1(y) > 0, . . . , gi`(y) > 0} with m, k, ` ∈
N0, fi, gij ∈ K[Y1, . . . , Ym] so that

{(R, x) ∈ Rn | (h1(x), . . . , hm(x)) ∈ S}

=
k⋃

i=1

{(R, x) ∈ Rn | ( fi(h1, . . . , hm))(x) = 0,

(gi1(h1, . . . , hm))(x) > 0, . . . , (gi`(h1, . . . , hm))(x) > 0} .

Corollary 1.8.8. Let R be a real closed field. Preimages of semialgebraic subsets of Rm under
polynomial maps Rn → Rm are again semialgebraic in Rn.

Lemma 1.8.9. For every s ∈N0,{
(R, x) ∈ Rd+1 | σ

(
d

∑
i=0

xiTi

)
= s with respect to R[T]

}

is a semialgebraic class.

Proof. The class in question equals⋃
δ∈{−1,0,1}n

σ(∑d
i=0 δiTi)=s with respect to R[T]

{(R, x) ∈ Rd+1 | sgnR(x0) = δ0, . . . , sgnR(xd) = δd} .
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Remark 1.8.10. We will now need the simultaneous diagonalization of a symmetric ma-
trix as a quadratic form and as an endomorphism [→ 1.6.1(g)]. The reader should know
this over R from linear algebra but we will now need it more generally over an arbi-
trary real closed field. Later in this chapter, we will provide methods from which it
becomes immediately clear that, for each fixed matrix size, the class of all fields R ∈ R,
over which the corresponding statement is true, is a 0-ary semialgebraic class. Since the
statement is true over R, it must then by 1.8.5 also hold true over every real closed field.
In a similar way, we will soon be able to carry over a great many statements from R to
all real closed fields. Unfortunately, we are not that far yet and therefore we have to
check if the proof from linear algebra goes through over an arbitrary real closed field.
Some of the proofs of the diagonalization in question use however proper analysis in-
stead of just the fundamental theorem of algebra. Since the whole analysis is built on
the completeness of R [→ 1.1.16], those proofs do not generalize without further ado.
Thus we give a compact ad-hoc-proof.

Theorem 1.8.11. Let R be a real closed field and M ∈ SRn×n. Then there is some P ∈ GLn(R)
satisfying PTP = In such that PT MP is a diagonal matrix.

Proof. Call a symmetric bilinear form V×V → R, (v, w) 7→ 〈v, w〉 on an R-vector space
V positive definite if 〈v, v〉 > 0 for all v ∈ V \ {0}. Call an R-vector space together
with a positive definite symmetric bilinear form a Euclidean R-vector space. Call an
endomorphism f of a Euclidean R-vector space V self-adjoint if 〈 f (v), w〉 = 〈v, f (w)〉
for all v, w ∈ V.

Claim 1: Let V be a Euclidean R-vector space, f ∈ End(V) self-adjoint and v an
eigenvector of f . Then U := {u ∈ V | 〈u, v〉 = 0} is a subspace of V with v /∈ U and
f (U) ⊆ U.

Explanation. Choose λ ∈ R with f (v) = λv and let u ∈ U. Then 〈 f (u), v〉 =
〈u, f (v)〉 = 〈u, λv〉 = λ〈u, v〉 = λ0 = 0.

Claim 2: Let V 6= 0 be a finite-dimensional Euclidean R-vector space and f ∈ End(V)
self-adjoint. Then f possesses an eigenvalue in R.

Explanation. Assume f has no eigenvalue. By Caley-Hamilton and the fundamental
theorem 1.4.14, there are a, b ∈ R with b 6= 0 such that ( f − a idV)

2 + b2 idv has a
non-trivial kernel. Since f is self-adjoint, g := f − a idV is so. Choose v ∈ V with
g2(v) = −b2v. Then 0 ≤ 〈g(v), g(v)〉 = 〈g2(v), v〉 = 〈−b2v, v〉 = −b2〈v, v〉 < 0.  

Claim 3: Let V be a finite-dimensional Euclidean R-vector space and f ∈ End(V)
self-adjoint. Then there is an eigenbasis v1, . . . , vn for f with (〈vi, vj〉)1≤i,j≤n = In.

Explanation. Use Claim 1, Claim 2 and induction over the dimension V.
In virtue of 〈x, y〉 := ∑n

i=1 xiyi (x, y ∈ Rn), Rn is an Euclidean R-vector space and
f : Rn → Rn, x 7→ Mx is self-adjoint. By Claim 3, there is an eigenbasis v1, . . . , vn
for f such that (〈vi, vj〉)1≤i,j≤n = In. Set P := (v1 . . . vn) ∈ GLn(R). Then

PTP =

vT
1
...

vT
n

(v1 . . . vn
)
= In
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and P is the change-of-basis matrix from (v1, . . . , vn) to the standard basis. It follows
that PT MP = P−1MP is the representing matrix of f with respect to (v1, . . . , vn).

Corollary 1.8.12 (Determination of the signature using Descartes’ rule of signs). Let R
be a real closed field, q ∈ R[T1, . . . , Td] a quadratic form and h := det(M(q)− XId) ∈ R[X]
the characteristic polynomial of the representing matrix [→ 1.6.1(d)] of q. Then we have:

(a) h is real-rooted [→ 1.5.11]

(b) sg q = µ(h)− µ(h(−X)) [→ 1.6.1(h), 1.5.5(a)]

(c) sg q = σ(h)− σ(h(−X)) [→ 1.5.5(b)]

Proof. Using 1.8.11, choose P ∈ GLd(R) such that PTP = Id and PT M(q)P is diagonal,

PT M(q)P =


λ1

λd

0
0


with λi ∈ R. We have

h = h det(PTP)

= (det(PT))(det(M(q)− XId))(det P)

= det(PT M(q)P− XPTP) = det


λ1 − X

λd − X

0
0

 =
d

∏
i=1

(λi − X),

from which (a) follows immediately. Because of

M(q) = (PT)T


λ1

λd

0
0

 PT

and PT ∈ GLd(R), it follows from 1.6.1(e) that

sg q = #{i ∈ {1, . . . , d} | λi > 0} − #{i ∈ {1, . . . , d} | λi < 0} = µ(h)− µ(h(−X)),

which proves (b). Finally, (c) follows from (a) and (b) due to the exactness of Descartes’
rule of signs for real rooted polynomials [→ 1.5.14].

Remark 1.8.13. Combining 1.8.12 with 1.6.7, one can reduce the count of real roots of
polynomials without multiplicity with side conditions by means of the Hermite method
from §1.6 to the count of roots of real-rooted polynomials with multiplicity by means
of Descartes’ rule from §1.5.
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Lemma 1.8.14. Let m, n, d ∈N0 and f , g1, . . . , gm ∈ K[X1, . . . , Xn+1]. Then

{(R, x) ∈ Rn |deg f (x, Xn+1) = d &
∃xn+1 ∈ R : ( f (x, xn+1) = 0 & g1(x, xn+1) > 0 & . . . & gm(x, xn+1) > 0)}

is a (K, P)-semialgebraic class.

Proof. Write f = ∑D
i=0 hiXi

n+1 for some D ∈ N0, D ≥ d and hi ∈ K[X1, . . . , Xn]. WLOG
hd 6= 0. Then

f0 :=
d

∑
i=0

hi

hd
Xi

n+1 ∈ K(X1, . . . , Xn)[Xn]

is monic of degree d. For every α ∈ {1, 2}m, we consider also gα1
1 · · · g

αm
m as a polynomial

in Xn+1 with coefficients from the field K(X1, . . . , Xn) and set

hα := det(M(H( f0, gα1
1 · · · g

αm
m ))− XId) ∈ K(X1, . . . , Xn)[X].

By construction [→ 1.6.1(i), 1.6.2, 1.6.3], there is some N ∈N such that

hN
d hα ∈ K[X1, . . . , Xn+1]

for all α ∈ {1, 2}m. Now the class from the claim can be written by 1.6.7 as{
(R, x) ∈ Rn |hD(x) = . . . = hd+1(x) = 0 6= hd(x) &

∑
α∈{1,2}m

sg H( f0(x, Xn+1), (gα1
1 · · · g

αm
m )(x, Xm+1)) > 0

}
.

But{
(R, x) ∈ Rn | hd(x) 6= 0 & ∑

α∈{1,2}m

sg H( f0(x, Xn+1), (gα1
1 · · · g

αm
m )(x, Xm+1)) > 0

}
1.8.12
=
!

{
(R, x) ∈ Rn | hd(x) 6= 0 & ∑

α∈{1,2}m

(σ(hα(x, X))− σ(hα(x,−X))) > 0

}

=
⋃

(sα)α∈{1,2}m ,(tα)α∈{1,2}m∈{0,...,d}{1,2}m

∑α∈{1,2}m (sα−tα)>0

⋂
α∈{1,2}m

(R, x) ∈ Rn |
hd(x) 6= 0,

σ((hN
d hα)(x, X)) = sα,

σ((hN
d hα)(x,−X)) = tα


is (K, P)-semialgebraic by 1.8.9 and 1.8.7. Here the warning sign ! indicates where an
important argument flows in:

hα(x, X) = det(M(H( f0(x, Xn+1), (gα1
1 · · · g

αm
m )(x, Xn+1)))− XId)

since evaluating in x commutes with building companion matrices, Hermite forms and
with taking determinants [→ 1.6.2, 1.6.1(i)].
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Lemma 1.8.15. Let R be a real closed field, m ∈ N0 and g1, . . . , gm ∈ R[X]. Setting
g := g1 · · · gm and f := (1− g2)g′, we have

(a) There is an x ∈ R satisfying g1(x) > 0, . . . , gm(x) > 0 if and only if there is such an
x ∈ R satisfying in addition f (x) = 0.

(b) If f = 0 and g1 6= 0, . . . , gm 6= 0, then g1, . . . , gm ∈ R.

Proof. (b) Suppose f = 0. Then g2 = 1 or g′ = 0. In both cases it follows g ∈ R and thus
g1, . . . , gm ∈ R provided that g1 6= 0, . . . , gm 6= 0.

(a) Let x ∈ R such that g1(x) > 0, . . . , gm(x) > 0. Denote by a1, . . . , ar where r ∈ N0
and a1 < . . . < ar the roots of g in R.

First consider the case where r = 0. By the intermediate value theorem 1.4.16 each of
the gi is positive on R. It suffices therefore to show that f has a root in R. By Definition
1.4.9, g has even degree. If g has degree 0, then g′ = 0 and we are done. So suppose
now deg g ≥ 2. Then the degree of g′ is odd so that g′ and in particular f has a root in
R by Definition 1.4.9.

From now on suppose that r > 0. By the intermediate value theorem 1.4.16 each of
the gi has constant sign on each of the intervals (−∞, a1), (a1, a2), . . . , (ar−1, ar), (ar, ∞).
It is therefore enough to show that f possesses in each of these sets a root. By Rolle’s
theorem 1.4.17, g′ and therefore f has on each of the sets (ai, ai+1) (1 ≤ i ≤ r − 1) a
root. WLOG f 6= 0. Then g′ 6= 0 and g has degree ≥ 1. Consequently, 1 − g2 has
a leading monomial of even degree with a negative leading coefficient. By Lemma
1.5.3(a), (1 − g2)(y) < 0 for all y ∈ R with |y| sufficiently big. On the other hand,
(1− g2)(a1) = 1 = (1− g2)(ar). By the intermediate value theorem 1.4.16, 1− g2 and
therefore f has a root on each of the sets (−∞, a1) and (ar, ∞).

Lemma 1.8.16. Let m, n ∈N0 and g1, . . . , gm ∈ K[X1, . . . , Xn+1]. Then

{(R, x) ∈ Rn | ∃xn+1 ∈ R : (g1(x, xn+1) > 0 & · · ·& gm(x, xn+1) > 0)}

is a (K, P)-semialgebraic class.

Proof. Set g := g1 · · · gm and f := (1− g2) ∂g
∂Xn+1

. Denote by D := degXn+1
f ∈ {−∞} ∪

N0 the degree of f considered as a polynomial in Xn+1 with coefficients from K[X1, . . . , Xn].
The class in question equals because of 1.8.15

D⋃
d=0

(R, x) ∈ Rn | deg f (x, Xn+1) = d & ∃xn+1 ∈ R :


f (x, xn+1) = 0 &

g1(x, xn+1) > 0 &
...

gm(x, xn+1) > 0




∪ {(R, x) ∈ Rn | f (x, Xn+1) = 0 & g1(x, 0) > 0 & · · ·& gm(x, 0) > 0}

and therefore is (K, P)-semialgebraic by 1.8.14.
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Theorem 1.8.17 (Real quantifier elimination). Suppose n ∈ N0 and S is an (n + 1)-ary
(K, P)-semialgebraic class. Then {(R, x) ∈ Rn | ∃xn+1 ∈ R : (R, (x, xn+1)) ∈ S} and
{(R, x) ∈ Rn | ∀xn+1 ∈ R : (R, (x, xn+1)) ∈ S} are n-ary (K, P)-semialgebraic classes.

Proof. Because the second class is the complement of

{(R, x) ∈ Rn | ∃xn+1 ∈ R : (R, (x, xn+1)) ∈ {S},

it is enough to consider the first class. By means of 1.8.6, one can assume WLOG that S
is of the form

S = {(R, (x, xn+1) ∈ Rn+1 | f (x, xn+1) = 0, g1(x, xn+1) > 0, . . . , gm(x, xn+1) > 0}

for some f , gi ∈ K[X1, . . . , Xn+1]. Setting D := degXn+1
f , we obtain

{(R, x) ∈ Rn | ∃xn+1 ∈ R : (R, (x, xn+1)) ∈ S}

=
D⋃

d=0

(R, x) ∈ Rn | deg f (x, Xn+1) = d & ∃xn+1 ∈ R :


f (x, xn+1) = 0 &

g1(x, xn+1) > 0 &
...

gm(x, xn+1) > 0




∪
(
{(R, x) ∈ Rn | f (x, Xn+1) = 0}∩
{(R, x) ∈ Rn | ∃xn+1 ∈ R : (g1(x, xn+1) > 0 & · · ·& gm(x, xn+1) > 0)}

)

which is (K, P)-semialgebraic by 1.8.14 and 1.8.16.

Theorem 1.8.18. [→ 1.8.8] Let R be a real closed field. Images of semialgebraic subsets of Rn

under polynomial maps Rn → Rm are again semialgebraic in Rm.

Proof. Let S ⊆ Rn be semialgebraic and let h1, . . . , hm ∈ R[X1, . . . , Xn]. We have to
show that {y ∈ Rm | ∃x ∈ Rn : (x ∈ S & y1 = h1(x) & . . . & ym = hm(x))} is again
semialgebraic. But this follows by applying n times the quantifier elimination 1.8.17.

Example 1.8.19 (Tarski principle). The real quantifier elimination 1.8.17 can be used
together with 1.8.5 to generalize many statements from R to other real closed fields.
This has already been advertised in 1.8.10. To give the reader a sense of the type of
statements admitting such a generalization, we give several examples.

(a) (“intermediate value theorem for rational functions”) [→ 1.4.16] From analysis, we
know for R = R: If f , g ∈ R[X], a, b ∈ R with a ≤ b, g(c) 6= 0 for all c ∈ [a, b] and
sgn

(
f (a)
g(a)

)
6= sgn

(
f (b)
g(b)

)
, then there is a c ∈ [a, b] with f (c) = 0. We claim that this
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is valid even for all real closed fields R. To this end, it is enough to show that for
each d ∈N

Sd :=


R ∈ R |

∀x0, . . . , xd, y0, . . . , yd, a, b ∈ R :
(

(a≤b & (∀c∈[a,b]:∑d
i=0 yici 6=0) &

sgn((∑d
i=0 xiai)(∑d

i=0 yibi)) 6=sgn((∑d
i=0 xibi)(∑d

i=0 yiai))

)}
(∗)

=⇒ ∃c ∈ [a, b] :
d

∑
i=0

xici = 0

}
(∗∗)


(∗∗∗)


is a semialgebraic class because then R ∈ Sd implies by 1.8.5 Sd = R. Fix d ∈ N.
Applying the quantifier elimination 1.8.17 2d + 4 times, it is enough to show that
the following class is semialgebraic:

{(R, (x0, . . . , xd, y0, . . . , yd, a, b)) ∈ R2d+4 | (∗ ∗ ∗)} =
{ {(R, (x0, . . . , xd, y0, . . . , yd, a, b)) ∈ R2d+4 | (∗)}︸ ︷︷ ︸

S′

∪ {(R, (x0, . . . , xd, y0, . . . , yd, a, b)) ∈ R2d+4 | (∗∗)}︸ ︷︷ ︸
S′′

It is thus enough to show that S′ and S′′ are semialgebraic. We accomplish this in
each case by applying the quantifier elimination 1.8.17. We explicate this only for
S′ since it is analogous and even simpler for S′′:

S′ = {(R, (x0, . . . , xd, y0, . . . , yd, a, b)) | b− a ≥ 0}∩

{(R, (x0, . . . , xd, y0, . . . , yd, a, b)) | ∀c ∈ R : (

(∗∗∗∗)︷ ︸︸ ︷
c ∈ (a, b) =⇒

d

∑
i=0

yici 6= 0)}∩

⋃
δ,ε∈{−1,0,1}

δ 6=ε

{
(R, (x0, . . . , xd, y0, . . . , yd, a, b)) |

sgn((∑d
i=0 xiai)(∑d

i=0 yibi))=δ,

sgn((∑d
i=0 xibi)(∑d

i=0 yiai))=ε

}
.

By quantifier elimination it is enough to show that

{(R, (x0, . . . , xd, y0, . . . , yd, a, b)) | (∗ ∗ ∗∗)}

is semialgebraic. But this class equals

{(R, (x0, . . . , xd, y0, . . . , yd, a, b)) | a ≤ c, c ≤ b}∪{
(R, (x0, . . . , xd, y0, . . . , yd, a, b, c)) |

d

∑
i=0

yici 6= 0

}
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(b) Let R be a real closed field and f ∈ R[X] with f ≥ 0 on R. We claim that the sum
g := f + f ′ + f ′′ + . . . of all derivatives of f satisfies again g ≥ 0 on R. We show
this first for R = R: In this case, we have for all x ∈ R

dg(x)e−x

dx
= g′(x)e−x − g(x)e−x = (g′(x)− g(x))e−x = − f (x)e−x ≤ 0,

from which it follows that h : R → R, x 7→ g(x)e−x is anti-monotonic [→ 1.4.19].
From this and the fact that limx→∞ h(x) = limx→∞(g(x)e−x) = 0, we deduce that
h(x) ≥ 0 and therefore g(x) ≥ 0 for all x ∈ R. Thus the claim is proved for R = R.
To show it for all real closed fields R, it is now enough to show that for all d ∈N

Sd :=

{
R ∈ R |∀a0, . . . , ad ∈ R :

((
∀x ∈ R :

d

∑
i=0

aixi ≥ 0

)
=⇒

∀x ∈ R :
d

∑
k=0

d

∑
i=k

i(i− 1) · · · (i− k + 1)aixi−k ≥ 0

)}
is semialgebraic since then by 1.8.5 R ∈ Sd implies Sd = R. This can be shown for
each d ∈N by applying the quantifier elimination d + 3 times.

(c) We can reprove 1.8.11 since for R = R it is already known from linear algebra and
it suffices to show for fixed n ∈N that

Sn :=


R ∈ R |

∀a11, a12, . . . , ann ∈ R :

(∀i, j ∈ {1, . . . , n} : aij = aji) =⇒

∃b11, b12, . . . , bnn ∈ R : ∀i, k ∈ {1, . . . , n} :
n

∑
j=1

bijbjk = δik

&

∀i, ` ∈ {1, . . . , n} :

(
i 6= ` =⇒

n

∑
j,k=1

bjiajkbk` = 0

)






is semialgebraic. We manage to do so by implementing the quantifications over
i, j, k, ` as finite intersections of semialgebraic classes and by eliminating the quan-
tification over a11, . . . , bnn by applying 2n2 times 1.8.17.

(d) By 1.8.5, {R ∈ R | R archimedean} [→ 1.1.9(a)] is not a semialgebraic class (if R is
big enough) since it contains R but not (R(X), P) where P is an arbitrary order of
R(X).

1.9 Canonical isomorphisms of Boolean algebras of
semialgebraic sets and classes

In this section, we fix again an ordered field (K, P) and a set R of real closed extensions
of (K, P) [→ 1.8.3].
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Definition 1.9.1. Let M1 and M2 be sets, S1 a Boolean algebra on M1 and S2 a Boolean
algebra on M2. Then Φ : S1 → S2 is called a homomorphism of Boolean algebras if Φ(∅) =
∅, Φ

(
{S
)
= {Φ(S), Φ(S ∩ T) = Φ(S) ∩ Φ(T) and Φ(S ∪ T) = Φ(S) ∪ Φ(T) for all

S, T ∈ S1. If Φ is in addition


injective

surjective
bijective

, then Φ is called an


embedding

epimorphismus
isomophism

 of

Boolean algebras.

Lemma 1.9.2. Suppose S1 and S2 are Boolean algebras and Φ : S1 → S2 is a homo-
morphism. Then the following are equivalent:

(a) Φ is an embedding.

(b) ∀S ∈ S1 : (Φ(S) = ∅ =⇒ S = ∅)

Proof. (a) =⇒ (b) Suppose (a) holds and consider S ∈ S1 such that Φ(S) = ∅. Then
Φ(S) = ∅ = Φ(∅) and hence S = ∅ by the injectivity of Φ.

(b) =⇒ (a) Suppose (b) holds and let S, T ∈ S1 such that Φ(S) = Φ(T). Then
Φ(S \ T) = Φ

(
S ∩ {T

)
= Φ(S) ∩ {Φ(T) = ∅ and therefore S \ T = ∅. Analogously,

we obtain T \ S = ∅. Then S = T.

Notation 1.9.3. Let n ∈ N0. From now on, we denote by Sn the Boolean algebra of all
n-ary (K, P)-semialgebraic classes. For every R ∈ R, we let furthermore Sn,R denote
the Boolean algebra of all K-semialgebraic subsets of Rn (i.e., Sn,R = Sn for R = {R}).
We call the map SetR : Sn → Sn,R, S 7→ {x ∈ Rn | (R, x) ∈ S} the setification to R for
every R ∈ R.

Theorem and Definition 1.9.4. Let n ∈N0 and R ∈ R. The setification

SetR : Sn → Sn,R

is an isomorphism of Boolean algebras. We call its inverse map

ClassR := Set−1
R : Sn,R → Sn

the classification.

Proof. It is clear that SetR is an epimorphism. Suppose ∅ 6= S ∈ Sn. By Lemma 1.9.2, it
suffices to show SetR S 6= ∅. By the quantifier elimination 1.8.17,

T := {R′ ∈ R | ∃x ∈ R′n : (R′, x) ∈ S}

is (K, P)-semialgebraic and hence by 1.8.5 either empty or R. From S 6= ∅, we have of
course T 6= ∅. Therefore R ∈ R = T, i.e., there is some x ∈ Rn with (R, x) ∈ S. Then
x ∈ SetR S and thus SetR S 6= ∅.
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Corollary and Definition 1.9.5. Let n ∈ N0 and R, R′ ∈ R. Then there is exactly one
isomorphism of Boolean algebras TransferR,R′ : Sn,R → Sn,R′ satisfying

TransferR,R′({x ∈ Rn | p(x) ≥ 0}) = {x ∈ R′n | p(x) ≥ 0}

for all p ∈ K[X1, . . . , Xn]. We call TransferR,R′ the transfer from R to R′.

Proof. The uniqueness is clear since Sn,R is generated by

{{x ∈ Rn | p(x) ≥ 0} | p ∈ K[X1, . . . , Xn]}

[→ 1.8.2(b)]. Existence is established by setting TransferR,R′ := SetR′ ◦ClassR. In-
deed, let p ∈ K[X1, . . . , Xn] and set S := {(R, x) ∈ Rn | p(x) ≥ 0 in R}. Then the
claim is that TransferR,R′(SetR S) = SetR′(S) which is clear since TransferR,R′(SetR S) =
(SetR′ ◦ClassR)(SetR S) = SetR′((ClassR ◦ SetR︸ ︷︷ ︸

idSn

)(S)).
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§2 Hilbert’s 17th problem

2.1 Nonnegative polynomials in one variable

Theorem 2.1.1. Suppose R is a real closed field and f ∈ R[X]. Then the following are equiva-
lent:

(a) f ≥ 0 on R [→ 1.4.15]

(b) f is a sum of two squares in R[X].

(c) f ∈ ∑ R[X]2 [→ 1.1.18]

Proof. (b) =⇒ (c) =⇒ (a) is trivial. In order to show (a) =⇒ (b), we set C := R(i) and
consider the ring automorphism

C[X]→ C[X], p 7→ p∗

given by a∗ = a for a ∈ R, i
∗ = −i and X∗ = X. WLOG f 6= 0. By the fundamental

theorem of algebra 1.4.14, there exist k, ` ∈ N0, c ∈ R×, a1, . . . , ak ∈ R, b1, . . . , bk ∈ R×,
α1, . . . , α` ∈N and pairwise different d1, . . . , d` ∈ R such that

f = c

(
k

∏
i=1

((X− ai)
2 + b2

i )

)
`

∏
j=1

(X− dj)
αj

= c

(
k

∏
i=1

(X− (ai + bii))

)(
k

∏
i=1

(X− (ai − bii))

)
`

∏
j=1

(X− dj)
αj .

Suppose now f ≥ 0 on R. Then we have 0 ≤ sgn( f (x)) = (sgn c)∏`
j=1(sgn(x− dj))

αj

for all x ∈ R. From this, we deduce easily αj ∈ 2N and c ∈ R2. Setting

g :=
√

c

(
k

∏
i=1

(X− (ai + bii))

)
`

∏
j=1

(X− dj)
αj
2 ∈ C[X],

we have now f = g∗g. Writing g = p + iq with p, q ∈ R[X], this amounts to f =
(p− iq)(p + iq) = p2 + q2.

Theorem 2.1.2 (Cassels). Let (K,≤) be an ordered field. Suppose ` ∈N0, f1, . . . , f` ∈ K[X],

g1, . . . , g` ∈ K[X] \ {0} and a1, . . . , a` ∈ K≥0 with ∑`
i=1 ai

(
fi
gi

)2
∈ K[X]. Then there are

p1, . . . , p` ∈ K[X] such that
`

∑
i=1

ai

(
fi

gi

)2

=
`

∑
i=1

ai p2
i .
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Proof. WLOG ai > 0 for all i ∈ {1, . . . , `} and g1 = . . . = g`. It suffices to show:
Let h ∈ K[X] a polynomial for which there exists some g ∈ K[X] of degree ≥ 1 and
f1, . . . , f` ∈ K[X] satisfying hg2 = ∑`

i=1 ai f 2
i . Then there is some G ∈ K[X] \ {0} with a

degree that is smaller than that of g and F1, . . . , F` ∈ K[X] satisfying hG2 = ∑`
i=1 aiF2

i .
We prove this: Write fi = qig + ri with qi, ri ∈ K[X] and deg ri < deg g for all i ∈
{1, . . . , `}. If ri = 0 for all i ∈ {1, . . . , `}, then we set G := 1 and Fi := qi for all
i ∈ {1, . . . , `} and have

hG2 = h =
1
g2 (hg2) =

1
g2

`

∑
i=1

ai f 2
i =

`

∑
i=1

ai

(
fi

g

)2

=
`

∑
i=1

aiq2
i =

`

∑
i=1

aiF2
i .

In the sequel, we suppose that the set I := {i ∈ {1, . . . , `} | ri 6= 0} is nonempty. Now
we set s := ∑`

i=1 aiq2
i − h, t := ∑`

i=1 ai fiqi − gh, Fi := s fi − 2tqi for i ∈ {1, . . . , `} and
G := sg− 2t. Then we obtain

hG2 = s2hg2 − 4stgh + 4t2h

= s2
`

∑
i=1

ai f 2
i − 4st(t + gh) + 4t2(s + h)

= s2
`

∑
i=1

ai f 2
i − 4st

`

∑
i=1

ai fiqi + 4t2
`

∑
i=1

aiq2
i

=
`

∑
i=1

ai(s fi − 2tqi)
2 =

`

∑
i=1

aiF2
i .

It remains to show that G 6= 0 and deg G < deg g. To this end, we calculate

G = g
`

∑
i=1

aiq2
i − gh− 2

`

∑
i=1

ai fiqi + 2gh

=
1
g

(
g2

`

∑
i=1

aiq2
i + g2h− 2g

`

∑
i=1

ai fiqi

)

=
1
g

(
g2

`

∑
i=1

aiq2
i +

`

∑
i=1

ai f 2
i − 2g

`

∑
i=1

ai fiqi

)

=
1
g

`

∑
i=1

ai(g2q2
i − 2(gqi) fi + f 2

i )

=
1
g

`

∑
i=1

ai(gqi − fi)
2 =

1
g

`

∑
i=1

air2
i =

1
g ∑

i∈I
air2

i .

If we had G = 0, then this would mean ∑i∈I air2
i = 0. Since the leading coefficient of air2

i
is positive for all i ∈ I 6= ∅, this is impossible. Hence G 6= 0. Because of deg ri < deg g
for all i ∈ I, we have deg G < 2 deg g− deg g = deg g.

Tentative Lecture Notes



45

2.2 Homogenization and dehomogenization

Definition 2.2.1. [→ 1.6.1] Let A be commutative ring with 0 6= 1.

(a) If k ∈ N0 and f ∈ A[X1, . . . , Xn], then the sum of all terms (i.e., monomials with
their coefficients) of degree k of f is called the k-th homogeneous part of f . This is a
k-form [→ 1.6.1(a)].

(b) If f ∈ A[X1, . . . , Xn] \ {0} and d := deg f , then the d-th homogeneous part of f is
called the leading form LF( f ) of f . We set LF(0) := 0.

(c) If f ∈ A[X1, . . . , Xn], d := deg f ∈ N0 and f = ∑d
k=0 fk with a k-form fk for all

k ∈ {0, . . . , d}, then the homogenization f ∗ ∈ A[X0, . . . , Xn] of f (with respect to X0)
is given by f ∗ := ∑d

k=0 Xd−k
0 fk = Xd

0 f
(

X1
X0

, . . . , Xn
X0

)
. We set 0∗ := 0.

(d) For homogeneous f ∈ A[X0, . . . , Xn], we call f̃ := f (1, X1, . . . , Xn) the dehomoge-
nization of f (with respect to X0).

Remark 2.2.2. Let A be a commutative ring with 0 6= 1.

(a) LF( f ) = f ∗(0, X1, . . . , Xn) for all f ∈ A[X1, . . . , Xn].

(b) For f , g ∈ A[X1, . . . , Xn], we have ( f + g)∗ = f ∗ + g∗ in case deg f = deg g =
deg( f + g) and we always have ( f g)∗ = f ∗g∗.

(c) A[X0, . . . , Xn]→ A[X1, . . . , Xn], f 7→ f̃ is a ring homomorphism.

(d) For all f , g ∈ A[X1, . . . , Xn], we have LF( f + g) = LF( f ) + LF(g) in case deg f =
deg g = deg( f + g) and we always have LF( f g) = LF( f )LF(g).

(e) For all f ∈ A[X1, . . . , Xn], we have f̃ ∗ = f .

(f) If f ∈ A[X0, . . . , Xn] \ {0} is homogeneous and m := max{k ∈ N0 | Xk
0 | f }, then

Xm
0 f̃
∗
= f .

Lemma 2.2.3. Suppose K is a field, n, d ∈ N0, f ∈ K[X1, . . . , Xn]d and let I1, . . . , In ⊆ K
be sets of cardinality at least d + 1 each such that f (x) = 0 for all x ∈ I1× . . .× In. Then
f = 0.

Proof. Induction by n.
n = 0 X

n− 1→ n (n ∈N) Write f = ∑d
k=0 fkXk

n with fk ∈ K[X1, . . . , Xn−1]d. For all

(x1, . . . , xn−1) ∈ I1 × . . .× In−1,

the polynomial f (x1, . . . , xn−1, Xn) = ∑d
k=0 fk(x1, . . . , xn−1)Xk

n ∈ K[Xn]d is a polynomial
with at d + 1 roots. Thus fk(x1, . . . , xn−1) = 0 for all k ∈ {0, . . . , d} and (x1, . . . , xn−1) ∈
I1 × . . .× In−1. By induction hypothesis, fk = 0 for all k ∈ {0, . . . , d}.
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Remark 2.2.4. Let K be a real field, `, n ∈N0, p1, . . . , p` ∈ K[X1, . . . , Xn] and

f :=
`

∑
i=1

p2
i .

(a) If f = 0, then p1 = . . . = p` = 0. This follows from 2.2.3 together with 1.2.12(c).
Instead of 2.2.3, one can alternatively employ the fact that K(X1, . . . , Xn) is real
which is clear by applying 1.3.7 n times.

(b) If f 6= 0, then deg f = 2d with d := max{deg(pi) | i ∈ {1, . . . , `}} since otherwise
∑`

i=1,deg(pi)=d LF(pi)
2 = 0, contradicting (a).

(c) If d ∈N0 and f is a 2d-form, then every pi is a d-form. This can be seen similarly to
(b) by considering the homogeneous parts of the pi of smallest (instead of largest)
degree.

(d) We have f ∗ ∈ ∑ K[X0, . . . , Xn]2. More precisely, f ∗ is a 2d-form for some d ∈ N0
that is a sum of ` squares of d-forms since

f ∗ = X2d
0 f
(

X1

X0
, . . . ,

Xn

X0

)
=

`

∑
i=1

(
Xd

0 pi

(
X1

X0
, . . . ,

Xn

X0

))2

and Xd
0 pi

(
X1
X0

, . . . , Xn
X0

)
= Xd−deg pi

0 p∗i ∈ K[X0, . . . , Xn] for all i ∈ {1, . . . , `} with
pi 6= 0 (note that deg pi ≤ d by (b)).

Proposition 2.2.5. Let (K,≤) be an ordered field and f ∈ K[X1, . . . , Xn] with f ≥ 0 on Kn.
Then f has an even degree except if f = 0, and we have LF( f ) ≥ 0 on Kn.

Proof. WLOG f 6= 0. Then g := LF( f ) 6= 0. Set d := deg g. For all x ∈ Kn, fx :=
f (Tx) ∈ K[T] is a polynomial in one variable with fx ≥ 0 on K whose leading coefficient
is g(x) in case that g(x) 6= 0. Choose x0 ∈ Kn with g(x0) 6= 0 [→ 2.2.3]. Then fx0 has
degree d and because of fx0 ≥ 0 on K, it follows that d ∈ 2N0 by 1.5.3(a). Now let
x ∈ Kn be arbitrary such that g(x) 6= 0. Again by 1.5.3(a), it follows from fx ≥ 0 on K
that g(x) ≥ 0.

Proposition 2.2.6. Let (K,≤) be an ordered field and f ∈ K[X1, . . . , Xn].

(a) f ≥ 0 on Kn ⇐⇒ f ∗ ≥ 0 on Kn+1

(b) f ∈ ∑ K[X1, . . . , Xn]2 ⇐⇒ f ∗ ∈ ∑ K[X0, . . . , Xn]2

Proof. (a) “⇐= ” If f ∗ is nonnegative on Kn+1, then also on {1} × Kn.
“=⇒” Suppose f ≥ 0 on Kn. WLOG f 6= 0. By 2.2.5, we can write deg f = 2d with

d ∈ N0. Due to f ∗
2.2.1(c)
= X2d

0 f
(

X1
X0

, . . . , Xn
X0

)
, we deduce f ∗ ≥ 0 on K× × Kn. It remains

to show f ∗ ≥ 0 on {0} × Kn which is equivalent by 2.2.2(a) to LF( f ) ≥ 0 on Kn. The
latter holds by 2.2.5.

(b) “=⇒” has been shown in 2.2.4(d).
“⇐= ” follows from 2.2.2(c).
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2.3 Nonnegative quadratic polynomials

Definition 2.3.1. Let (K,≤) be an ordered field.

(a) If f ∈ K[X1, . . . , Xn] is homogeneous [→ 1.6.1(a)], then f is called{
positive semidefinite (psd)

positive definite (pd)

}
(over K) if f

{
≥ 0 on Kn

> 0 on Kn \ {0}

}
.

(b) If M ∈ SKn×n, then M is called
{

psd
pd

}
(over K) if the quadratic form represented

by M [→ 1.6.1(d)] is
{

psd
pd

}
, i.e., xT Mx

{
≥ 0 for all x ∈ Kn

> 0 for all x ∈ Kn \ {0}

}
.

Proposition 2.3.2. Let K be an Euclidean field and q ∈ K[X1, . . . , Xn] a quadratic form. Then
the following are equivalent:

(a) q is psd [→ 2.3.1(a)]

(b) q ∈ ∑ K[X1, . . . , Xn]2 [→ 1.1.18]

(c) q is a sum of n squares of linear forms [→ 1.6.1(a)].

(d) sg q = rk q [→ 1.6.1(h)].

Proof. (d) =⇒ (c) =⇒ (b) =⇒ (a) is trivial. Now suppose that (d) does not hold. We
show that then (a) also fails. Write q = ∑s

i=1 `
2
i − ∑t

j=1 `
2
s+j with s, t ∈ N0 and linearly

independent linear forms `1, . . . , `s, `s+1, . . . , `s+t ∈ K[X1, . . . , Xn]. Since s− t = sg q 6=
rk q = s + t, we have t ≥ 1. By linear algebra,

ϕ : Kn → Ks+t, x 7→

 `1(x)
...

`s+t(x)



is surjective. Choose x ∈ Kn with ϕ(x) =


0
...
0
1

. Then q(x) = −1 < 0.

Proposition 2.3.3. Let K be an Euclidean field and M ∈ SKn×n. Then the following are
equivalent:

(a) M is psd [→ 2.3.1(b)].

(b) ∃s ∈N0 : ∃A ∈ Ks×n : M = AT A

(c) ∃A ∈ Kn×n : M = AT A

(d) All eigenvalues of M in the real closure (K, K2) are nonnegative.
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(e) All coefficients of det(M + XIn) ∈ K[X] are nonnegative.

(f) If M = (aij)1≤i,j≤n, then for all I ⊆ {1, . . . , n}, we have det((aij)(i,j)∈I×I) ≥ 0.

Proof. Using 1.6.1(e) and 2.2.4(c), one sees that (a), (b) and (c) are nothing else than the
corresponding statements in 2.3.2.

(a) =⇒ (f) follows from applying (a) =⇒ (c) to the submatrices of M in question.
(f) =⇒ (e) Each coefficients of det(M + XIn) is a sum of certain determinants ap-

pearing in (f).
(e) =⇒ (d) is trivial.
(d) =⇒ (a) follows easily from 1.8.11.

Terminology 2.3.4. [→ 1.5.1, 1.6.1(a)] Let A be a commutative ring with 0 6= 1. Poly-
nomials from A[X1, . . . , Xn]d [→ 1.5.1] are called constant for d = 0, linear for d = 1,
quadratic for d = 2, cubic for d = 3, quartic for d = 4, quintic for d = 5, . . .

Proposition 2.3.5. Let K be an Euclidean field and q ∈ K[X1, . . . , Xn]2. The following are
equivalent:

(a) q ≥ 0 on Kn

(b) q ∈ ∑ K[X1, . . . , Xn]2

(c) q is a sum of n + 1 squares of linear polynomials.

Proof. (a)
2.2.6(a)
=⇒ q∗ ≥ 0 on Kn+1 2.3.2

=⇒ (c) =⇒ (b) =⇒ (a)

2.4 The Newton polytope

Definition and Proposition 2.4.1. Let (K,≤) be an ordered field, V a K-vector space and
A ⊆ V. Then A is called convex if ∀x, y ∈ A : ∀λ ∈ [0, 1]K : λx + (1− λ)y ∈ A. The
smallest convex superset of A is obviously

conv A :=

{
m

∑
i=1

λixi | m ∈N, λi ∈ K≥0, xi ∈ A,
m

∑
i=1

λi = 1

}
,

called the convex set generated by A or the convex hull of A. We call finitely generated convex
sets, i.e., convex hulls of finite sets, polytopes. A polytope is thus of the form

conv{x1, . . . , xm} =
{

m

∑
i=1

λixi | λi ∈ K≥0,
m

∑
i=1

λi = 1

}

for some m ∈ N0 and x1, . . . , xm ∈ V. If A is a convex set, then a point x ∈ A is called an
extreme point of A if there are no y, z ∈ A such that y 6= z and x = y+z

2 . Extreme points of
polytopes are also called vertices of the polytope.
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Exercise 2.4.2. Suppose (K,≤) is an ordered field, V a K-vector space, A ⊆ V, x ∈ A
and λ ∈ (0, 1)K. Then the following are equivalent:

(a) x is an extreme point of A.

(b) There are no y, z ∈ A such that y 6= z and x = λy + (1− λ)z.

Lemma 2.4.3. Let (K,≤) be an ordered field, V a K-vector space, m ∈ N0, x1, . . . , xm ∈
V, P := conv{x1, . . . , xm} and suppose P 6= conv({x1, . . . , xm} \ {xi}) for all i ∈ {1, . . . , m}.
Then P is a polytope and x1, . . . , xm are its vertices.

Proof. To show:

(a) Every vertex of P equals one of the xi.

(b) Every xi is a vertex of P.

For (a), let x be a vertex of P. Write x = ∑m
i=1 λixi with λi ∈ K≥0 and ∑m

i=1 λi = 1.
WLOG λ1 6= 0. Then λ1 = 1 for otherwise µ := ∑m

i=2 λi = 1 − λ1 > 0 and x =

λ1x1 + µ

(
m

∑
i=2

λi

µ
xi︸ ︷︷ ︸

∈conv{x2,...,xm}

)
, contradicting 2.4.2(b).

To prove (b), we let y, z ∈ P with x1 = y+z
2 . To show: y = z. Write y = ∑m

i=1 λixi

and z = ∑m
i=1 µixi with λi, µi ∈ K≥0 and ∑m

i=1 λi = 1 = ∑m
i=1 µi. We show that

λ1 = 1 = µ1. It is enough to show λ1+µ1
2 = 1. If we had λ1+µ1

2 < 1, then it would
follow from (1 − λ1+µ1

2 )x1 = ∑m
i=2

λi+µi
2 xi that x1 ∈ conv{x2, . . . , xm} and therefore

P = conv{x1, . . . , xm} = conv{x2, . . . , xm}  .

Corollary 2.4.4. Every polytope is the convex hull of its finitely many vertices.

Definition and Proposition 2.4.5. Suppose (K,≤) is an ordered field, V is a K-vector space
and let A and B be subsets of V. Then A + B := {x + y | x ∈ A, y ∈ B} is called the
Minkowski sum of A and B. We have (conv A) + (conv B) = conv(A + B). Let now A
and B be convex. Then A + B is also convex. If z is an extreme point of A + B, then there are
uniquely determined x ∈ A and y ∈ B such that z = x + y, and x is an extreme point of A and
y is one of B.

Proof. “⊆” Let x1, . . . , xm ∈ A, y1, . . . , yn ∈ B, λ1, . . . , λm ∈ K≥0, µ1, . . . , µn ∈ K≥0 and

∑m
i=1 λi = 1 = ∑n

j=1 µj. Then ∑m
i=1 ∑n

j=1 λiµj = (∑m
i=1 λi)

(
∑n

j=1 µj

)
= 1 · 1 = 1 and

m

∑
i=1

λixi +
n

∑
j=1

µjyj =

(
n

∑
j=1

µj

)
m

∑
i=1

λixi +

(
m

∑
i=1

λi

)
n

∑
j=1

µjyj =
m

∑
i=1

n

∑
j=1

λiµj(xi + yj).

“⊇” is trivial.
Let now A and B be convex. Then A + B = (conv A) + (conv B) = conv(A + B)

is convex. Finally, let z be an extreme point of A + B and let x ∈ A and y ∈ B with
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z = x + y. Then x is an extreme point of A since if we had x = x1+x2
2 with different

x1, x2 ∈ A, then it would follow that z = (x1+y)+(x2+y)
2 and x1 + y 6= x2 + y  . In the

same way, y is an extreme point of B. Suppose now that x′ ∈ A and y′ ∈ B such that
z = x′ + y′. Then z = x+x′

2 + y+y′
2 and x+x′

2 is also an extreme point of A which is
possible only for x = x′. Analogously, y = y′.

Notation 2.4.6. Suppressing n in the notation, we denote by X := (X1, . . . , Xn) a tuple
of variables and set A[X] := A[X1, . . . , Xn] for every commutative ring A with 0 6= 1 in
A. Für α ∈Nn

0 , we write |α| := α1 + · · ·+ αn and Xα := Xα1
1 · · ·X

αn
n .

Definition 2.4.7. Let K be a field and f ∈ K[X]. Write f = ∑α∈Nn
0

aαXα with aα ∈ K.
Then the finite set supp( f ) := {α ∈ Nn

0 | aα 6= 0} is called the support of f and its
convex hull N( f ) := conv(supp( f )) ⊆ Rn the Newton polytope of f .

Definition 2.4.8. Let K be a field, f ∈ K[X] and a ∈ K. We say that a is a vertex coefficient
of f if there is a vertex α of N( f ) such that aXα is a term of f .

Remark 2.4.9. Since every vertex of the Newton polytope of a polynomial lies by 2.4.3
in the support of the polynomial, vertex coefficients are always 6= 0.

Theorem 2.4.10. Let K be a field and f , g ∈ K[X]. Then N( f g) = N( f ) + N(g) and every
vertex coefficient of f g is the product of a vertex coefficient of f with a vertex coefficient of g.

Proof. “⊆” supp( f g) ⊆ supp( f ) + supp(g) ⊆ N( f ) + N(g) and therefore N( f g) =
conv(supp( f g)) ⊆ N( f ) + N(g) since N( f ) + N(g) is convex by 7.4.19.

“⊇” By 7.4.19, N( f ) + N(g) is a polytope. By virtue of 2.4.4, it suffices to show that
its vertices lie in N( f g). Consider therefore a vertex γ of N( f ) + N(g). We even show
that γ ∈ supp( f g). By 7.4.19, there are uniquely determined α ∈ N( f ) and β ∈ N(g)
such that γ = α + β, and α is a vertex of N( f ) and β a vertex of N(g). By 2.4.9, we have
α ∈ supp( f ) and β ∈ supp(g). Because of unicity of α and β, the coefficient of Xγ in f g
equals the product of the respective coefficients of Xα and Xβ in f and g, respectively,
and hence is in particular 6= 0. Thus N( f g) = N( f ) + N(g) is shown. Also the extra
claim follows from the above.

Proposition 2.4.11. Let K be a field and f , g ∈ K[X]. Then N( f + g) ⊆ conv(N( f )∪N(g)).

Proof. supp( f + g) ⊆ supp( f ) ∪ supp(g) ⊆ N( f ) ∪ N(g) implies

N( f + g) = conv(supp( f + g)) ⊆ conv(N( f ) ∪ N(g)).

Theorem 2.4.12. Let (K,≤) be an ordered field and f , g ∈ K[X] such that all vertex coeffi-
cients of f and g have the same sign. Then N( f + g) = conv(N( f ) ∪ N(g)) and all vertex
coefficients of f + g also have this sign.
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Proof. “⊆” is 2.4.11
“⊇” We have that conv(N( f )∪ N(g)) = conv(supp( f )∪ supp(g)) is a polytope. Let

α be one of its vertices. By 2.4.4, it is enough to show that α ∈ N( f + g). We even show
that α ∈ supp( f + g). By 2.4.3, α lies in at least one of the sets supp( f ) and supp(g). If
α lies only in one of these two, then the claim is clear. If on the other hand α lies in both,
then α is a vertex of both conv(supp( f )) = N( f ) and conv(supp(g)) = N(g) and the
coefficients of Xα in f and in g and hence also in f + g have the same sign, from which
it follows again that α ∈ supp( f + g). Thus N( f + g) = conv(N( f ) ∪ N(g)) is proven.
The extra claim follows from what was shown.

Lemma 2.4.13. Let (K,≤) be an ordered field, V a K-vector space and A a convex subset
of V. Then A + A = 2A := {2x | x ∈ A}.
Proof. “⊇” trivial

“⊆” Let x, y ∈ A. Then x + y = 2 x+y
2 ∈ 2A.

Theorem 2.4.14. Let (K,≤) be an ordered field and f ∈ K[X]. Then N( f 2) = 2N( f ) and all
vertex coefficients of f 2 are squares of vertex coefficients of f and therefore positive.

Proof. N( f 2) = 2N( f ) follows from 2.4.10 and 2.4.13. Suppose γ is a vertex of N( f 2)
2.4.10
=

N( f ) + N( f ). By 7.4.19, there are uniquely determined α, β ∈ N( f ) with γ = α + β.
Due to γ = β + α, it follows that α = β. But then the coefficient of Xγ in f 2 is just the
coefficient belonging to Xα in f squared.

Theorem 2.4.15. Let (K,≤) be an ordered field, ` ∈N0, p1, . . . , p` ∈ K[X] and f := ∑`
i=1 p2

i .
Then N( f ) = 2 conv(N(p1) ∪ . . . ∪ N(p`)) and all vertex coefficients of f are positive.

Proof. For each i ∈ {1, . . . , `}, we have by 2.4.14 that N(p2
i ) = 2N(pi) and that all vertex

coefficients of p2
i are positive. By 2.4.12,

N( f ) = conv(N(p2
1) ∪ . . . ∪ N(p2

`)) = conv(2N(p1) ∪ . . . ∪ 2N(p`))
= 2 conv(N(p1) ∪ . . . ∪ N(p`))

and all vertex coefficients of f are positive.

Example 2.4.16. For the Motzkin polynomial f := X4Y2 + X2Y4 − 3X2Y2 + 1 ∈ R[X, Y],
we have f ≥ 0 on R2 but f /∈ ∑ R[X, Y]2. At first we show f ≥ 0 on R2 in three different
ways:

(1) From the inequality of arithmetic and geometric means known from analysis, it
follows that 3

√
abc ≤ 1

3 (a + b + c) for all a, b, c ∈ R≥0. Setting here a := x4y2,
b := x2y4 and c := 1 for arbitrary x, y ∈ R, we deduce x2y2 ≤ 1

3 (x4y2 + x2y4 + 1).

(2)

(1 + X2) f = X4Y2 + X2Y4 − 3X2Y2 + 1 + X6Y2 + X4Y4 − 3X4Y2 + X2

= 1− 2X2Y2 + X4Y4 + X2 − 2X2Y2 + X2Y4 + X2Y2 − 2X4Y2 + X6Y2

= (1− X2Y2)2 + X2(1−Y2)2 + X2Y2(1− X2)2 ∈∑ R[X, Y]2
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(3)

f (X3, Y3) = X12Y6 + X6Y12 − 3X6Y6 + 1

= X4Y2 − X8Y4 − X6Y6 +
1
4

X12Y6 +
1
2

X10Y8 +
1
4

X8Y10

+ X2Y4 − X6Y6 − X4Y8 +
1
4

X10Y8 +
1
2

X8Y10 +
1
4

X6Y12

+ 1− X4Y2 − X2Y4 +
1
4

X8Y4 +
1
2

X6Y6 +
1
4

X4Y8

+
3
4

X8Y4 − 3
2

X6Y6 +
3
4

X4Y8

+
3
4

X10Y8 − 3
2

X8Y10 +
3
4

X6Y12

+
3
4

X12Y6 − 3
2

X10Y8 +
3
4

X8Y10

=

(
X2Y− 1

2
X4Y5 − 1

2
X6Y3

)2

+

(
XY2 − 1

2
X3Y6 − 1

2
X5Y4

)2

+

(
1− 1

2
X2Y4 − 1

2
X4Y2

)2

+
3
4

(
X2Y4 − X4Y2

)2

+
3
4
(X3Y6 − X5Y4)2

+
3
4
(X4Y5 − X6Y3)2

Now we show f /∈ ∑ R[X, Y]2:

N( f ) = conv(supp( f )) = conv{(4, 2), (2, 4), (2, 2), (0, 0)}
= conv{(4, 2), (2, 4), (0, 0)}.

Assume f = ∑`
i=1 p2

i with ` ∈N0 and p1, . . . , p` ∈ ∑ R[X, Y]. Then

N(pi) ⊆ conv(N(p1) ∪ . . . ∪ N(p`)) =
1
2

N( f ) = conv{(2, 1), (1, 2), (0, 0)}

by 2.4.15 and hence supp(pi) ⊆ N2
0 ∩ N(pi) ⊆ N2

0 ∩ conv{(2, 1), (1, 2), (0, 0)} =
{(0, 0), (1, 1), (2, 1), (1, 2)} for all i ∈ {1, . . . , `}. The coefficient of X2Y2 in p2

i is
therefore the coefficient of XY in pi squared and therefore nonnegative. Then the
coefficient of X2Y2 in f is also nonnegative  . This shows f /∈ ∑ R[X, Y]2. Thus
one can neither generalize 2.1.1(a) =⇒ (c) to polynomials in several variables nor
2.3.5(a) =⇒ (b) to polynomials of arbitrary degree. Note also that exactly the same
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proof shows even f + c /∈ ∑ R[X, Y]2 for all c ∈ R. By 2.2.6, the Motzkin form
f ∗ := X4Y2 + X2Y4 − 3X2Y2Z2 + Z6 is psd [→ 2.3.1] but is likewise no sum of
squares of polynomials. Again by 2.2.6, the dehomogenizations f ∗(1, Y, Z) = Y2 +
Y4− 3Y2Z2 + Z6 and f ∗(X, 1, Z) = X4 + X2− 3X2Z2 + Z6 are also polynomials that
are ≥ 0 on R2 but that are no sums of squares of polynomials.

2.5 Artin’s solution to Hilbert’s 17th problem

Lemma 2.5.1. Let R be a real closed field and f , p, q ∈ R[X]. Suppose q 6= 0, f = p
q ,

p ≥ 0 on Rn and q ≥ 0 on Rn. Then f ≥ 0 on Rn.

Proof. Using the Tarski principle 1.8.19, one can reduce to the case R = R. But then the
subset {x ∈ Rn | f (x) < 0} of {x ∈ Rn | q(x) = 0} is open in Rn and therefore empty
since otherwise q = 0 would follow from 2.2.3.

In the year 1900, Hilbert presented his famous list of 23 seminal problems at the Inter-
national Congress of Mathematicians in Paris. In 1927, Artin gave a positive solution
to the 17th of these problems. This corresponds to the case K = R in the following
theorem.

Theorem 2.5.2 (Artin). Suppose R is a real closed field and (K,≤) an ordered subfield of R.
Let f ∈ K[X]. Then the following are equivalent:

(a) f ≥ 0 on Rn

(b) f ∈ ∑ K≥0K(X)2

Proof. (b) =⇒ (a) follows from Lemma 2.5.1. We show (a) =⇒ (b) by contraposition.
Suppose f /∈ ∑ K≥0K(X)2. To show: ∃x ∈ Rn : f (x) < 0. Since ∑ K≥0K(X)2 is now
a proper preorder of K(X) [→ 1.2.1, 1.2.5], there is by 1.2.10 an order P of K(X) with
f /∈ P. Set R′ := (K(X), P). Then there is an x ∈ R′n with f (x) < 0 namely x :=
(X1, . . . , Xn) since f (x) = f < 0 in R′. Due to K≥0 ⊆ P ⊆ R′2, (K,≤) is an ordered
subfield of R′. Since the K-semialgebraic set {x ∈ R′n | f (x) < 0} is nonempty, its
transfer {x ∈ Rn | f (x) < 0} to R [→ 1.9.5] is also nonempty.

Corollary 2.5.3. [→ 2.1.2] Suppose R is a real closed field and (K,≤) an ordered subfield of
R. Let f ∈ K[X]. Then the following are equivalent:

(a) f ≥ 0 on R

(b) f ∈ ∑ K≥0K[X]2

Proof. (b) =⇒ (a) is trivial.

(a) =⇒ (b) follows from 2.5.2 and 2.1.2.
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2.6 The Gram matrix method

Theorem 2.6.1. Let K be an Euclidean field, f ∈ K[X] and 1
2 N( f ) ∩Nn

0 ⊆ {α1, . . . , αm} ⊆
Nn

0 (for instance set {α1, . . . , αm} equal to 1
2 N( f ) ∩Nn

0 or to {α ∈ Nn
0 | 2|α| ≤ deg f }).

Set v :=

Xα1

...
Xαm

. Then the following are equivalent:

(a) f ∈ ∑ K[X]2

(b) There is a psd matrix [→ 2.3.1(b)] G ∈ SKm×m (“Gram matrix”) satisfying f = vTGv.

(c) f is a sum of m squares in K[X].

Proof. (a) =⇒ (b) Let ` ∈ N0 and p1, . . . , p` ∈ K[X] with f = ∑`
i=1 p2

i . By 2.4.14, we
have supp(pi) ⊆ 1

2 N( f ) ∩Nn
0 ⊆ {α1, . . . , αm}. Hence there is an A ∈ K`×m such that

Av =

p1
...

p`

 .

It follows that f =
(

p1 . . . p`
)p1

...
p`

 = (Av)T Av = vT AT Av = vTGv where G :=

AT A ∈ SKm×m. By 2.3.3, G is psd.
(b) =⇒ (c) Let G ∈ SKm×m be psd with f = vTGv. Choose according to 2.3.3 an

A ∈ Km×m satisfying G = AT A. Write

Av =

 p1
...

pm

 .

Then p1, . . . , pm ∈ K[X] and

vTGv = vT AT Av = (Av)T Av =
(

p1 . . . p`
)p1

...
p`

 =
m

∑
i=1

p2
i .

(c) =⇒ (a) is trivial.

Example 2.6.2. Let K be an Euclidean field and f := 2X4
1 + 5X4

2 − X2
1X2

2 + 2X3
1X2 ∈

K[X1, X2]. Then N( f ) = conv{(4, 0), (0, 4)} and therefore

1
2

N( f ) ∩N2
0 = {(2, 0), (1, 1), (0, 2)}.
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Set v :=

 X2
1

X1X2
X2

2

. From {G ∈ SK3×3 | f = vTGv} =


2 1 a

1 −2a− 1 0
a 0 5

 | a ∈ K

,

we obtain

f ∈∑ K[X1, X2]
2 ⇐⇒ ∃a ∈ K :

2 1 a
1 −2a− 1 0
a 0 5

 psd.

For all a ∈ K, we have

det

2 + T 1 a
1 T − 2a− 1 0
a 0 5 + T

 = (2 + T)(T − 2a− 1)(5 + T)− a2(T − 2a− 1)− 5− T

= (T2 − 2aT + T − 4a− 2)(5 + T)− (1 + a2)T + 2a3 + a2 − 5

= T3 − 2aT2 + T2 − 4aT − 2T + 5T2 − 10aT + 5T − 20a− 10− (1 + a2)T + 2a3 + a2 − 5

= T3 + (6− 2a)T2 + (2− 14a− a2)T − 15− 20a + a2 + 2a3

and by 2.3.3(e), we obtain2 1 a
1 −2a− 1 0
a 0 5

 psd ⇐⇒
2a3 + a2 − 20a− 15 ≥ 0

& − a2 − 14a + 2 ≥ 0
& − 2a + 6 ≥ 0 .

Set a := −3. Then 2a3 + a2− 20a− 15 = −2 · 27+ 9+ 60− 15 = −54+ 9+ 60− 15 = 0,
−a2 − 14a + 2 = −9 + 42 + 2 = 35 ≥ 0 and −2a + 6 = 12 ≥ 0. For this reason
f ∈ ∑ K[X1, X2]2. The quadratic form

q :=
(
T1 T2 T3

)2 1 a
1 −2a− 1 0
a 0 5

T1
T2
T3

 ∈ K[T1, T2, T3]

obviously satisfies

q(X2
1 , X1X2, X3

2) = vT

2 1 a
1 −2a− 1 0
a 0 5

 v = f .

Because of

sg q
2.3.2(d)
= rk q = rk

 2 1 −3
1 5 0
−3 0 5

 = 2,

q is a sum of 2 squares of linear forms in K[T1, T2, T3] and thus f a sum of 2 squares
of polynomials. To compute this representation explicitely, we employ the procedure
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from 1.6.1(f):

q = 2T2
1 + 2T1T2 − 6T1T3 + 5T2

2 + 5T2
3

= 2
(

T1 +
1
2

T2 −
3
2

T3︸ ︷︷ ︸
`1

)2
− 2
(1

2
T2 −

3
2

T3

)2
+ 5T2

2 + 5T2
3

= 2`2
1 +

9
2

T2
2 + 3T2T3 +

1
2

T2
3

= 2`2
1 +

9
2

(
T2 +

1
3

T3︸ ︷︷ ︸
`2

)2
= 2`2

1 +
9
2
`2

2

=
1
2
(2T1 + T2 − 3T3)

2 +
1
2
(3T2 + T3)

2.

Hence f = 1
2 (2X2

1 + X1X2 − 3X2
2)

2 + 1
2 (3X1X2 + X2

2)
2.
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§3 Prime cones and real Stellensätze

3.1 The real spectrum of a commutative ring

In this section, we let A, B and C always be commutative rings.

Reminder 3.1.1. An ideal p of A is called a prime ideal of A if

1 /∈ p and ∀a, b ∈ A : (ab ∈ p =⇒ (a ∈ p or b ∈ p)).

We call spec A = {p | p prime ideal of A} the spectrum of A. If I is an ideal of A, then

I ∈ spec A ⇐⇒ A/I is an integral domain.

Because every integral domain extends to a field (e.g., to its quotient field) and every
field to an algebraically closed field (e.g., to its algebraic closure), spec A consists exactly

of the kernels of ring homomorphisms of A in


integral domains

fields
algebraically closed fields

. Every

ring homomorphism ϕ : A→ B induces a map

spec ϕ : spec B→ spec A, q 7→ ϕ−1(q),

for if q ∈ spec B, then p := ϕ−1(q) ∈ spec A since ϕ induces an embedding A/p ↪→ B/q
by the homomorphism theorem. If ϕ : A→ B and ψ : B→ C are ring homomorphisms,
then

spec(ψ ◦ ϕ) = (spec ϕ) ◦ (spec ψ).

Notation 3.1.2. If A is an integral domain, then

qf A := (A \ {0})−1A =
{ a

b
| a, b ∈ A, b 6= 0

}
denotes its quotient field.

Definition 3.1.3. We call sper A := {(p,≤) | p ∈ spec A, ≤ order of qf(A/p)} the real
spectrum of A.

Remark 3.1.4. Every ring homomorphism ϕ : A→ B induces a map

sper ϕ : sper B→ sper A, (q,≤) 7→ (ϕ−1(q),≤′),

where ≤′ denotes the order of qf(A/p) with p := ϕ−1(q) which makes the canonical
embedding qf(A/p) ↪→ qf(B/q) into an embedding (qf(A/p),≤′) ↪→ (qf(B/q),≤) of
ordered fields. If ϕ : A → B and ψ : B → C are ring homomorphisms, then we have
again

sper(ψ ◦ ϕ) = (sper ϕ) ◦ (sper ψ).
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Example 3.1.5. Since R[X] is a principal ideal domain, the fundamental theorem 1.4.14
implies

spec R[X] = {(0)} ∪ {(X− a) | a ∈ R} ∪ {((X− a)2 + b2︸ ︷︷ ︸
=(X−(a+bi))(X−(a−bi))

) | a, b ∈ R, b 6= 0}

where ((X − a)2 + b2) = ((X − a′)2 + b′2) ⇐⇒ (a = a′ & |b| = |b′|) for all a, a′, b, b′ ∈
R. The spectrum of R[X] therefore can be seen as consisting of

• one “generic point”,

• the real numbers, and

• the unordered pairs of two distinct conjugated complex numbers.

Because of qf(R[X]/(0)) ∼= qf(R[X]) = R(X), qf(R[X]/(X− a)) = R[X]/(X− a) ∼= R

for all a ∈ R and qf(R[X]/((X − a)2 + b2) ∼= R[X]/((X − a)2 + b2) ∼= C for a, b ∈ R

with b 6= 0, we obtain in the notation of 1.3.8 (and with the identification R[X]/(0) =
R[X])

sper R[X] = {((0), P−∞), ((0), P∞)} ∪ {((0), Pa−) | a ∈ R} ∪ {((0), Pa+) | a ∈ R}
∪ {((X− a), (R[X]/(X− a))2) | a ∈ R}.

The real spectrum of R[X] thus corresponds to an accumulation consisting of

• the two points at infinity,

• for each real number two points infinitely close, and

• the real numbers.

Definition 3.1.6. We call supp : sper A→ spec A, (p,≤) 7→ p the support map.

Definition 3.1.7. [→ 1.1.19(a), 3.1.1] A subset P of A is called a prime cone of A if P+ P ⊆
P, PP ⊆ P, P ∪−P = A, −1 /∈ P and ∀a, b ∈ A : (ab ∈ P =⇒ (a ∈ P or − b ∈ P)).

Proposition 3.1.8. Every prime cone of A is a proper preorder of A [→ 1.2.1].

Proof. Suppose P is a prime cone of A and a ∈ A. To show: a2 ∈ P. Due to a ∈ A =
P ∪−P, we have a ∈ P or −a ∈ P. In the first case we get a2 = aa ∈ PP ⊆ P and in the
second a2 = (−a)2 = (−a)(−a) ∈ PP ⊆ P.

Proposition 3.1.9. Suppose P ⊆ A satisfies P + P ⊆ P, PP ⊆ P and P ∪−P = A. Then the
following are equivalent:

(a) P is a prime cone of A.

(b) −1 /∈ P and ∀a, b ∈ A : (ab ∈ P =⇒ (a ∈ P or − b ∈ P))

(c) P ∩−P is a prime ideal of A
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Proof. (a)⇐⇒ (b) is Definition 3.1.7.
(b) =⇒ (c) Suppose (b) holds and set p := P ∩−P. Then p is obviously a subgroup

of A and we have Ap = (P ∪ −P)p = Pp ∪ −Pp = P(P ∩ −P) ∪ −P(P ∩ −P) ⊆
(PP ∩−PP) ∪ (−PP ∩ PP) ⊆ (P ∩−P) ∪ (−P ∩ P) = P ∩−P = p, i.e., p is an ideal of
A (if 1

2 ∈ A this follows alternatively from 3.1.8 and 1.2.4). From −1 /∈ P we get 1 /∈ p.
It remains to show ∀a, b ∈ A : (ab ∈ p =⇒ (a ∈ p or b ∈ p)). To this end, let a, b ∈ A
with a /∈ p and b /∈ p. To show: ab /∈ p. WLOG a /∈ P and −b /∈ P (otherwise replace
a by −a and/or −b by b, taking into account −p = p). By hypothesis, we obtain then
ab /∈ P and thus ab /∈ p.

(c) =⇒ (b) Suppose (c) holds. Due to P ∪ −P = A, we have 1 ∈ P or −1 ∈ P. If
−1 ∈ P, then again 1 = (−1)(−1) ∈ PP ⊆ P. Hence 1 ∈ P. If we had −1 ∈ P, then
1 ∈ p := P ∩ −P ∈ spec A  . Thus −1 /∈ P. Let now a, b ∈ A such that a /∈ P and
−b /∈ P. To show: ab /∈ P. Because of P ∪ −P = A, we have a ∈ −P and b ∈ P from
which −ab = (−a)b ∈ PP ⊆ P. If we had in addition ab ∈ P, then ab ∈ p and thus
a ∈ p ⊆ P or b ∈ p ⊆ −P  . Hence ab /∈ P.

Remark 3.1.10. If K is a field, then 3.1.9 signifies because of spec K = {(0)} just that the
prime cones of K are exactly the orders of K [→ 1.1.20].

Lemma 3.1.11. Let P be a prime cone of A and p := P ∩−P [→ 3.1.9(c)]. Then

Pp :=
{

ap

sp
| a ∈ A, s ∈ A \ p, as ∈ P

}
is an order (i.e., a prime cone [→ 3.1.10]) of qf(A/p).

Proof. To show [→ 1.1.20(a)]:

(a) Pp + Pp ⊆ Pp,

(b) PpPp ⊆ Pp,

(c) Pp ∪−Pp = qf(A/p), and

(d) Pp ∩−Pp = (0).

(a) Suppose that a, b ∈ A and s, t ∈ A \ p with as, bt ∈ P define arbitrary elements
a
s , b

t ∈ Pp. Then
ap

sp
+

bp

tp
=

atp

stp
+

bsp

stp
=

at + bsp

stp
∈ Pp,

since at + bs ∈ A, st ∈ A \ p and (at + bs)st = ast2 + bts2 ∈ PA2 + PA2 ⊆ PP + PP ⊆
P + P ⊆ P.

(b) Let again a, b ∈ A and s, t ∈ A \ p satisfy as, bt ∈ P. Then

ap

sp
bp

tp
=

abp

stp
∈ Pp
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since ab ∈ A, st ∈ A \ p and abst = (as)(bt) ∈ PP ⊆ P.
(c) Let a ∈ A and s ∈ A \ p define an arbitrary element a

s ∈ qf(A/p). Because of
P ∪−P = A, we have as ∈ P or −as ∈ P, i.e., − a

s = −a
s ∈ Pp or a

s ∈ Pp.
(d) Suppose a, b ∈ A and s, t ∈ A \ p with as, bt ∈ P satisfy

ap

sp
= −bp

tp
.

Then at+ bs ∈ p and therefore ast2 + bts2 = st(at+ bs) ∈ p ⊆ −P, i.e.,−ast2− bts2 ∈ P.
From ast2 = (as)t2 ∈ PA2 ⊆ P and bts2 = (bt)s2 ∈ PA2 ⊆ P we deduce −ast2,−bts2 ∈
P. Consequently, ast2, bts2 ∈ p and thus a, b ∈ p. We obtain

ap

sp
= 0 =

bp

tp

as desired.

Lemma 3.1.12. [→ 1.1.19] Let (p,≤) ∈ sper A. Then {a ∈ A | ap ≥ 0} is a prime cone of
A.

Proof. Set P := {a ∈ A | ap ≥ 0}. Then P + P ⊆ P, PP ⊆ P, P ∪ −P = A and
P ∩−P = p ∈ spec A. Now P is a prime cone of A by 3.1.9(c).

Proposition 3.1.13. [→ 1.1.19(c)] The correspondence

(p,≤) 7→ {a ∈ A | ap ≥ 0}
(P ∩−P, PP∩−P)← [ P

defines a bijection between sper A and the set of all prime cones of A.

Proof. The well-definedness of both maps follows from Lemmata 3.1.11 and 3.1.12.
Now first let (p,≤) ∈ sper A and P := {a ∈ A | ap ≥ 0}. We show (p,≤) =
(P ∩−P, PP∩−P). It is clear that p = P ∩−P. Finally,

PP∩−P = Pp =

{
ap

sp
| a ∈ A, s ∈ A \ p, as ∈ P

}
=

{
ap

sp
| a ∈ A, s ∈ A \ p, asp ≥ 0

}
=

{
ap

sp
| a ∈ A, s ∈ A \ p,

ap

sp
≥ 0

}
= {x ∈ qf(A/p) | x ≥ 0}.

Conversely, suppose that P is a prime cone of A and p := P ∩−P. We show

P = {a ∈ A | ap ≥ 0}.

Here “⊆” is trivial. To show “⊇”, let a ∈ A such that ap ≥ 0. Then there are b ∈ A and
s ∈ A \ p such that bs ∈ P and a = b

s . It follows that as2p
= bsp and thus as2 ∈ bs + p ⊆

P + p ⊆ P + P ⊆ P. Since P is a prime cone, we deduce a ∈ P or −s2 ∈ P. If we had
−s2 ∈ P, then s2 ∈ P ∩−P = p (since s2 ∈ A2 ⊆ P) and therefore s ∈ p  .
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Remark 3.1.14. [→ 1.1.20] As a result of 3.1.13, we can see elements of the real spectrum
as prime cones. We reformulate some of the above in this new language:

(a) Remark 3.1.4: Let ϕ : A → B be a ring homomorphism. Then ϕ induces the map
sper ϕ : sper B → sper A, Q 7→ ϕ−1(Q). Suppose namely that Q ∈ sper B, q :=
Q ∩ −Q, P := ϕ−1(Q) and p := P ∩ −P. Then ϕ−1(q) = ϕ−1(Q) ∩ −ϕ−1(Q) =
P∩−P = p and the embedding qf(A/p) ↪→ qf(B/q) induced by ϕ is an embedding
of ordered fields (qf(A/p), Pp) ↪→ (qf(B/q), Qq) because for a ∈ A and s ∈ A \ p
with as ∈ P we have ϕ(a) ∈ B, ϕ(s) ∈ B \ q, ϕ(a)ϕ(s) = ϕ(as) ∈ ϕ(P) ⊆ Q.

(b) Definition 3.1.6: The support map is supp: sper A → spec A, P 7→ P ∩ −P [→
3.1.13]. In particular, the Definitions 3.1.6 and 1.2.4 are compatible.

Definition 3.1.15. For every (p,≤) ∈ sper A, we call the real closed field

R(p,≤) := (qf(A/p),≤)

the representation field of (p,≤) and the ring homomorphism

$(p,≤) : A→ R(p,≤), a 7→ ap

the representation of (p,≤).

Proposition 3.1.16. Let P ∈ sper A. Then P = $−1
P (R2

P) and supp P = ker $P.

Proof. $−1
P (R2

P) = {a ∈ A | $P(a) ≥ 0 in RP} = {a ∈ A | asupp P ∈ Psupp P}
3.1.13
= P and

therefore

supp P = P ∩−P = $−1
P (R2

P) ∩−$−1
P (R2

P) = $−1
P (R2

P ∩−R2
P) = $−1

P ({0}) = ker $P.

Proposition 3.1.17. [→ 3.1.1] Let P be a set. Then the following are equivalent:

(a) P ∈ sper A

(b) There is an ordered field (K,≤) and a ring homomorphism ϕ : A → K such that P =
ϕ−1(K≥0).

(c) There exists a real closed field R and a ring homomorphism ϕ : A → R such that P =
ϕ−1(R2).

Proof. (a) 3.1.16
=⇒ (c) trivial

=⇒ (b)
3.1.14(a)
=⇒ (a)
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3.2 Preorders and maximal prime cones

Throughout this section, let A be a commutative ring.

Proposition 3.2.1. Let T be a proper preorder of A [→ 1.2.1]. Then the following are equiva-
lent:

(a) T is a prime cone of A.

(b) ∀a, b ∈ A : (ab ∈ T =⇒ (a ∈ T or − b ∈ T))

Proof. (a) =⇒ (b) is trivial by Definition 3.1.7.

(b) =⇒ (a) Suppose (b) holds. By Definition 3.1.7, it suffices to show T ∪ −T = A.
But for all a ∈ A it follows from (b) that a ∈ T or −a ∈ T because of aa = a2 ∈ T.

Theorem 3.2.2. [→ 1.2.9] Suppose T is a maximal proper preorder [→ 1.2.1] of A. Then T is
a prime cone of A.

Proof. We show 3.2.1(b). For this purpose let a, b ∈ A satisfy a /∈ T and −b /∈ T.
Then T + aT and T − bT are preorders of A [→ 1.2.8] that properly contain T. Due to
the maximality of T, therefore neither T + aT nor T − bT is proper as a preorder, i.e.,
−1 ∈ T + aT and −1 ∈ T − bT. Choose s, t ∈ T such that −as ∈ 1 + T and bt ∈ 1 + T.
Then −abst ∈ (1 + T)(1 + T) ⊆ 1 + T and thus −1 ∈ T + abst ⊆ T + abT. Since T is
proper, we conclude that ab /∈ T as desired.

Corollary 3.2.3. Every proper preorder of A is contained in a maximal prime cone of A.

Proof. Use 3.2.2 and Zorn’s lemma.

Proposition 3.2.4. Let P, Q ∈ sper A such that P ⊆ Q and set q := supp Q. Then Q =
P ∪ q.

Proof. “⊇” is trivial.
“⊆” Let a ∈ Q \ P. To show: a ∈ q. From −a ∈ P ⊆ Q we get a ∈ Q ∩−Q = q.

Proposition and Terminology 3.2.5. Let P ∈ sper A. Then “the spear”

{Q ∈ sper A | P ⊆ Q}

is a chain in the partially ordered set sper A that possesses a largest element (“a spearhead”).

Proof. Let Q1, Q2 ∈ sper A with P ⊆ Q1 and P ⊆ Q2. Suppose Q1 6⊆ Q2. To show:
Q2 ⊆ Q1. Choose a ∈ Q1 \ Q2. Let b ∈ Q2. To show b ∈ Q1. We have a− b /∈ Q2 (or
else a ∈ Q2  ) and thus a− b /∈ P because of P ⊆ Q2. Then b− a ∈ P ⊆ Q1 and thus
b ∈ Q1. The existence of the “spearhead” follows now from 3.2.3.
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3.3 Quotients and localization

Throughout this section, we let A be a commutative ring.

Proposition 3.3.1.
{

Preimages
Images

}
of preorders [→ 1.2.1] under

{
homomorphisms
epimorphisms

}
of com-

mutative rings are again preorders.

Proof. Exercise.

Proposition 3.3.2. Let I be an ideal of A. The correspondence

T 7→ T I := {aI | a ∈ T}
{a ∈ A | aI ∈ P} ← [ P

defines a bijection between the set of
{

preorders [→ 1.2.1]
prime cones [→ 3.1.7]

}
T of A with I ⊆ T and the set

of
{

preorders
prime cones

}
of A/I.

Proof. Exercise.

Lemma 3.3.3. Let S ⊆ A be multiplicative and T ⊆ A a preorder. Let

ι : A→ S−1A, a 7→ a
1

denote the canonical homomorphism. Then the preorder generated by ι(T) in S−1A
equals S−2T =

{ a
s2 | a ∈ T, s ∈ S

}
. This preorder is proper if and only if T ∩−S2 = ∅.

Proof. Exercise.

Proposition 3.3.4. Let S ⊆ A be multiplicative. The correspondence

P 7→ S−2P{
a ∈ A | a

1
∈ Q

}
← [ Q

gives rise to a bijection between {P ∈ sper A | (supp P) ∩ S = ∅} and sper(S−1A).

Proof. Let P ∈ sper A with (supp P) ∩ S = ∅. By 3.3.3, S−2P is a proper preorder of
S−1 A since P ∩ −S2 ⊆ (P ∩ −A2) ∩ (−S) ⊆ (P ∩ −P) ∩ (−S) = (supp P) ∩ −S =
−((supp P) ∩ S) = −∅ = ∅. To show that S−2P is a prime cone of S−1A, we verify
the condition from 3.2.1(b) where we use that for any two fractions in S−1A, one can
find a common denominator from S2. Let a, b ∈ A and s ∈ S with a

s2 · b
s2 ∈ S−2P. To

show: a
s2 ∈ S−2P or − b

s2 ∈ S−2P. Choose c ∈ P and u ∈ S with ab
s4 = c

u2 . Then there
is v ∈ S such that abu2v = cs4v and therefore (au2)(bv2) = abu2v2 = cs4v2 ∈ P. Since
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P is a prime cone, it follows that au2 ∈ P or −bv2 ∈ P. Hence a
s2 = au2

(su)2 ∈ S−2P or

− b
s2 = − bv2

(sv)2 ∈ S−2P.

Conversely, let Q ∈ sper(S−1A). For ι : A→ S−1A, a 7→ a
1 , we have [→ 3.1.14(a)]{

a ∈ A | a
1
∈ Q

}
= (sper ι)(Q) ∈ sper A.

If we had s ∈ S with s
1 ∈ Q ∩−Q, then 1 = s

s =
1
s ·

s
1 ∈ S−1A(supp Q) ⊆ supp Q  .

It remains to show that the maps are inverse to each other:

(a) If P ∈ sper A with (supp P) ∩ S = ∅, then P =
{

a ∈ A | a
1 ∈ S−2P

}
.

(b) If Q ∈ sper(S−1A), then Q =
{ a

s2 | a ∈ A, a
1 ∈ Q, s ∈ S

}
.

To show (a), let P ∈ sper A with (supp P) ∩ S = ∅.
“⊆” is trivial.
“⊇” Let a ∈ A with a

1 ∈ S−2P. Choose b ∈ P and s ∈ S with a
1 = b

s2 . Then there is
t ∈ S such that as2t = bt and thus as2t2 = bt2 ∈ P. It follows that a ∈ P or −s2t2 ∈ P.
The latter would lead to s2t2 ∈ (supp P) ∩ S . Hence a ∈ P.

To show (b), consider an arbitrary Q ∈ sper(S−1A).
“⊇” is trivial.
“⊆” Let b ∈ A and s ∈ S with b

s ∈ Q. Then for a := sb ∈ A, we have b
s = sb

s2 = a
s2 and

a
1 = sb

1 =
( s

1

)2 b
s ∈ Q.

3.4 Abstract real Stellensätze

Definition 3.4.1. Let A be a commutative ring. We call the ring homomorphism

A→ ∏
(p,≤)∈sper A

R(p,≤), a 7→ (â : (p,≤) 7→ ap)

the real representation of A. For a ∈ A, we say that â is the function represented by a on
the real spectrum of A.

Theorem 3.4.2 (abstract real Stellensatz [Kri, Ste, Pre]). Suppose A is a commutative ring,
I ⊆ A an ideal, S ⊆ A a multiplicative set and T ⊆ A a preorder. Then the following conditions
are equivalent:

(a) There does not exist any P ∈ sper A satisfying

∀a ∈ I : â(P) = 0,
∀s ∈ S : ŝ(P) 6= 0 and

∀t ∈ T : t̂(P) ≥ 0.

(b) There are a ∈ I, s ∈ S and t ∈ T such that a + s2 + t = 0.
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Proof. (b) =⇒ (a) is trivial.
(a) =⇒ (b) Replacing T by the preorder T + I, we can suppose WLOG I = (0).

Suppose (b) does not hold. By 3.3.3, S−2T is then a proper preorder of S−1A. Con-
sequently, S−2T is contained in a prime cone Q of S−1A by 3.2.3. Now 3.3.4 yields
P :=

{
a ∈ A | a

1 ∈ Q
}
∈ sper A and (supp P) ∩ S = ∅. For all s ∈ S, we have

ŝ(P) = ssupp P 6= 0 in RP [→ 3.1.15, 3.1.13] since s /∈ supp P. For all t ∈ T, we have
t̂(P) ≥ 0 because t ∈ P.

Terminology and Notation 3.4.3. (a) We call a pair (A, T) consisting of a commutative
ring A and a preorder T of A a preordered ring.

(b) If (A, T) is a preordered ring, then we define its real spectrum

sper(A, T) := {P ∈ sper A | T ⊆ P}.

(c) [→ 1.4.15(c)] If A is a commutative ring, a ∈ A and S ⊆ sper A, then we write

â ≥ 0 on S :⇐⇒ ∀P ∈ S : â(P) ≥ 0,
â > 0 on S :⇐⇒ ∀P ∈ S : â(P) > 0,

and so forth.

Corollary 3.4.4 (abstract Positivstellensatz). Let (A, T) be a preordered ring and a ∈ A.
Then the following are equivalent:

(a) â > 0 on sper(A, T)

(b) ∃t ∈ T : ta ∈ 1 + T

(c) ∃t ∈ T : (1 + t)a ∈ 1 + T.

Proof. (b) =⇒ (c) If t, t′ ∈ T satisfy ta = 1 + t′, then

(1 + t + t′)a = ta + (1 + t′)a = 1 + t′ + ta2 ∈ 1 + T.

(c) =⇒ (a) is trivial.
(a) =⇒ (b) follows by applying 3.4.2 on the ideal (0), the multiplicative set {1} and

the preorder T − aT.

Corollary 3.4.5 (abstract Nichtnegativstellensatz). Let (A, T) be a preordered ring and a ∈
A. Then the following are equivalent:

(a) â ≥ 0 on sper(A, T)

(b) ∃t ∈ T : ∃k ∈N0 : ta ∈ a2k + T

Proof. (b) =⇒ (a) is trivial.
(a) =⇒ (b) follows by applying 3.4.2 on the ideal (0), the multiplicative set {1, a, a2, . . . }

and the preorder T − aT.
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Corollary 3.4.6 (abstract real Nullstellensatz [Kri, Du2, Ris, Efr]). Let A be a commutative
ring, I ⊆ A an ideal and a ∈ A. Then the following are equivalent:

(a) â = 0 on {P ∈ sper A | I ⊆ supp P}

(b) ∃k ∈N0 : ∃s ∈ ∑ A2 : a2k + s ∈ I

Proof. (b) =⇒ (a) is trivial.

(a) =⇒ (b) follows by applying 3.4.2 on the ideal I, the multiplicative set {1, a, a2, . . . }
and the preorder ∑ A2.

3.5 The real radical ideal

Throughout this section, we let A be a commutative ring.

Definition 3.5.1. [→ 1.2.12(c)] A is called real (or real reduced) if

∀n ∈N : ∀a1, . . . , an ∈ A : (a2
1 + · · ·+ a2

n = 0 =⇒ a1 = 0).

Remark 3.5.2. We have

A 6= {0} real =⇒ −1 /∈∑ A2 3.2.3⇐⇒
1.2.2(a)

sper A 6= ∅.

Here “=⇒” cannot be replaced by “⇐⇒ ” (in contrast to the case where A is a field [→
1.2.12]) as the example of A = R[X]/(X2) shows.

Definition 3.5.3. An ideal I ⊆ A is called real (or real radical ideal) if A/I is real, i.e.,
∀n ∈N : ∀a1, . . . , an ∈ A : (a2

1 + . . . + a2
n ∈ I =⇒ a1 ∈ I).

Proposition 3.5.4. Let p ∈ spec A. Then the following are equivalent:

(a) p is real [→ 3.5.3]

(b) qf(A/p) is real [→ 1.2.11]

(c) ∃P ∈ sper A : p = supp P [→ 3.1.14(b)]

Proof. (a) =⇒ (b) Suppose (a) holds and let n ∈N, a1, . . . , an, s ∈ A/p with s 6= 0 such

that
( a1

s

)2
+ . . . +

( an
s

)2
= 0. Then a2

1 + . . . + a2
n = 0. Since A/p is real, it follows that

a1 = 0 and therefore a1
s = 0.

(b) =⇒ (c) Suppose (b) holds. Then qf(A/p) possesses an order ≤. According to
Definition 3.1.3, we have (p,≤) ∈ sper A and of course p = supp(p,≤) by Definition
3.1.6.

(c) =⇒ (a) Suppose p = supp P for some P ∈ sper A. Let n ∈ N and a1, . . . , an ∈ A
satisfy a2

1 + . . . + a2
n ∈ p. Then â1(P)2 + . . . + ân(P)2 = 0 and thus â1(P) = 0, i.e.,

a1 ∈ p.
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Definition 3.5.5. The real radical rrad I of an ideal I ⊆ A is defined by

rrad I :=
⋂
{p ∈ rspec A | I ⊆ p}

where rspec A := {p ∈ spec A | p is real} and
⋂

∅ := A.

Remark 3.5.6. Since every intersection of real ideals of A is obviously again a real ideal
of A, for every ideal I ⊆ A, the set rrad I is a real ideal of I.

Theorem 3.5.7. [→ 3.4.6] For every ideal I of A,

rrad I =
{

a ∈ A | ∃k ∈N0 : ∃s ∈∑ A2 : a2k + s ∈ I
}

.

Proof. 3.5.4 shows that this is just a reformulation of 3.4.6.

Remark 3.5.8. Let I ⊆ A be an ideal. Then by 3.5.6, rrad I is the smallest real ideal of A
containing I.

Definition 3.5.9. We call rnil A :=
⋂

rspec A = rrad(0) the real nilradical of A.

Corollary 3.5.10. We have

{a ∈ A | â = 0} = rnil A = {a ∈ A | ∃k ∈N : ∃s ∈∑ A2 : a2k + s = 0}.

3.6 Constructible sets

In this section, we let (A, T) always be a preordered ring [→ 3.4.3(a)]. At the moment
it is a general one but after Proposition 3.6.2, we will further specialize (A, T).

Definition 3.6.1. [→ 1.8.3] A Boolean combination [→ 1.8.2(b)] of sets of the form

{P ∈ sper(A, T) | a ∈ P} (a ∈ A)

is called a constructible subset of the real spectrum of (A, T). We denote the Boolean al-
gebra of all constructible sets of sper(A, T) by C(A,T). The analogous definition remains
in force for a commutative ring instead of a preordered ring (A, T).

Proposition 3.6.2. [→ 1.8.6] Every constructible subset of sper(A, T) is of the form

k⋃
i=1

{
P ∈ sper(A, T) | âi(P) = 0, b̂i1(P) > 0, . . . , b̂im(P) > 0

}
for some k, m ∈N0, ai, bij ∈ A.

Proof. Completely analogous to 1.8.6 using that a ∈ P 3.1.13⇐⇒ â(P) ≥ 0 for all a ∈ A and
P ∈ sper A.
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For the rest of this section, we fix an ordered field (K,≤), denote by R := (K,≤) its
real closure, we let n ∈ N0 and set A := K[X] and T := ∑ K≥0A2. Then (A, T) is a
preordered ring and for all P ∈ sper(A, T) there is by 1.7.5 exactly one homomorphism
from R to the representation field RP of P extending $P|K [→ 3.1.15]. In virtue of this
homomorphism, which is of course an embedding of ordered fields, we interpret R as
an (ordered) subfield of RP. In particular, we write R = RP if it is an isomorphism.

Proposition and Notation 3.6.3. The correspondence

P 7→ xP := ($P(X1), . . . , $P(Xn))

{ f ∈ A | f (x) ≥ 0} =: Px ← [ x

defines a bijection between {P ∈ sper(A, T) | RP = R} and Rn.

Proof. We first show that both maps are well-defined. For every P ∈ sper(A, T) with
RP = R, we have xP ∈ Rn under the identification of RP and R. Conversely, let x ∈ Rn.
Consider the ring homomorphism

ϕ : A→ R, f 7→ f (x).

Then Px = ϕ−1(R2) = (sper ϕ)(R≥0) ∈ sper A [→ 3.1.4, 3.1.14(a)]. Obviously, K≥0 ⊆ Px
and therefore Px ∈ sper(A, T). In order to show RPx = R, we set p := supp Px and
consider the homomorphism of ordered fields

(qf(A/p), (Px)p)→ (R, R2),
ap

sp
7→ a(x)

s(x)
(a ∈ A, s ∈ A \ p)

induced by ϕ according to 3.1.4 taking into account 3.1.14. Since R is real closed, this
homomorphism extends (uniquely) to a homomorphism of (ordered) fields

ψ : RPx = (qf(A/p), (Px)p)→ R.

We obviously have ψ|K = id and therefore ψ|R is a K-endomorphism of the real closure
R of (K,≤) which can only be the identity by 1.7.5. The injectivity of ψ now implies
RPx = R as desired. For later use we note that ψ = idR implies

(∗) f p = ψ−1(ψ( f p)) = ψ−1( f (x)) = f (x)

for all f ∈ A.
It remains to show that both maps are inverse to each other. This means:

(a) P = PxP for all P ∈ sper(A, T) with RP = R

(b) x = xPx for all x ∈ Rn

To show (a), let P ∈ sper(A, T) such that RP = R. Then

PxP = { f ∈ A | f ($P(X1), . . . , $P(Xn)) ≥ 0 in R}
= { f ∈ A | $P( f ) ≥ 0 in RP} = { f ∈ A | f̂ (P) ≥ 0} = P.

To show (b), we let x ∈ Rn. Then Xi
supp Px (∗)

= xi ∈ R for all i ∈ {1, . . . , n}. Conse-
quently, xPx = ($Px(X1), . . . , $Px(Xn)) = (X1

supp Px , . . . , Xn
supp Px) = (x1, . . . , xn) = x.
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Theorem and Definition 3.6.4. [→ 1.9.3, 1.9.4] Let n ∈ N0 and denote again by Sn,R the
Boolean algebra of all K-semialgebraic subsets of Rn. Then

Slim: C(A,T) → Sn,R, C 7→ {x ∈ Rn | Px ∈ C}

is an isomorphism of Boolean algebras. We call Slim the despectrification or slimming (in
German: Entspeckung) and

Fatten := Slim−1

the spectrification or fattening (in German: Verspeckung). For all f ∈ A, one has

Slim({P ∈ sper(A, T) | f ∈ P}) = {x ∈ Rn | f (x) ≥ 0}.

Proof. It is obvious that Slim is a homomorphism of Boolean algebras [→ 1.9.1] satisfy-
ing Slim({P ∈ sper(A, T) | f ∈ P}) = {x ∈ Rn | f ∈ Px} = {x ∈ Rn | f (x) ≥ 0} for
all f ∈ A. Let R ⊇ {RP | P ∈ sper(A, T)} be a set of real closed fields that are ordered
extension fields of (K,≤) [→ 1.8.4(b)]. Let Sn again denote the Boolean algebra of all
(K,≤) -semialgebraic classes [→ 1.9.3] and consider

Φ : Sn → C(A,T), S 7→ {P ∈ sper(A, T) | (RP, ($P(X1), . . . , $P(Xn))) ∈ S}.

It is obvious that Φ is a homomorphism of Boolean algebras satisfying

Φ({(R′, x) | R′ ∈ R, x ∈ R′n, f (x) ≥ 0 in R′})
= {P ∈ sper(A, T) | f ($P(X1), . . . , $P(Xn)) ≥ 0 in RP}

= {P ∈ sper(A, T) | $P( f ) ≥ 0 in RP}
= {P ∈ sper(A, T) | f̂ (P) ≥ 0} = {P ∈ sper(A, T) | f ∈ P}

for all f ∈ A. From this one sees, in the first place, that Φ is surjective and, secondly,
that Slim ◦Φ = SetR [→ 1.9.3] which is an isomorphism of Boolean algebras by 1.9.4.
Along with SetR, Φ is also injective. We conclude that Φ is an isomorphism and with it
Slim = (Slim ◦Φ) ◦ Φ−1.

Example 3.6.5. In 3.1.5, we have already described sper R[X]. Now we describe sper R[X]
as a set of prime cones [→ 3.1.14] while using 1.3.8: For t ∈ R, we set

Pt− := { f ∈ R[X] | ∃ε ∈ R>0 : ∀x ∈ (t− ε, t) : f (x) ≥ 0},
Pt := { f ∈ R[X] | f (t) ≥ 0} and

Pt+ := { f ∈ R[X] | ∃ε ∈ R>0 : ∀x ∈ (t, t + ε) : f (x) ≥ 0}

Finally, we set

P−∞ := { f ∈ R[X] | ∃c ∈ R : ∀x ∈ (−∞, c) : f (x) ≥ 0} and
P∞ := { f ∈ R[X] | ∃c ∈ R : ∀x ∈ (c, ∞) : f (x) ≥ 0}.
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Then

sper R[X] = {P−∞, P∞} ∪ {Pt− | t ∈ R} ∪ {Pt | t ∈ R} ∪ {Pt+ | t ∈ R}.

The fattening of the semialgebraic set [0, 1) ⊆ R is the set

C := {P0, P0+} ∪ {Pt− | t ∈ (0, 1)} ∪ {Pt | t ∈ (0, 1)}
∪ {Pt+ | t ∈ (0, 1)} ∪ {P1−} ⊆ sper R[X].

In particular, C is constructible. In contrast to this, C′ := C \ {P1−} is not constructible
for otherwise C and C′ would have the same slimming in contradiction to 3.6.4.

3.7 Real Stellensätze

Remark 3.7.1. Let A be a commutative ring.

(a) Since every intersection of


ideals

multiplicative sets
preorders

 of A is again


an ideal

a multiplicative set
a preorder


of A, there exists for every subset E ⊆ A


a smallest ideal

a smallest multiplicative set
a smallest preorder

 of A con-

taining E. It is called the


ideal

multiplicative set
preorder

 generated by E.

(b)


An ideal

A multiplicative set
A preorder

 of A is called finitely generated if it is generated by a finite

subset of A.

(c) The


ideal

multiplicative set
preorder

 generated by a1, . . . , am ∈ A (i.e., by {a1, . . . , am} ⊆ A) is
Aa1 + . . . + Aam

{aα1
1 · · · a

αm
m | α ∈Nm

0 }
∑δ∈{0,1}m ∑ A2aδ1

1 · · · a
δm
m

.

(d) If


an ideal

a multiplicative set
a preorder

 of A is generated by E ⊆ A, then it is the union over all
ideals

multiplicative sets
preorders

 of A generated by a finite subset of E.
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(e) If


an ideal I

a multiplicative set S
a preorder T

⊆ A is generated by E ⊆ A and if P ∈ sper A, then
∀a ∈ I : â(P) = 0
∀s ∈ S : ŝ(P) 6= 0
∀t ∈ T : t̂(P) ≥ 0

 ⇐⇒

∀a ∈ E : â(P) = 0
∀s ∈ E : ŝ(P) 6= 0
∀t ∈ E : t̂(P) ≥ 0

.

Remark 3.7.2. Let (L,≤) be an ordered field and K a subfield of L. If


an ideal I

a multiplicative set S
a preorder T

⊆
K[X] is generated by E ⊆ K[X] and if x ∈ Ln, then

∀g ∈ I : g(x) = 0
∀h ∈ S : h(x) 6= 0
∀ f ∈ T : f (x) ≥ 0

 ⇐⇒

∀g ∈ E : g(x) = 0
∀h ∈ E : h(x) 6= 0
∀ f ∈ E : f (x) ≥ 0

 .

Remark and Terminology 3.7.3. (a) “over B generated by E” stands for “generated by
B ∪ E”

(b) “over B finitely generated” stands for “generated by B ∪ E for some finite set E”

(c) If (K,≤) is an ordered field and n ∈N0, then the preorder generated by p1, . . . , pm ∈
K[X] over K≥0 equals ∑δ∈{0,1}m ∑ K≥0K[X]2 pδ1

1 · · · p
δm
m [→ 3.7.1(c)].

Proposition 3.7.4. Let (K,≤) be an ordered field, R := (K,≤) and n ∈N0 [→ 3.6.3]. Let I be
an ideal, S a finitely generated multiplicative set and T a preorder of K[X] finitely generated
over K≥0. Then

{P ∈ sper K[X] | (∀g ∈ I : ĝ(P) = 0), (∀h ∈ S : ĥ(P) 6= 0), (∀ f ∈ T : f̂ (P) ≥ 0)}

is a constructible subset of sper(K[X], ∑ K≥0K[X]2) whose slimming is the K-semialgebraic set

{x ∈ Rn | (∀g ∈ I : g(x) = 0), (∀h ∈ S : h(x) 6= 0), (∀ f ∈ T : f (x) ≥ 0)}.

Proof. By Hilbert’s basis theorem, I is finitely generated as well. Now use 3.7.1, 3.6.4
and 3.7.2.

Theorem 3.7.5 (real Stellensatz [Kri, Ste, Pre]). [→ 3.4.2] Let (K,≤) be an ordered subfield
of the real closed field R, n ∈ N0, I an ideal of K[X], S a finitely generated multiplicative
set of K[X] and T a preorder of K[X] finitely generated over K≥0. Then the following are
equivalent:

(a) There does not exist any x ∈ Rn satisfying

∀g ∈ I : g(x) = 0,
∀h ∈ S : h(x) 6= 0 and
∀t ∈ T : t(x) ≥ 0.
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(b) 0 ∈ I + S2 + T

Proof. (b) =⇒ (a) is trivial.

(a) =⇒ (b) WLOG R = (K,≤) [→ 1.7.11]. Because the fattening of the empty set is
empty by 3.6.4 [→ 1.9.1], (a) implies Condition 3.4.2(a) from the abstract real Stellensatz
applied to A := K[X].

Corollary 3.7.6 (Positivstellensatz). [→ 3.4.4] Let (K,≤) be an ordered subfield of the real
closed field R, n ∈N0, T a preorder of K[X] finitely generated over K≥0,

S := {x ∈ Rn | ∀p ∈ T : p(x) ≥ 0}

and f ∈ K[X]. Then the following are equivalent:

(a) f > 0 on S

(b) ∃t ∈ T : t f ∈ 1 + T

(c) ∃t ∈ T : (1 + t) f ∈ 1 + T

Proof. Alternatively from 3.7.5 (as 3.4.4 from 3.4.2) or from 3.4.4 (as 3.7.5 from 3.4.2
using 3.6.4).

Corollary 3.7.7 (Nichtnegativstellensatz). [→ 3.4.5] Let (K,≤) be an ordered subfield of the
real closed field R, n ∈N0, T a preorder of K[X] finitely generated over K≥0,

S := {x ∈ Rn | ∀p ∈ T : p(x) ≥ 0}

and f ∈ K[X]. Then the following are equivalent:

(a) f ≥ 0 on S

(b) ∃t ∈ T : ∃k ∈N0 : t f ∈ f 2k + T

Proof. Alternatively from 3.7.5 (as 3.4.5 from 3.4.2) or from 3.4.5 (as 3.7.5 from 3.4.2
using 3.6.4).

Remark 3.7.8. In the special case T = ∑ K≥0K[X]2, the Nichtnegativstellensatz 3.7.7 is
obviously a strengthening of Artin’s solution 2.5.2 to Hilbert’s 17th problem in which
Condition (b) is refined. This refinement has the advantage that the proof of (b) =⇒ (a)
does not require a real argument as it was the case in 2.5.2. The proof of 3.7.7 requires
prime cones of rings instead of just preorders of fields and therefore is substantially
more difficult as the proof of 2.5.2.

Corollary 3.7.9 (real Nullstellensatz [Kri, Du2, Ris, Efr]). [→ 3.4.6] Let K be a Euclidean
subfield of the real closed field R, n ∈N0, I an ideal of K[X] and

V := {x ∈ Rn | ∀p ∈ I : p(x) = 0}.

Then { f ∈ K[X] | f = 0 on V} = rrad I.
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Proof. Using the description of rrad I from 3.5.7, this follows alternatively from 3.7.5 (as
3.4.6 from 3.4.2) or from 3.4.6 (as 3.7.5 from 3.4.2 using 3.6.4).

Definition 3.7.10. [→ 1.7.1] Let K be field. An extension field R of K is called a real
closure of K if R is real closed and R|K is algebraic.

Remark 3.7.11. For two fields K and R, the following are equivalent:

(a) R is a real closure of K.

(b) There is an order ≤ of K such that R = (K,≤).
Theorem 3.7.12 (variant of the real Stellensatz). [→ 3.7.5] Let K be a field, n ∈ N0, I an
ideal of K[X], S a finitely generated multiplicative set of K[X] and T a finitely generated
preorder of K[X]. Then the following are equivalent:

(a) There does not exist a real closure R of K and an x ∈ Rn such that

∀g ∈ I : g(x) = 0,
∀h ∈ S : h(x) 6= 0 and
∀ f ∈ T : f (x) ≥ 0.

(b) 0 ∈ I + S2 + T

Proof. (b) =⇒ (a) is trivial.
We show (a) =⇒ (b) by contraposition. Suppose (b) does not hold. We have to show

that (a) does not hold. By the abstract real Stellensatz 3.4.2, there is some P ∈ sper K[X]

such that ∀g ∈ I : ĝ(P) = 0, ∀h ∈ S : ĥ(P) 6= 0 and ∀ f ∈ T : f̂ (P) ≥ 0 all hold at the
same time. Now consider the real closure R := (K, K ∩ P) of K and the preordered ring
(K[X], ∑(K ∩ P)K[X]2). The set

U := {x ∈ Rn | (∀g ∈ I : g(x) = 0), (∀h ∈ S : h(x) 6= 0), (∀ f ∈ T : f (x) ≥ 0)}

is K-semialgebraic by 3.7.1(e) since I, S and T are finitely generated. We will show
that U 6= ∅. We have chosen P to be an element of the constructible subset of the real
spectrum of this preordered ring which is the fattening of U, i.e., P ∈ Fatten(U) in the
notation of 3.6.4. In particular, Fatten(U) 6= ∅ and thus U 6= ∅ by 3.6.4

Remark 3.7.13. Wherever the hypothesis “finitely generated” appears in this section,
it cannot be omitted. For instance, assume that the Positivstellensatz 3.7.6 holds with
the weaker hypothesis “K≥0 ⊆ T” instead of “T finitely generated over K≥0”. Consider
then K := R := R, n := 1 and the preorder of R[X] generated by

E := {X− N | N ∈N}.

Then S := {x ∈ R | ∀p ∈ T : p(x) ≥ 0} = ∅ and thus f := −1 > 0 on S. It follows
that ∃t ∈ T : t f ∈ 1 + T and thus by 3.7.1(d) even ∃t ∈ T′ : t f ∈ 1 + T′ for a preorder
T′ ⊆ T generated by a finite set E′ ⊆ E. The trivial direction of 3.7.6 then yields −1 > 0

on S′ := {x ∈ R | ∀p ∈ T′ : p(x) ≥ 0} 3.7.2
= {x ∈ R | ∀p ∈ E′ : p(x) ≥ 0} = [N, ∞) for

some N ∈N.  
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Remark 3.7.14. [→ 1.2.10] Let A be a commutative ring and T ⊆ A a proper pre-
order. Exactly as in the field case, there exists some P ∈ sper A such that T ⊆ P
[→ 3.2.3]. In sharp contrast, to the field case we do in general however not have that
T =

⋂
sper(A, T). As an example, take A := R[X, Y], T := ∑ R[X, Y]2 and consider

the Motzkin polynomial f := X4Y2 + X2Y4 − 3X2Y2 + 1. By 2.4.16, we have f /∈ T and
S := {(x, y) ∈ R2 | f (x, y) ≥ 0} = R2. By 3.6.4, the fattening

C := {P ∈ sper A | f ∈ P} ⊆ sper A = sper(A, T)

of S equals the whole of sper A, i.e., f ∈ ⋂ sper(A, T).
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§4 Schmüdgen’s Positivstellensatz

4.1 The abstract Archimedean Positivstellensatz

Definition 4.1.1. [→ 1.1.20(d)] A preordered ring (A, T) is called Archimedean if

∀a ∈ A : ∃N ∈N : N + a ∈ T,

which is equivalent to T −N = A and also to T + Z = A.

Definition 4.1.2. Let A be a commutative ring.

(a) A preorder T of A is called Archimedean if (A, T) is Archimedean.

(b) A is called Archimedean if (A, ∑ A2) is Archimedean.

Theorem 4.1.3 (abstract Archimedean Positivstellensatz [Sto, Kad, Kri, Du1]). [→ 3.4.4]
Let (A, T) be an Archimedean preordered ring and a ∈ A. Then the following are equivalent:

(a) â > 0 on sper(A, T)

(b) ∃N ∈N : Na ∈ 1 + T

Proof. (b) =⇒ (a) is trivial

(a) =⇒ (b) For the multiplicative set S := N · 1 ⊆ A, (S−1A, S−2T) is again an
Archimedean preordered ring [→ 3.3.3] and we have [→ 3.3.4]

â > 0 on sper(A, T) ⇐⇒
(̂ a

1

)
> 0 on sper(S−1A, S−2T).

We can therefore suppose N · 1 ⊆ A× and therefore have a homomorphism

Q = N−1Z→ A,
p
q
7→ p

q
(p ∈ Z, q ∈N).

Suppose now that (a) holds. By the abstract Positivstellensatz 3.4.4, there is some t ∈ T
such that ta ∈ 1 + T. Since T is Archimedean, there are N ∈ N with N − t ∈ T and
r ∈ N with a + r ∈ T. Now you can decrease r ∈ 1

N N0 a finite number of times by 1
N

until it gets negative since

a +
(

r− 1
N

)
=

N
N2 ((N − t︸ ︷︷ ︸

∈T

)(a + r︸ ︷︷ ︸
∈T

) + (ta− 1︸ ︷︷ ︸
∈T

) + rt︸︷︷︸
∈T

) ∈ T

as long as r ≥ 0. It follows a− 1
N ∈ T and thus Na ∈ 1 + T.
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Corollary 4.1.4. Let A be a commutative ring and P ∈ sper A. Then the following are equiv-
alent:

(a) P is Archimedean and a maximal prime cone. [→ 4.1.2(a)]

(b) (qf(A/p), Pp) is Archimedean where p := supp P. [→ 3.1.11]

(c) RP is Archimedean. [→ 3.1.15]

(d) There exists a homomorphism ϕ : A→ R such that P = (sper ϕ)(R≥0).

Proof. (a) =⇒ (b) Suppose (a) holds and let a ∈ A and s ∈ A \ p. To show: ∃N ∈ N :
ap

sp + N ∈ Pp. WLOG s ∈ P. Since P is maximal, we have sper(A, P) = {P} and thus
ŝ > 0 on sper(A, P). By 4.1.3, there is N′ ∈ N such that N′s ∈ 1 + P. Choose N′′ ∈ N

such that a + N′′ ∈ P and set N := N′N′′. Then a + Ns = a + N′N′′s ∈ a + N′′ + P ⊆
P + P ⊆ P and thus (a + Ns)s ∈ PP ⊆ P. It follows that ap

sp + N = a+Nsp
sp ∈ Pp.

(b) =⇒ (c) If (b) holds, then (qf(A/p), Pp) ↪→ (R, R≥0) by 1.1.17 [→ 1.1.5] and

RP = (qf(A/p), Pp) ↪→ (R, R≥0)

by 1.7.5.
(c) =⇒ (d) Choose an embedding ι : RP ↪→ R according to 1.1.17. We have ι−1(R≥0) =

(RP)≥0 because ι is an embedding of ordered fields. Now set ϕ := ι ◦ $P. Then

ϕ−1(R≥0) = $−1
P (ι−1(R≥0)) = $−1

P ((RP)≥0)
3.1.16
= P.

(d) =⇒ (a) Suppose ϕ : A → R is a homomorphism with P = ϕ−1(R≥0). Then P
is Archimedean for if a ∈ A, then one can choose N ∈ N with ϕ(a) + N ≥ 0 and it
follows that a + N ∈ ϕ−1(R≥0) = P. In order to show that P is maximal, let Q ∈ sper A
with P ⊆ Q. To show: P = Q. If we had a ∈ Q \ P, then ϕ(a) < 0 and thus ϕ(Na) ≤ −1
for some N ∈N from which it would follow that ϕ(−1− Na) ≥ 0 and thus−1− Na ∈
P ⊆ Q and −1 = (−1− Na) + Na ∈ Q + Q ⊆ Q  .

4.2 The Archimedean Positivstellensatz [→ §3.7]

Lemma 4.2.1. Suppose (K,≤) is an ordered subfield of R, n ∈N0 and K≥0 ⊆ T ⊆ K[X].
Then the correspondence

x 7→ evx : K[X]→ R, p 7→ p(x)
(ϕ(X1), . . . , ϕ(Xn))← [ ϕ

defines a bijection between S := {x ∈ Rn | ∀p ∈ T : p(x) ≥ 0} and the set of all ring
homomorphisms ϕ : K[X]→ R satisfying ϕ(T) ⊆ R≥0.

Proof. It is obviously enough to show that every ring homomorphism ϕ : K[X] → R

with ϕ(T) ⊆ R≥0 is the identity on K. But this is clear by 1.1.15 since the identity is the
only embedding of ordered fields (K,≤) ↪→ (R, R≥0).
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Theorem 4.2.2 (Archimedean Positivstellensatz). [→ 4.1.3, 3.7.6] Suppose (K,≤) is an
ordered subfield of R, n ∈ N0, T ⊆ K[X] is an Archimedean preorder containing K≥0,
S := {x ∈ Rn | ∀p ∈ T : p(x) ≥ 0} and f ∈ K[X]. Then the following are equivalent:

(a) f > 0 on S

(b) ∃N ∈N : f ∈ 1
N + T

Proof. (b) =⇒ (a) is trivial.

(a) =⇒ (b) Suppose that (a) holds. It is enough to show that f̂ > 0 on sper(K[X], T)

due to the abstract Archimedian Positivstellensatz 4.1.3 using 1
N = N

( 1
N

)2
. To this

end, let P ∈ sper(K[X], T). Choose a maximal prime cone Q of K[X] such that P ⊆ Q
by 3.2.3. Along with P, also Q is of course Archimedean. By 3.2.3, we have Q = P ∪ q
where q := supp Q. It follows that Q \−Q ⊆ P \−P and therefore it is enough to show
that f ∈ Q \−Q. By 4.1.4(d) and 4.2.1, there is some x ∈ S satisfying Q = ev−1

x (R≥0) =
{p ∈ K[X] | p(x) ≥ 0}. From f (x) > 0, we deduce now f ∈ Q \ −Q as desired.

Remark 4.2.3. If T is finitely generated over K≥0 in the situation of 4.2.2, then one
can reduce 4.2.2 alternatively by fattening to 4.1.3. This ultimately uses unnecessarily
the heavy artillery of real quantifier elimination 1.8.17 and is not applicable if T is not
finitely generated over K≥0. The principal reason why the real quantifier elimination is
not needed here is 1.1.17.

4.3 Schmüdgen’s characterization of Archimedean preorders of
the polynomial ring

Definition and Proposition 4.3.1. Let (A, T) be a preordered ring. Then

B(A,T) := {a ∈ A | ∃N ∈N : N ± a ∈ T}

is a subring of A which we call the ring of with respect to T arithmetically bounded elements
of A.

Proof. One sees immediately that B(A,T) is a subgroup of the additive group of A. It is
clear that 1 ∈ B(A,T). Finally, we have B(A,T)B(A,T) ⊆ B(A,T) as one sees immediately
from the identity

3N2 ± ab = (N + a)(N ± b) + N(N − a) + N(N ∓ b) (N ∈N, a, b ∈ A).

Lemma 4.3.2. Let (A, T) be a preordered ring such that 1
2 ∈ A. Then

a2 ∈ B(A,T) =⇒ a ∈ B(A,T)

for all a ∈ A.
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Proof. Choose N ∈N with (N − 1)− a2 ∈ T. Then

N ± a = (N − 1)− a2 +

(
1
2
± a
)2

+ 3
(

1
2

)2

∈ T.

Remark 4.3.3. If (A, T) is a preordered ring, then T is Archimedean if and only if
B(A,T) = A.

Lemma 4.3.4. Suppose (K,≤) is an ordered subfield of R, n ∈ N0 and T ⊆ K[X] is a
preorder containing K≥0. Then the following are equivalent:

(a) T is Archimedean.

(b) ∃N ∈N : N −∑n
i=1 X2

i ∈ T

(c) ∃N ∈N : ∀i ∈ {1, . . . , n} : N ± Xi ∈ T

Proof. (a) =⇒ (b) is trivial.

(b) =⇒ (c) If (b) holds, then N − X2
i ∈ T and thus X2

i ∈ B(A,T) for all i ∈ {1, . . . , n}.
Now apply 4.3.2.

(c) =⇒ (a) Since (K,≤) is Archimedean and K≥0 ⊆ T, we have K ⊆ B(A,T). If now
moreover (c) holds, then K[X] = B(A,T).

Theorem 4.3.5 (Schmüdgen’s Theorem [Sch, BW]). Suppose (K,≤) is an ordered subfield
of R, n ∈N0 and T a preorder of K[X] which is finitely generated over K≥0. Write

S := {x ∈ Rn | ∀p ∈ T : p(x) ≥ 0}.

Then
T Archimedean ⇐⇒ S compact.

Proof. [BW] “=⇒” Let T be Archimedean. By 4.3.4(b), there is some N ∈ N with N −
∑n

i=1 X2
i ∈ T. Then S is contained in the ball of radius

√
N centered at the origin and

thus bounded. Anyway S is already closed. Consequently, S is compact.
“⇐=” Let S be compact. Write r := ∑n

i=1 X2
i and choose N ∈ N such that N − r > 0

on S. By the Positivstellensatz 3.7.6, we find t ∈ T such that (1+ t)(N− r) ∈ 1+ T ⊆ T.
We know that T′ := T + (N − r)T is a preorder of K[X] that is Archimedean by 4.3.4.
We have (1 + t)T′ ⊆ T and N − r + Nt = (1 + t)(N − r) + tr ∈ T + T ⊆ T. Choose
N′ ∈N with N′ − t ∈ T′. Then

(1 + N′)(N′ − t) = (1 + t)(N′ − t) + (N′ − t)2 ∈ (1 + t)T′ + T ⊆ T + T ⊆ T

from which N′ − t ∈ T follows because of 1
1+N′ = (1 + N′)

( 1
1+N′

)2 ∈ T. We conclude
that

N(N′ + 1)− r = NN′ + N − r = (N − r + tN) + N(N′ − t) ∈ T + T ⊆ T.

Now 4.3.4 implies that T is Archimedean.
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Corollary 4.3.6 (Schmüdgen’s Positivstellensatz). [→ 4.2.2] Suppose (K,≤) is an ordered
subfield of R, n ∈ N0, T a preorder of K[X] which is finitely generated over K≥0. Suppose
S := {x ∈ Rn | ∀p ∈ T : p(x) ≥ 0} is compact and f ∈ K[X]. Then the following are
equivalent:

(a) f > 0 on S

(b) ∃N ∈N : f ∈ 1
N + T

Proof. By Schmüdgen’s Theorem 4.3.5, T is Archimedean. But then the Archimedean
Positivstellensatz 4.2.2 proves the equivalence of (a) and (b).

Remark 4.3.7. (a) Exactly as in 3.7.13, one sees that the hypothesis “T finitely gener-
ated over K≥0” cannot be replaced by the weaker hypothesis “K≥0 ⊆ T”.

(b) If one drops the requirement that S is compact, then 4.3.6 gets wrong as the example
K := R, n := 1, T := ∑ R[X]2 + ∑ R[X]2X3 and f := X + 1 shows: We have f > 0
on S = [0, ∞) but f /∈ T for degree reasons as one sees from 2.2.4(b).

(c) In the situation of 4.3.6, we unfortunately do not have in general

f ≥ 0 on S ⇐⇒ f ∈ T.

For this, consider K := R, n := 1, T := ∑ R[X]2 + ∑ R[X]2X3(1− X) and f := X.
Then f ≥ 0 on S = [0, 1]. Assume f ∈ T. Write f = ∑i p2

i + ∑j q2
j X3(1− X) for

some pi, qj ∈ R[X]. Evaluating in 0, yields 0 = ∑i pi(0)2 and thus pi(0) = 0 for all i.

Write pi = Xp′i for some p′i ∈ R[X]. Then X = f = X2
(

∑i p′2i + ∑j q2
j X(1− X)

)
 .

Version of Thursday 30th August, 2018, 22:11





§5 The real spectrum as a topological space

5.1 Tikhonov’s theorem

Remark 5.1.1. Any finite intersection of unions of certain sets is a union of finite inter-
sections of such sets [→ 1.8.1].

Reminder 5.1.2. [→ 1.8.2] Let M be a set.

(a) A set O ⊆P(M) is called a topology on M if

• M ∈ O ,

• ∀A1, A2 ∈ O : A1 ∩ A2 ∈ O and

• ∀A ⊆ O :
⋃

A ∈ O .

In this case, (M, O) is called a topological space and the elements of O are called its
open sets.

(b) Let G ⊆ P(M). Then the set of all unions of finite intersections of elements of G
(where

⋂
∅ := M) is obviously the smallest topology O on M such that G ⊆ O . It

is called the topology generated by G (on M).

(c) If O and O ′ are topologies on M, then O is called
{

coarser
finer

}
than O ′ if

{
O ⊆ O ′

O ⊇ O ′

}
.

(d) The finest topology on M is the discrete topology O := P(M).

(e) The coarsest topology on M is the trivial topology (in German: Klumpentopologie)
O := {∅, M}.

Reminder 5.1.3. Let (M, O) and (N, P) be topological spaces and f : M→ N be a map.
Then f is called continuous if f−1(B) ∈ O for all B ∈P .

Reminder 5.1.4. Let M be a set, (Ni, Pi)i∈I a family of topological spaces and ( fi)i∈I
a family of maps fi : M → Ni (i ∈ I). Then there exists a coarsest topology O on
M making all fi (i ∈ I) continuous. One calls O the initial topology (or weak topology)
with respect to ( fi)i∈I . If I = {1, . . . , n}, then O is also called the initial topology with
respect to f1, . . . , fn. This topology O is generated by { f−1

i (Bi) | i ∈ I, B ∈ Pi}. More
generally, the following holds: If Pi is generated by Gi for i ∈ I, then O is generated
by { f−1

i (B) | i ∈ I, B ∈ Gi}. It holds that O is the unique topology on M having the
following property: For every topological space (M′, O ′) and every g : M′ → M, the
map g is continuous if and only if all the maps fi ◦ g with i ∈ I are continuous.
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Example 5.1.5. (a) Let (N, P) be a topological space and M ⊆ N. Then one endows
M with the initial topology O with respect to M → N, x 7→ x. One calls O the
topology induced by P on M and (M, O) a subspace of (N, P). We have

O = {M ∩ B | B ∈P}.

(b) Let (Ni, Pi)i∈I be a family of topological spaces. Then there exists a coarsest topol-
ogy O on N := ∏i∈I Ni making all projections πi : N → Ni, (xj)j∈I 7→ xi (i ∈ I)
continuous. One calls O the product topology of the Pi (i ∈ I) on N and (N, O) the
product space of the (Ni, Pi) (i ∈ I). The elements of O are exactly the unions of sets
of the form ∏i∈I Bi where Bi ∈Pi for i ∈ I and #{i ∈ I | Bi 6= Ni} < ∞.

Remark 5.1.6. The constructions (a) and (b) in Example 5.1.5 commute in the following
sense: Let (Ni, Pi)i∈I be a family of topological spaces and (N, O) its product. Fur-
thermore, let (Mi)i∈I be a family of sets such that Mi ⊆ Ni for each i ∈ I and set
M := ∏i∈I Mi. Then O induces on M the product topology of the topologies induced
on the Mi by the Pi.

Definition 5.1.7. Let M be a set and S a Boolean algebra on M [→ 1.8.2] (for instance
S = P(M)). A set F ⊆ S is called a filter in S (or filter on M in case S = P(M)) if

• ∅ /∈ F , M ∈ F ,

• ∀U, V ∈ F : U ∩V ∈ F and

• ∀U ∈ F : ∀V ∈ S : (U ⊆ V =⇒ V ∈ F ).

If in addition ∀U ∈ S : (U ∈ F or {U ∈ F ), then F is called an ultrafilter.

Proposition 5.1.8. Let S be a Boolean algebra on the set M and F a filter in S . Then the
following are equivalent:

(a) F is an ultrafilter.

(b) ∀U, V ∈ S : (U ∪V ∈ F =⇒ (U ∈ F or V ∈ F ))

Proof. (a) =⇒ (b) Suppose that (a) holds and let U, V ∈ S such that U ∪ V ∈ F

and U /∈ F. To show: V ∈ F . Since F is an ultrafilter, we have {U ∈ F and thus
(U ∪V) ∩ {U ∈ F . Because of (U ∪V) ∩ {U ⊆ V it then also holds that V ∈ F .

(b) =⇒ (a) is trivial.

Example 5.1.9. Let (M, O) be a topological space and x ∈ M. Then

Ux := {U ∈P(M) | ∃A ∈ O : x ∈ A ⊆ U}

is a filter on M. One calls Ux the neighborhood filter of x and its elements the neighborhoods
of x. In general, Ux is not an ultrafilter since [−1, 1] = [−1, 0] ∪ [0, 1] is a neighborhood
of 0 in R as opposed to [−1, 0] and [0, 1].
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Definition 5.1.10. Let (M, O) be a topological space and F a filter on M. For x ∈ M,
one says that F converges to x and writes F → x if Ux ⊆ F . If F converges to exactly
one point x, one calls this the limit of F and writes x = lim F .

Example 5.1.11. Let (M, O) be a topological space and (an)n∈N a sequence in M. Then
F := {U ∈ P(M) | ∃N ∈ N : {an | n ≥ N} ⊆ U} is a filter on M. For x ∈ M, the
sequence (an)n∈N converges to x if and only if F converges to x.

Definition and Lemma 5.1.12. Suppose f : M→ N is a map and F a filter on M. Then
the image filter f (F ) := {V ∈ P(N) | ∃U ∈ F : f (U) ⊆ V} is a filter on N. If F is an
ultrafilter, then so is f (F ).

Proof. One sees immediately that f (F ) is a filter. Now let F be an ultrafilter. Suppose
V ⊆ N and V /∈ f (F ). To show: {V ∈ f (F ). For U := f−1(V), one has f (U) ⊆ V
and thus U /∈ F . But then f−1({V) = {U ∈ F . From f ({U) ⊆ {V, we obtain thus
{V ∈ f (F ).

Lemma 5.1.13. Let M be a set endowed with the initial topology with respect to a family
( fi)i∈I of maps fi : M → Ni (i ∈ I) into topological spaces Ni (i ∈ I). Let F be a filter
and x ∈ M. Then F → x ⇐⇒ ∀i ∈ I : fi(F )→ fi(x).

Proof. “=⇒” Suppose F → x and let i ∈ I. To show: fi(F )→ fi(x). Let V ∈ U fi(x). To
show: V ∈ fi(F ). Since fi is continuous, we have U := f−1

i (V) ∈ Ux and thus U ∈ F .
From fi(U) ⊆ V, we get V ∈ fi(F ).

“⇐=” Suppose fi(F ) → fi(x) for all i ∈ I. Let U ∈ Ux. To show: U ∈ F . Choose
n ∈N0, i1, . . . , in ∈ I and Vk open in Nik (k ∈ {1, . . . , n}) such that

x ∈ f−1
i1

(V1) ∩ . . . ∩ f−1
in

(Vn) ⊆ U.

Since F is a filter, it is enough to show that f−1
ik

(Vk) ∈ F for all k ∈ {1, . . . , n}. Fix
therefore k ∈ {1, . . . , n}. Since Vk is an (open) neighborhood of fik(x) in Nik , the hy-
pothesis yields Vk ∈ fik(F ). Hence there is U0 ∈ F such that fik(U0) ⊆ Vk. Now
everything follows from U0 ⊆ f−1

ik
( fik(U0)) ⊆ f−1

ik
(Vk).

Definition 5.1.14. Let (M, O) be a topological space. Then (M, O) is called a Hausdorff
space if every two distinct points of M can be separated by disjoint neighborhoods, i.e.,

∀x, y ∈ M : (x 6= y =⇒ ∃U ∈ Ux : ∃V ∈ Uy : U ∩V = ∅).

We call (M, O) quasicompact if every open cover of M possesses a finite subcover, i.e.,

∀A ⊆ O :
(

M =
⋃

A =⇒ ∃B ⊆ A :
(

#B < ∞ & M =
⋃

B
))

.

Furthermore, we call a quasicompact Hausdorff space compact.

Proposition 5.1.15. Suppose M is a set, S a Boolean algebra on M and U a filter on S . Then
the following are equivalent:
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(a) U is an ultrafilter in S .

(b) U is a maximal filter in S .

Proof. (a) =⇒ (b) Suppose that (a) holds and let F be a filter in S such that U ⊆ F .
In order to show F ⊆ U , we fix U ∈ F . If we had U /∈ U , we would get {U ∈ U ⊆ F
and thus ∅ = U ∩ {U ∈ F  .

(b) =⇒ (a) Suppose that (b) holds and let U ∈ S satisfy U /∈ U . To show: {U ∈ U .
It is enough to show that F := {V ∈ S | ∃A ∈ U : A ∩ {U ⊆ V} is a filter in S
because then it follows from U ⊆ F that {U ∈ F = U . For this, it suffices to show
∅ /∈ F . If we had ∅ ∈ F , then there would be an A ∈ U satisfying A ∩ {U = ∅ and
from A ⊆ U it would follow that U ∈ U  .

Theorem 5.1.16. Let M be a set, S a Boolean algebra on M and F a filter in S . Then there
is an ultrafilter U in S such that F ⊆ U .

Proof. By 5.1.15, it suffices to show that the set {F ′ | F ′ Filter in S , F ⊆ F ′} partially
ordered by inclusion has a maximal element. This follows from Zorn’s lemma since the
union of a nonempty chain of filters in S is again a filter in S .

Theorem 5.1.17. A topological space M is quasicompact if and only if each ultrafilter on the
set M converges in M.

Proof. Let M be a topological space. We show the equivalence of the following state-
ments:

(a) M is not quasicompact.

(b) There is an ultrafilter on M that does not converge.

(a) =⇒ (b) Suppose that (a) holds. Then for each x ∈ M, there is obviously an open
set Ax ⊆ M with x ∈ Ax in such a way that

⋃
x∈M Ax = M and Ax1 ∪ . . . ∪ Axn 6= M for

all n ∈N and x1, . . . , xn ∈ M. Then

F :=
{

U ∈P(M) | ∃n ∈N : ∃x1, . . . , xn ∈ M :
(
{Ax1

)
∩ . . . ∩

(
{Axn

)
⊆ U

}
is a filter on M that can be extended by 5.1.16 to an ultrafilter U on M. Let x ∈ M. We
show that U does not converge to x. If we had U → x, then Ax ∈ U in contradiction
to {Ax ∈ U .

(b) =⇒ (a) Suppose that (b) holds. Choose an ultrafilter U on M that does not
converge. Then for every x ∈ M there is an Ux ∈ Ux such that Ux /∈ U . WLOG Ux is
open for every x ∈ M. Of course M =

⋃
x∈M Ux. If n ∈ N and x1, . . . , xn ∈ M, then

{(Ux1 ∪ . . . ∪Uxn) =
(
{Ux1

)
∩ . . . ∩

(
{Uxn

)
∈ U and thus ∅ 6= {(Ux1 ∪ . . . ∪Uxn), i.e.,

M 6= Ux1 ∪ . . . ∪Uxn .

Theorem 5.1.18 (Tikhonov). Products of quasicompact topological spaces are quasicompact
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Proof. Let (Ni)i∈I be a family of quasicompact topological spaces and M := ∏i∈I Ni the
product space [→ 5.1.5(b)]. Consider for each i ∈ I the canonical projection πi : M →
Ni. According to 5.1.17 it suffices to show that every ultrafilter on M converges. For
this purpose, let U be an ultrafilter on M. By 5.1.12, the image filters πi(U ) (i ∈ I)
are again ultrafilters and therefore converge. Accordingly, we choose (xi)i∈I satisfying
πi(U )→ xi for each i ∈ I. From 5.1.13, we now get U → (xi)i∈I .

Corollary 5.1.19. Products of compact spaces are compact.

Remark 5.1.20. Let M be a topological space.
{

In 5.1.17, we have shown
Using 5.1.16, one shows as an exercise

}
that M is

{
quasicompact

a Hausdorff space

}
if and only if every ultrafilter on M converges to

{
at least
at most

}
one point of M. Therefrom, M is compact if and only if each ultrafilter on M converges
to exactly one point of M.

Reminder 5.1.21. Let M be a topological space and A ⊆ M. Then A is called closed in

M if {A is open in M. We call A
{

quasicompact
compact

}
if A furnished with the subspace

topology [→ 5.1.5(a)] is a
{

quasicompact
compact

}
topological space. Consequently, A is qua-

sicompact if and only if each open cover of A in M possesses a finite subcover, i.e.,

∀A ⊆ O :
(

A ⊆
⋃

A =⇒ ∃B ⊆ A :
(

#B < ∞ & A ⊆
⋃

B
))

.

It follows immediately that closed subsets of
{

quasicompact
compact

}
topological spaces are

again
{

quasicompact
compact

}
.

5.2 Topologies on the real spectrum

Definition 5.2.1. Let A be a commutative ring. We call the topology generated by

{{P ∈ sper A | â(P) > 0} | a ∈ A}

on sper A the spectral topology (or Harrison-topology) on sper A. Moreover, we call the
topology generated by CA [→ 3.6.1] or, equivalently [→ 3.6.2], by

{{P ∈ sper A | â(P) = 0} | a ∈ A} ∪ {{P ∈ sper A | â(P) > 0} | a ∈ A},

the constructible topology on sper A. Unless otherwise indicated, we endow sper A al-
ways with the spectral topology. It is coarser than the constructible topology.

Reminder 5.2.2. Let M and N be topological spaces. A bijection f : M → N is called
a homeomorphism if both f and f−1 are continuous. One calls M and N homeomorphic if
there exists a homeomorphism from M to N.

Version of Thursday 30th August, 2018, 22:11



86

Theorem 5.2.3. Let A be a commutative ring. Then sper A is compact with respect to the
constructible topology.

Proof. We endow the two-element set {0, 1} with the discrete topology [→ 5.1.2(d)].
Then {0, 1} is compact and so is {0, 1}A = ∏i∈A{0, 1} with respect to the product
topology by Tikhonov’s Theorem 5.1.18. For every B ⊆ A, we denote by

1B : A→ {0, 1}, a 7→
{

0 if a /∈ B
1 if a ∈ B

the corresponding characteristic function. Consider S := {1P | P ∈ sper A} ⊆ {0, 1}A

endowed with the subspace topology of the product topology. Obviously,

sper A→ S, P 7→ 1P

is a homeomorphism. Since {0, 1}A is compact by 5.1.19, it suffices to show that S is
closed in {0, 1}A since then S and consequently sper A is compact [→ 5.1.21]. Encoding
3.1.7 in characteristic functions, we obtain

S =
⋂

a,b∈A

{
χ ∈ {0, 1}A | χ(a) = 0 or χ(b) = 0 or χ(a + b) = 1

}
∩

⋂
a,b∈A

{
χ ∈ {0, 1}A | χ(a) = 0 or χ(b) = 0 or χ(ab) = 1

}
∩

⋂
a∈A

{
χ ∈ {0, 1}A | χ(a) = 1 or χ(−a) = 1

}
∩{

χ ∈ {0, 1}A | χ(−1) = 0
}
∩⋂

a∈A

{
χ ∈ {0, 1}A | χ(ab) = 0 or χ(a) = 1 or χ(−b) = 1

}
.

Being thus an intersection of closed sets, S is itself closed.

Corollary 5.2.4. Let A be a commutative ring. Then sper A is quasicompact.

Proof. Every open cover of sper A is in particular an open cover with respect to the finer
constructible topology. By 5.2.3, it possesses therefore a finite subcover.

Reminder 5.2.5. Let M be a topological space and A ⊆ M.
{

The interior A◦

The closure A

}
of A (in

M) is the
{

union
intersection

}
over all

{
open subsets

closed supersets

}
of A in M, i.e., the

{
largest open subset

smallest closed superset

}
of A in M. One shows immediately

A◦ = {x ∈ M | ∃U ∈ Ux : U ⊆ A} and

A = {x ∈ M | ∀U ∈ Ux : U ∩ A 6= ∅}.
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Therefore one calls the elements of
{

A◦

A

}
also

{
interior
adherent

}
points of A. One says that A

is dense in M if A = M or, equivalently, if every nonempty open subset of M contains
an element of A.

Remark 5.2.6. Let A be a commutative ring and let P, Q ∈ sper A. Then

P ⊆ Q ⇐⇒ ∀a ∈ A : (â(P) ≥ 0 =⇒ â(Q) ≥ 0)
⇐⇒ ∀a ∈ A : (â(Q) < 0 =⇒ â(P) < 0)

⇐⇒ ∀a ∈ A : (−̂a(Q) < 0 =⇒ −̂a(P) < 0)
⇐⇒ ∀a ∈ A : (â(Q) > 0 =⇒ â(P) > 0)
⇐⇒ ∀U ∈ UQ : P ∈ U
⇐⇒ ∀U ∈ UQ : U ∩ {P} 6= ∅

⇐⇒ Q ∈ {P}.

Thus if there are P, Q ∈ sper A with P ⊂ Q, then sper A ist not a Hausdorff space. For
example, sper R[X] is not a Hausdorff space [→ 3.6.5].

Remark 5.2.7. Suppose A and B are commutative rings and ϕ : A → B is a ring homo-
morphism. Then

sper ϕ : sper B→ sper A, Q 7→ ϕ−1(Q)

is continuous with respect to the spectral topologies on both sides as well as with re-
spect to the constructible topologies on both sides because for a ∈ A, we have

(sper ϕ)−1({P ∈ sper A | â(P) > 0}) = {Q ∈ sper B | â((sper ϕ)(Q)) > 0}
= {Q ∈ sper B | â(ϕ−1(Q)) > 0}
= {Q ∈ sper B | a ∈ ϕ−1(Q) \ −ϕ−1(Q)}
= {Q ∈ sper B | a ∈ ϕ−1(Q \ −Q)}
= {Q ∈ sper B | ϕ(a) ∈ Q \ −Q}

= {Q ∈ sper B | ϕ̂(a)(Q) > 0}

and analogously

(sper ϕ)−1({P ∈ sper A | â(P) ≥ 0}) = {Q ∈ sper B | ϕ̂(a)(Q) ≥ 0}.

Remark 5.2.8. Let (A, T) be a preordered ring [→ 3.4.3]. Then

sper(A, T) =
⋂
t∈T

{
P ∈ sper A | t̂(P) ≥ 0

}
,

as an intersection of closed sets, is again closed in sper A, namely with respect to
the spectral but also with respect to the constructible topology on sper A. By 5.1.21,
sper(A, T) is thus quasicompact with respect to the spectral and compact with respect
to the constructible topology.
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5.3 The real spectrum of polynomial rings

As in §3.6, we fix in this section an ordered field (K,≤), we denote by R := (K,≤) its
real closure, we let n ∈ N0, A := K[X] = K[X1, . . . , Xn] and T := ∑ K≥0A2. More-
over, we denote by S := Sn,R the Boolean algebra of all K-semialgebraic subsets of Rn

[→ 1.8.3, 1.9.3] and by C := C(A,T) the Boolean algebra of all constructible subsets of
sper(A, T) [→ 3.6.1]. Consider again the isomorphisms of Boolean algebras

Slim: C → S , C 7→ {x ∈ Rn | Px ∈ C}

and Fatten := Slim−1 [→ 3.6.4].

Theorem 5.3.1. Let S ∈ S . Then Fatten(S) is the closure of {Px | x ∈ S} in sper(A, T) (or
equivalently in sper A [→ 5.2.8]) with respect to the constructible topology.

Proof. For the duration of this proof, we endow sper(A, T) with the constructible topol-
ogy. Since {Fatten(S) ∈ C is open, Fatten(S) is closed. Because of

S = Slim(Fatten(S)) 3.6.4
= {x ∈ Rn | Px ∈ Fatten(S)},

we have {Px | x ∈ S} ⊆ Fatten(S) and thus {Px | x ∈ S} ⊆ Fatten(S). In order to
show Fatten(S) ⊆ {Px | x ∈ S}, we let P ∈ Fatten(S) and U ∈ UP. To show: U ∩
{Px | x ∈ S} 6= ∅. WLOG U is open. WLOG U ⊆ Fatten(S) (because Fatten(S)
is open and P ∈ Fatten(S), one can otherwise replace U by U ∩ Fatten(S) ∈ UP).
WLOG U = {Q ∈ sper(A, T) | f̂ (Q) = 0, ĝ1(Q) > 0, . . . , ĝn(Q) > 0} for certain
f , g1, . . . , gn ∈ A. Since Slim is an isomorphism of Boolean algebras by 3.6.4, it follows
from ∅ 6= U ⊆ Fatten(S) that ∅ 6= Slim(U) ⊆ Slim(Fatten(S)) = S. Taking into
account that Slim(U) = {x ∈ Rn | f (x) = 0, g1(x) > 0, . . . , gn(x) > 0}, there is
thus an x ∈ S satisfying f (x) = 0, g1(x) > 0, . . . , gn(x) > 0. This translates into
f̂ (Px) = 0, ĝ1(Px) > 0, . . . , ĝm(Px) > 0 and thus into Px ∈ U.

Corollary 5.3.2. {Px | x ∈ Rn} lies dense in sper(A, T) with respect to the constructible
topology and thus also with respect to the spectral topology.

Lemma 5.3.3. Let F be
{

a filter
an ultrafilter

}
in S . Then {Fatten(S) | S ∈ F} is

{
a filter

an ultrafilter

}
in C and

⋂{Fatten(S) | S ∈ F} is
{

nonempty
a singleton

}
.

Proof. The first part follows immediately from the fact that Fatten is according to 3.6.4

an isomorphism of Boolean algebras combined with the definition of
{

a filter
an ultrafilter

}
5.1.7. Since Fatten(S) is for each S ∈ F closed with respect to the constructible topol-
ogy, it would follow from

⋂{Fatten(S) | S ∈ F} = ∅ together with the compact-
ness of sper(A, T) with respect to the constructible topology [→ 5.2.8] that there would
be n ∈ N and S1, . . . , Sn ∈ F such that Fatten(S1) ∩ . . . ∩ Fatten(Sn) = ∅, which
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would imply Fatten(S1 ∩ . . . ∩ Sn) = ∅ and thus ∅ = S1 ∩ . . . ∩ Sn ∈ F  . Hence⋂{Fatten(S) | S ∈ F} 6= ∅. Finally, let F and thus {Fatten(S) | S ∈ F} be an ul-
trafilter and fix P, Q ∈ ⋂{Fatten(S) | S ∈ F}. Assume P 6= Q. Since sper(A, T) is a
Hausdorff space with respect to the constructible topology, there is some C ∈ C such
that P ∈ C but Q /∈ C. Since {Fatten(S) | S ∈ F} is an ultrafilter in C , we obtain
C = Fatten(S) or {C = Fatten(S) for some S ∈ F . In the first case, it follows that
Q /∈ Fatten(S)  , in the second that P /∈ Fatten(S)  .

Lemma 5.3.4. Let U be an ultrafilter in S . Then

PU := { f ∈ A | {x ∈ Rn | f (x) ≥ 0} ∈ U } ∈ sper(A, T)

and
⋂{Fatten(S) | S ∈ U } = {PU }.

Proof. By Lemma 5.3.3, there is some Q ∈ sper(A, T) satisfying⋂
{Fatten(S) | S ∈ U } = {Q}.

We show PU = Q. If f ∈ PU , then Q ∈ Fatten({x ∈ Rn | f (x) ≥ 0}), i.e., f̂ (Q) ≥ 0 and
hence f ∈ Q. If on the other hand f ∈ A \ PU , then {x ∈ Rn | f (x) < 0} ∈ U (since
U is an ultrafilter) and thus Q ∈ Fatten({x ∈ Rn | f (x) < 0}), i.e., f̂ (Q) < 0 and hence
f /∈ Q.

Lemma 5.3.5. Let P ∈ sper(A, T). Then

UP := {S ∈ S | ∃ f ∈ supp P : ∃m ∈N : ∃g1, . . . , gm ∈ P \ −P :
{x ∈ Rn | f (x) = 0, g1(x) > 0, . . . , gm(x) > 0} ⊆ S}

is an ultrafilter in S and we have {S ∈ S | P ∈ Fatten(S)} = UP.

Proof. Since {C ∈ C | P ∈ C} is an ultrafilter in C and Slim: C → S is an isomor-
phism of Boolean algebras, {S ∈ S | P ∈ Fatten(S)} is an ultrafilter in S . From the
description of K-semialgebraic subsets of Rn implied by Theorem 1.8.6, one gets that
this ultrafilter equals

{S ∈ S |∃S′ ⊆ S : ∃ f , g1, . . . , gm ∈ A :
S′ = {x ∈ Rn | f (x) = 0, g1(x) > 0, . . . , gm(x) > 0}& P ∈ Fatten(S′)} = UP

since Fatten is an isomorphism of Boolean algebras.

Theorem 5.3.6 (Bröcker’s ultrafilter theorem [Brö]). The correspondence

U 7→ PU [→ 5.3.4]
UP ← [ P [→ 5.3.5]

defines a bijection between the set of ultrafilters in S and sper(A, T).
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Proof. To show: (a) If U is an ultrafilter in S , then U = UPU
.

(b) If P ∈ sper(A, T), then P = PUP .

In order to show (a), we let U be an ultrafilter in S . By 5.3.5, we have to show that
{S ∈ S | PU ∈ Fatten(S)} = U . Since Fatten is an isomorphism of Boolean algebras
by 3.6.4, {S ∈ S | PU ∈ Fatten(S)} is a filter in S . Since U is a maximal filter in S [→
5.1.15], it suffices to show that U ⊆ {S ∈ S | PU ∈ Fatten(S)}. To this end, let S ∈ U .
Then {PU } ⊆ Fatten(S) by 5.3.4 and thus PU ∈ Fatten(S).

For (b), we let P ∈ sper(A, T). By 5.3.4,
⋂{Fatten(S) | S ∈ UP} consists of exactly

one element, namely PUP . Therefore it is enough to show P ∈ ⋂{Fatten(S) | S ∈ UP}.
Thus fix S ∈ UP. By 5.3.5, we then obtain P ∈ Fatten(S).

Proposition 5.3.7. Every semialgebraic subset of Rn [→ 1.8.3] is even K-semialgebraic.

Proof. To begin with, we show that all one-element subsets of R are K-semialgebraic.
For this, let a ∈ R. To show: {a} is K-semialgebraic. Since R|K is algebraic, there is
f ∈ K[X] \ {0} with f (a) = 0. Set k := #{x ∈ R | f (x) = 0} and choose j ∈ {1, . . . , k}
such that a is the j-th root of f when the roots of f in R are arranged in increasing order
with respect to the order ≤R of R. By applying the real quantifier elimination 1.8.17 k
times, we obtain that

{a} = {y ∈ R | ∃x1, . . . , xk ∈ R : (x1 <R . . . <R xk & f (x1) = . . . = f (xk) = 0 & xj = y)}

is K-semialgebraic. Now consider an arbitrary p ∈ R[X]. It suffices to show that {x ∈
Rn | p(x) ≥ 0} is K-semialgebraic. Write p = ∑α∈Nn

|α|≤d
aαXα [→ 2.4.6] with d := deg p

and aα ∈ R. Since all {aα} are K-semialgebraic by what has already been shown, real
quantifier elimination yields that

{x ∈ Rn | p(x) ≥ 0} =
{

x ∈ Rn |∃ family (yα)|α|≤d in R :(
&
|α|≤d

yα ∈ {aα}& ∑
|α|≤d

yαxα1
1 · · · x

αn
n ≥ 0

)}

is K-semialgebraic.

Theorem 5.3.8. sper R[X]→ sper(A, T), P 7→ P ∩ A is bijective.

Proof. Because of 5.3.7, we obtain from applying the ultrafilter theorem of Bröcker twice
(once in the special case K = R) that

sper R[X]→ sper(A, T)
{ f ∈ R[X] | {x ∈ Rn | f (x) ≥ 0} ∈ U } 7→ { f ∈ A | {x ∈ Rn | f (x) ≥ 0} ∈ U }

(U an ultrafilter in S )

is a bijection.
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Corollary 5.3.9. sper R(X)→ sper(K(X), ∑ K≥0K(X)2), P 7→ P ∩ K(X) is bijective.

Proof. In the commutative diagram

sper R(X) sper(K(X), ∑ K≥0K(X)2)

{P ∈ sper R[X] | supp P = (0)} {P ∈ sper A | supp P = (0)}

P 7→ P ∩ R[X]

P 7→ P ∩ K(X)

P 7→ P ∩ A

P 7→ P ∩ A

both vertical arrows represent bijections by Proposition 3.3.4. It therefore suffices to
show that the lower horizontal arrow represents a bijection. Because of the bijection
from 5.3.8, it therefore suffices to show that every P ∈ sper R[X] with supp P 6= (0)
satisfies even supp(P ∩ A) 6= (0). Thus fix P ∈ sper R[X] and f ∈ p := supp P with
f 6= 0. Since K has characteristic 0, there exists an extension field L of K containing all
coefficients of f such that L|K is a finite Galois extension. By extending the action of
the Galois group Aut(L|K) from L to L[X], we obtain h := ∏g∈Aut(L|K) g f ∈ A \ {0}.
Obviously, h ∈ p∩ A = supp(P ∩ A).

Theorem 5.3.10. Let (L,≤′) be an ordered extension field of (K,≤). Then

sper
(

L[X], ∑ L≥′0L[X]2
)
→ sper(A, T), P 7→ P ∩ A

is surjective.

Proof. Let S ′′ denote the Boolean algebra of all L-semialgebraic subsets of R′n where
R′ := (L, L≥′0). The Boolean algebra S ′ ⊆ S ′′ of all K-semialgebraic subsets of R′n

is isomorphic to S in virtue of the TransferR,R′ : S → S ′ [→ 1.9.5]. Now let Q ∈
sper(A, T) be given. We show that there is P ∈ sper(L[X], ∑ L≥′0L[X]2) with Q = P∩A.
By 5.3.5, UQ is an ultrafilter in S . Since UQ is a filter in S ,

F := {S′′ ∈ S ′′ | ∃S ∈ UQ : TransferR,R′(S) ⊆ S′′}

is a filter in S ′′. Choose by 5.1.16 an ultrafilter U in S ′′ such that F ⊆ U . By Bröcker’s
ultrafilter theorem 5.3.6, there is P ∈ sper(L[X], ∑ L≥′0L[X]2) such that U = UP. We
have

Q 5.3.6
= PUQ = { f ∈ A | {x ∈ Rn | f (x) ≥ 0} ∈ UQ}

= { f ∈ A | TransferR,R′({x ∈ Rn | f (x) ≥ 0}) ∈ {TransferR,R′(S) | S ∈ UQ}}
!
= { f ∈ A | {x ∈ R′n | f (x) ≥′′ 0} ∈ U } = PU ∩ A = PUP ∩ A 5.3.6

= P ∩ A

where≤′′ denotes the unique order on R′ and the equality flagged with an exclamation
mark follows from the claim

U ∩S ′ = {TransferR,R′(S) | S ∈ UQ}.
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The inclusion “⊇” in this claim is trivial. The other inclusion “⊆” follows the fact that
{TransferR,R′(S) | S ∈ UQ} is an ultrafilter and thus a maximal filter in S ′ and that
U ∩S ′ is a filter in S ′.

5.4 The finiteness theorem for semialgebraic classes

In this section, we fix a real closed field R0 (in the applications, one mostly has R0 =
R or R0 = Ralg [→ 1.7.12]). Moreover, we let R denote the class of all real closed
extension fields of R0 [→ 1.8.4(b)] (that is the class of all real closed fields in case R0 =
Ralg). Whoever gets vertiginous from this [→ 1.8.4(c)] can take for R a set of real closed
extension fields of R0 that is sufficiently large to contain all representation fields RP of
prime cones P ∈ sper R0[X] [→ 3.1.15] (which we perceive as an extension fields of R0
in virtue of the representation $P of P, confer the discussion before 3.6.3).

Theorem 5.4.1 (Finiteness theorem for semialgebraic classes). Let n ∈ N0 and E a set of
n-ary R0-semialgebraic classes. Then the following are equivalent:

(a)
⋃

E = Rn

(b) ∃k ∈N : ∃S1, . . . , Sk ∈ E : S1 ∪ . . . ∪ Sk = Rn.

(c) ∃k ∈N : ∃S1, . . . , Sk ∈ E : SetR0(S1) ∪ . . . ∪ SetR0(Sk) = Rn
0 [→ 1.9.3].

Proof. (b)⇐⇒ (c) is clear because the setification SetR0 : Sn → Sn,R0 [→ 1.9.3] and thus
also the classification ClassR0 = Set−1

R0
: Sn,R0 → Sn is an isomorphism of Boolean

algebras [→ 1.9.4].
(b) =⇒ (a) is trivial.
(a) =⇒ (b) Suppose that (a) holds. In 3.6.4, we have shown that

Φ : Sn → CR0[X], S 7→ {P ∈ sper R0[X] | (RP, ($P(X1), . . . , $P(Xn))) ∈ S}

is an isomorphism of Boolean algebras. Moreover, we have⋃
{Φ(S) | S ∈ E } = sper R0[X]

by the definition of Φ. From 5.2.3, we get the existence of k ∈ N and S1, . . . , Sk ∈ E
satisfying Φ(S1) ∪ . . . ∪ Φ(Sk) = sper R0[X]. Since Φ is an isomorphism, we deduce
S1 ∪ . . . ∪ Sk = Rn.

Corollary 5.4.2. Let n ∈N0 and E a set of n-ary R0-semialgebraic classes satisfying

∀S1, S2 ∈ E : ∃S3 ∈ E : S1 ∪ S2 ⊆ S3.

Then the following are equivalent:

(a)
⋃

E = Rn
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(b) S = Rn for some S ∈ E

(c) SetR0(S) = Rn
0 for some S ∈ E

Remark 5.4.3. In practice, 5.4.2 is mostly applied in the following context: One has
a certain true statement about real numbers (for example that R is Archimedean [→
1.1.9(a)]). Now one is interested in one of the following questions:

(a) Does the statement hold for all real closed extension fields of R? (In our example:
Is every real closed field extension of R Archimedean?)

(b) Does the statement hold in a strengthened form (with certain quantitative addi-
tional information, so called “bounds”) for every real closed extension of R? (In
our example: Is there an N ∈ N such that we have for all real closed field exten-
sions R of R and all a ∈ R that |a| ≤ N?)

(c) Does the statement hold in the strengthened from (that is “with bounds”) for the
real numbers? (In our example: Is there some N ∈ N such that for all a ∈ R one
has |a| ≤ N?)

5.4.2 establishes under certain circumstances a connection between these three ques-
tions. For this aim, one tries to express the statement in such a way that for n numbers
a certain “semialgebraic event” occurs where the event is the existence of a bound. The
set of events is E .

Example 5.4.4. For n := 1, R0 := R and E := {{(R, a) ∈ R1 | −N ≤ a ≤ N} | N ∈N},
5.4.2 says that the following are equivalent:

(a) For every real closed extension field R of R and every a ∈ R, there is some N ∈ N

with |a| ≤ N, i.e., every real closed extension field R of R is Archimedean.

(b) There is some N ∈ N such that for every real closed extension field R of R and
every a ∈ R we have |a| ≤ N.

(c) There is some N ∈N such that for every a ∈ R we have |a| ≤ N.

Since (c) obviously fails, we see that (a) also fails. Thus we see (once more) that there
are non-Archimedean real closed (extension) fields (of R).

Theorem 5.4.5 (Existence of degree bounds for Hilbert’s 17th problem). For all n, d ∈
N0, there is some D ∈N such that for every real closed field R and every f ∈ R[X]d [→ 1.5.1]

with f ≥ 0 on Rn, there are p1, . . . , pD ∈ R[X]D and q ∈ R[X] \ {0} with f = ∑D
i=1

(
pi
q

)2
.

Proof. Let n, d ∈N0. Set N := dim R[X]d and write {α ∈Nn
0 | |α| ≤ N} = {α1, . . . , αN}.
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Set R0 := Ralg and

SD :=


(R, (a1, . . . , aN)) ∈ RN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
∀x ∈ Rn :

N

∑
i=1

aix
αi1
1 · · · x

αin
n ≥ 0

)
=⇒

There are families (biα)1≤i≤D
|α|≤D

and (cα)|α|≤D 6= 0 in R

such that(
N

∑
i=1

aiXαi

)(
∑
|α|≤D

cαXα

)2

=
D

∑
i=1

(
∑
|α|≤D

biαXα

)2


for each D ∈ N. Obviously, SD is for each D ∈ N an R0-semialgebraic class since the
polynomial identity in the last part of its specification can for example be expressed
by finitely many polynomial equations in the ai, biα and cα, the requirement on the
existence of the two finite families and the quantification “∀x ∈ Rn” is allowed because
of the real quantifier elimination 1.8.17. Set E := {SD | D ∈ N} and observe that
∀D1, D2 ∈ N : ∃D3 ∈ N : SD1 ∪ SD2 ⊆ SD3 (take D3 := max{D1, D2}). By Artin’s
solution to Hilbert’s 17th problem 2.5.2, we have

⋃
E = RN . Now 5.4.2 yields SD = RN

for some D ∈N.

Remark 5.4.6. Recently, Lombardi, Perrucci and Roy [LPR] managed to prove that one
can choose in 5.4.5

D := 222d4n

.

We will neither use nor prove this in this lecture.

Definition and Proposition 5.4.7. Let (K,≤) be an ordered extension field of R. Then

O(K,≤) := B(K,K≥0) = {a ∈ K | ∃N ∈N : |a| ≤ N}

is a subring of K [→ 4.3.1] with a single maximal ideal

m(K,≤) :=
{

a ∈ K | ∀N ∈N : |a| ≤ 1
N

}
with group of units

O×
(K,≤) = O(K,≤) \m(K,≤) =

{
a ∈ K | ∃N ∈N :

1
N
≤ |a| ≤ N

}
.

We call the elements of


O(K,≤)
m(K,≤)

K \O(K,≤)

 the


finite

infinitesimal
infinit

 elements of (K,≤). For every

a ∈ O(K,≤), there is exactly one st(a) ∈ R, called the standard part of a, such that

a− st(a) ∈ m(K,≤).
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The map O(K,≤) → R, a 7→ st(a) is a ring homomorphism with kernel m(K,≤). If a, b ∈ O(K,≤)
satisfy st(a) < st(b), then a < b. The standard part st(p) of a polynomial p ∈ O(K,≤)[X] arises
by replacing each coefficient of p by its standard part. Also O(K,≤)[X] → R[X], p 7→ st(p) is
a ring homomorphism.

Proof. The existence of the standard part follows easily from the completeness of R

[→ 1.1.16] and its uniqueness is trivial. The rest is also easy. We show exemplarily:

(a) st(ab) = (st(a))(st(b)) for all a, b ∈ O(K,≤)

(b) st(a) < st(b) =⇒ a < b for all a, b ∈ O(K,≤)

To show (a), let a, b ∈ O(K,≤). Because of a− st(a), b− st(b) ∈ m(K,≤), we have

ab− (st(a))(st(b)) = (ab− (st(a))b) + ((st(a))b− (st(a))(st(b)))
= (a− st(a))b + (st(a))(b− st(b)) ∈ m(K,≤) +m(K,≤) ⊆ m(K,≤)

For (b), we fix again a, b ∈ O(K,≤) with st(a) < st(b). Choose N ∈N with

st(b)− st(a) >
1
N

.

Then |a− st(a)| ≤ 1
2N and |b− st(b)| ≤ 1

2N and thus

a = a− st(a) + st(a) ≤ |a− st(a)|+ st(a) ≤ 1
2N

+ st(a)− st(b) + st(b)

<
1

2N
− 1

N
+ st(b) = − 1

2N
+ st(b)− b + b

≤ − 1
2N

+ |b− st(b)|+ b ≤ − 1
2N

+
1

2N
+ b = b

Example 5.4.8 (Nonexistence of degree bounds for Schmüdgen’s Positivstellensatz [→
4.3.6]). For every ε ∈ R>0, we have X + ε > 0 on [0, 1] so that Schmüdgen’s Positivstel-
lensatz 4.3.6 together with 2.1.1(b) yields p1, p2, q1, q2 ∈ R[X] such that

(∗) X + ε = p2
1 + p2

2 + (q2
1 + q2

2)X3(1− X).

One can ask the question if there is in analogy to 5.4.5 a D ∈N such that for all ε ∈ R>0
there are p1, p2, q1, q2 ∈ R[X]D satisfying (∗). To this end, consider for each D ∈N

SD :=


(R, ε) ∈ R1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ε > 0 =⇒ ∃b0, . . . , bD, b′0, . . . , b′D, c0, . . . , cD, c′0, . . . , c′D ∈ R :

X + ε =

(
D

∑
i=0

biXi

)2

+

(
D

∑
i=0

b′i X
i

)2

+( D

∑
i=0

ciXi

)2

+

(
D

∑
i=0

c′iX
i

)2
X3(1− X)
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As in the proof of 5.4.5, one shows that SD is for each D ∈ N an R-semialgebraic class.
Set E := {SD | D ∈N}. We claim that the answer to the above question is no. Assume
it would be yes. Then SetR(SD) = R for some D ∈ N and thus

⋃
E = R1 by 5.4.2.

Choose a non-Archimedean real closed extension field R of R and an ε > 0 which is
infinitesimal in R. Then there are p1, p2, q1, q2 ∈ R[X] satisfying (∗). It suffices to show
that all coefficients of these four polynomials are finite in R [→ 5.4.7] since then X =
st(X + ε) = (st(p1))

2 + (st(p2))2 + ((st(q1))
2 + (st(q2))2)X3(1− X) in contradiction to

4.3.7. It therefore suffices to show that the coefficient c of biggest absolute value among
all coefficients of the four polynomials is finite. Assume it were infinite. Then 1

c would
be infinitesimal and

0 = st
(

X + ε

c2

)
= st

(( p1

c

)2
+
( p2

c

)2
+

((q1

c

)2
+
(q2

c

)2
)

X3(1− X)

)
=
(

st
( p1

c

)
︸ ︷︷ ︸

p̃1

)2
+
(

st
( p2

c

)
︸ ︷︷ ︸

p̃2

)2
+
((

st
(q1

c

)
︸ ︷︷ ︸

q̃1

)2
+
(

st
(q2

c

)
︸ ︷︷ ︸

q̃2

)2)
X3(1− X).

It follows that p̃1 = p̃2 = q̃1 = q̃2 = 0 on (0, 1) and thus p̃1 = p̃2 = q̃1 = q̃2 = 0,
contradicting the choice of c  .

Remark 5.4.9. Completely analogous to 5.4.5, one can prove the existence of degree
bounds for the real Stellensätze 3.7.5, 3.7.6 and 3.7.7 in the case K = R.
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§6 Semialgebraic geometry

Throughout this chapter, we let R be a real closed field and K a subfield of R. Moreover,
Sn denotes for each n ∈ N0 the Boolean algebra of all K-semialgebraic subsets of Rn

[→ 1.9.3, 1.8.3].

6.1 Semialgebraic sets and functions

Reminder 6.1.1. [→ 1.8.6, 1.8.4(a)] Every K-semialgebraic subset of Rn is of the form

k⋃
i=1

{x ∈ Rn | fi(x) = 0, gi1(x) > 0, . . . , gim(x) > 0}

for some k, m ∈N0, fi, gij ∈ K[X1, . . . , Xn].

Reminder 6.1.2. [→ 1.8.17] For all n ∈N0 and S ∈ Sn+1,

{x ∈ Rn | ∃y ∈ R : (x, y) ∈ S}, {x ∈ Rn | ∀y ∈ R : (x, y) ∈ S} ∈ Sn.

Definition 6.1.3. Let m, n ∈N0 and A ⊆ Rm. A map f : A→ Rn is called K-semialgebraic
if its graph

Γ f := {(x, y) ∈ A× Rn | y = f (x)} ⊆ Rm+n

is K-semialgebraic. We say “semialgebraic” for “R-semialgebraic”.

Remark 6.1.4. The domains of K-semialgebraic functions are K-semialgebraic. Indeed,
if A ⊆ Rm and f : A→ Rn is K-semialgebraic, then by 6.1.2 also

{x ∈ Rm | ∃y ∈ Rn : (x, y) ∈ Γ f } = A

is K-semialgebraic.

Definition 6.1.5. We equip R with the order topology which is generated [→ 5.1.2(b)]
by the intervals (a, b)R with a, b ∈ R [→ 1.4.15(b)]. Moreover, we endow Rn with the
corresponding product topology [→ 5.1.5(b)] which is generated according to 5.1.4 by
the sets ∏n

i=1(ai, bi)R with ai, bi ∈ R.

Remark 6.1.6. For R = R, the topology introduced in 5.1.4 on Rn = Rn is obviously the
usual Euclidean topology on Rn.
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Exercise 6.1.7. Let m, n ∈N0, A ⊆ Rm and f : A→ Rn a map. Then f is continuous [→
5.1.3, 5.1.5(a)] if and only if

∀x ∈ A : ∀ε ∈ R>0 : ∃δ ∈ R>0 : ∀y ∈ A : (‖x− y‖∞ < δ =⇒ ‖ f (x)− f (y)‖∞ < ε)

where

‖x‖∞ :=

{
0 if k = 0
max{|x1|, . . . , |xk|} if k > 0

for x ∈ Rk.

Proposition 6.1.8. The maps

R2 → R, (a, b) 7→ a + b,

R2 → R, (a, b) 7→ ab,

R \ {0} → R, a 7→ a−1,
R→ R, a 7→ |a| [→ 1.1.8],

R≥0 → R, a 7→
√

a [→ 1.4.7]

are Q-semialgebraic and continuous.

Proof. It is clear that these maps are Q-semialgebraic. Because of the real quantifier
elimination 1.8.17, the class of all real closed fields for which the claim holds is semial-
gebraic [→ 1.8.3]. Since the claim is known to hold for R = R, it holds also for all real
closed fields [→ 1.8.5].

Corollary 6.1.9. Polynomial maps Rm → Rn are continuous.

Corollary 6.1.10. Rn → R, x 7→ ‖x‖ := ‖x‖2 :=
√

x2
1 + . . . + x2

n is continuous.

Remark 6.1.11. Because of 6.1.10 and 6.1.7, there is to every ε ∈ R>0 some δ ∈ R>0
such that ∀x ∈ Rn : (‖x‖∞ < δ =⇒ ‖x‖ < ε). On the other hand, ‖x‖∞ ≤ ‖x‖
for all x ∈ Rn. It follows that the topology on Rn is also generated by the open balls
{x ∈ Rn | ‖x − y‖ < ε} (y ∈ Rn, ε > 0) and that 6.1.7 holds also with ‖.‖ instead of
‖.‖∞.

Remark 6.1.12. (a) By 6.1.9 and 6.1.11, Rn is obviously endowed with the initial topol-
ogy with respect to all maps Rn → R, x 7→ p(x) (p ∈ R[X]) [→ 5.1.4].

(b) Because of (a), the topology on Rn is obviously generated by the sets

{x ∈ Rn | p(x) > 0} (p ∈ R[X]).

(c) Viewing Rn in virtue of the injective map

Rn → sper R[X], x 7→ Px = { f ∈ R[X] | f (x) ≥ 0}

as a subset of sper R[X], the topology on Rn is due to (b) induced by the spectral
topology [→ 5.2.1] on sper R[X].
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Theorem 6.1.13. (a) If A ⊆ Rm and f : A → Rn is K-semialgebraic, then f (B) ∈ Sn for all
B ∈ Sm with B ⊆ A and f−1(C) ∈ Sm for all C ∈ Sn.

(b) If A ⊆ R`, B ⊆ Rm, f : A→ B and g : B→ Rn are K-semialgebraic, then g ◦ f : A→ Rn

is again K-semialgebraic.

(c) If A ∈ Sn, then the K-semialgebraic functions A→ R form a subring of the ring RA of all
functions A→ R.

Proof. (a) Let A ⊆ Rm and f : A → Rn be K-semialgebraic. By 6.1.2, with Γ f also
f (B) = {y ∈ Rn | ∃x ∈ Rm : (x ∈ B & (x, y) ∈ Γ f )} is for all B ∈ Sm with B ⊆ A
K-semialgebraic, and f−1(C) = {x ∈ Rm | ∃y ∈ Rn : (y ∈ C & (x, y) ∈ Γ f )} is for
all C ∈ Sn also K-semialgebraic.

(b) Suppose A ⊆ R`, B ⊆ Rm and f : A→ B as well as g : B→ Rn are K-semialgebraic.
Then Γ f ∈ S`+m and Γg ∈ Sm+n and thus

Γg◦ f = {(x, z) ∈ A× Rn | ∃y ∈ Rm : ((x, y) ∈ Γ f & (y, z) ∈ Γg)} ∈ S`+n.

Hence g ◦ f is K-semialgebraic.

(c) If A ∈ Sn and f1, f2 : A→ R are K-semialgebraic, then also

A→ R2, x 7→ ( f1(x), f2(x))

is K-semialgebraic. Now apply 6.1.8 and (b).

Example 6.1.14. If R is a non-Archimedean (real closed) extension of R, then [0, 1]R is
not compact [→ 5.1.14]. Indeed, if ε ∈ mR [→ 5.4.7] with ε > 0, then

[0, 1]R ⊆
⋃

a∈[0,1]R

(a− ε, a + ε)R,

but there is no N ∈ N and a1, . . . , aN ∈ [0, 1]R with [0, 1]R ⊆
⋃N

k=1(ak − ε, ak + ε)R (for
otherwise [0, 1]R = st([0, 1]R) ⊆ {st(a1), . . . , st(aN)}  ).

Definition 6.1.15. Let A ⊆ Rn. We call A bounded if there is b ∈ R with ‖x‖ ≤ b
for all x ∈ A [→ 6.1.10]. Moreover, A is called K-semialgebraically compact if A ∈ Sn
and A is bounded and closed. We simply say “semialgebraically compact” instead of
“R-semialgebraically compact”.

Remark 6.1.16. From analysis, one knows for R = R: A K-semialgebraic set A ⊆ Rn is
compact if and only if it is K-semialgebraically compact.

Proposition 6.1.17. Let A ∈ Sn. Then the following are equivalent:

(a) A is bounded.
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(b) ∃b ∈ R : ∀x ∈ A : ‖x‖ ≤ b

(c) ∃b ∈ R : ∀x ∈ A : ‖x‖∞ ≤ b

(d) ∃b ∈ K : ∀x ∈ A : ‖x‖ ≤ b

(e) ∃b ∈ K : ∀x ∈ A : ‖x‖∞ ≤ b

Proof. WLOG A 6= ∅. We have (a) 6.1.15⇐⇒ (b) 6.1.11⇐⇒ (c)⇐= (e)⇐= (d). It remains to show
(b) =⇒ (d). Suppose therefore that (b) holds. The set

S := {‖x‖ | x ∈ A} ⊆ R≥0

is K-semialgebraic by real quantifier elimination [→ 1.8.17]. Hence S can be defined by
finitely many polynomials [→ 1.8.6] with coefficients in K and by Lemma 1.5.3(a) we
find some b ∈ K>1 such that each of these polynomials has constant sign on the interval
(b, ∞)R. Then either (b, ∞)R ∩ S = ∅ or (b, ∞)R ⊆ S. But the latter is impossible due to
(b). Hence ∀x ∈ A : ‖x‖ ≤ b.

Theorem 6.1.18. Let A ⊆ Rm and suppose f : A → Rn is K-semialgebraic and continuous.
Then for every K-semialgebraically compact set B ⊆ A, the set f (B) is also K-semialgebraically
compact.

Proof. If B ∈ Sm with B ⊆ A, then f (B) ∈ Sn by 6.1.13(a) since f is K-semialgebraic.
For the rest of the claim we can suppose that K = R. We fix a “complexity bound”
N ∈ N and fix m, n ∈ N0 but no longer fix A and f . By 6.1.1, it suffices to show the
following:
(∗) For all f1, . . . , fN , g11, g12, . . . , gNN ∈ R[X1, . . . , Xm, Y1, . . . , Yn]N and

f̃1, . . . , f̃N , g̃11, g̃12, . . . , g̃NN ∈ R[X1, . . . , Xm]N , if we set

Γ :=
N⋃

i=1

{(x, y) ∈ Rm × Rn | fi(x, y) = 0, gi1(x, y) > 0, . . . , giN(x, y) > 0},

A := {x ∈ Rm | ∃y ∈ Rn : (x, y) ∈ Γ} and

B :=
N⋃

i=1

{x ∈ Rm | f̃i(x) = 0, g̃i1(x) > 0, . . . , g̃iN(x) > 0},

then

• Γ is not the graph of a continuous function from A to Rn or

• B is not a subset of A or

• B is not closed in Rm or

• B is not bounded in Rm or

• {y ∈ Rn | ∃x ∈ Rm : (x ∈ B & (x, y) ∈ Γ)} is closed and bounded in Rn.
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We now in addition no longer fix R. One can easily figure out why the class of all real
closed fields R for which (∗) holds is semialgebraic. For this aim, one applies many
times the real quantifier elimination 1.8.17, for example for introducing the finitely
many coefficients of the fi, gij, f̃i, g̃ij by universal quantifiers. By 1.8.5, (∗) now holds
either for all or for no real closed field R. Therefore it is enough to show (∗) for R = R.
But we know this from analysis due to 6.1.16.

Exercise 6.1.19. (a) The
{

open
closed

}
semialgebraic subsets of R are exactly the finite unions

of pairwise disjoint sets of the form
{
(−∞, ∞)R, (−∞, a)R, (a, ∞)R and (a, b)R
(−∞, ∞)R, (−∞, a]R, [a, ∞)R and [a, b]R

}
with

a, b ∈ R.

(b) The semialgebraically compact subsets of R are exactly the finite unions of pairwise
disjoint sets of the form [a, b]R with a, b ∈ R.

6.2 The Łojasiewicz inequality

Proposition 6.2.1. Let a ∈ K and suppose h : (a, ∞)R → R is K-semialgebraic. Then there is
b ∈ K ∩ [a, ∞)R and N ∈N such that |h(x)| ≤ xN for all x ∈ (b, ∞)R.

Proof. Using 6.1.1, we write

Γh =
k⋃

i=1

{(x, y) ∈ R2 | fi(x, y) = 0, gi1(x, y) > 0, . . . , gim(x, y) > 0}

with k, m ∈ N0 and fi, gij ∈ K[X, Y] where we suppose each of the k sets contributing
to this union to be nonempty. We must have k > 0 and degY fi > 0 for all i ∈ {1, . . . , k}
(for otherwise there would be x, c, d ∈ R with c < d and {x} × (c, d)R ⊆ Γh which is
impossible since Γh is the graph of a function). Write ∏k

i=1 fi = ∑d
i=0 piYi with d > 0,

p0, . . . , pd ∈ K[X] and pd 6= 0. By rescaling one of the fi if necessary, we can suppose
that the leading coefficient of pd is greater than 1. Choose c ∈ K ∩ [a, ∞)R such that
pd > 1 on (c, ∞)R [→ 1.5.3(a)]. Because of ∑d

i=0 pi(x)h(x)i = 0 and pd(x) 6= 0 for all
x ∈ (c, ∞)R, we have

|h(x)| ≤ max
{

1,
|p0(x)|+ . . . + |pd−1(x)|

|pd(x)|

}
≤ 1 + |p0(x)|+ . . . + |pd−1(x)|

for all x ∈ (c, ∞)R [→ 1.5.3(a)]. Now the existence of b is easy to see.

Theorem 6.2.2 (Łojasiewicz inequality). Let n ∈N0 and suppose A ⊆ Rn is K-semialgebraically
compact and f , g : A→ R are continuous K-semialgebraic functions satisfying

∀x ∈ A : ( f (x) = 0 =⇒ g(x) = 0).

Then there is N ∈N and C ∈ K≥0 such that

∀x ∈ A : |g(x)|N ≤ C| f (x)|.
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Proof. With A also At := {x ∈ A | |g(x)| = 1
t } is K-semialgebraically compact for each

t ∈ R>0. Set I := {t ∈ R>0 | At 6= ∅}. For each t ∈ I,

ft := min{| f (x)| | x ∈ At}

exists by 6.1.18 and 6.1.19(b). Apparently, we have to show that there exist N ∈ N and
C ∈ K≥0 such that ∀t ∈ I :

( 1
t

)N ≤ C ft. By hypothesis, we have ft > 0 for all t ∈ I.
Furthermore,

R>0 → R, t 7→
{

0 if t /∈ I
1
ft

if t ∈ I

is K-semialgebraic. Thus, by 6.2.1 there are b ∈ K>0 and N ∈N such that

(∗) 1
ft
≤ tN

for all t ∈ I ∩ (b, ∞)R. Since

B :=
{

x ∈ A | |g(x)| ≥ 1
b

}
=

⋃
t∈I∩(0,b]R

At

is K-semialgebraically compact, we can choose according to 6.1.18 and 6.1.17 some C ∈
K≥1 satisfying

|g(x)|N
| f (x)| ≤ C

for all x ∈ B (note that f (x) 6= 0 for all x ∈ B). We deduce

(∗∗) 1
ft
≤ CtN

for all t ∈ I ∩ (0, b]R. Together with (∗), we obtain (∗∗) even for all t ∈ I as desired.

Lemma 6.2.3. (“shrinking map”, in German: “Schränkungstranformation”) Let n ∈N0,
B := {x ∈ Rn | ‖x‖ < 1} and S := {x ∈ Rn | ‖x‖ = 1}. The maps

ϕ : Rn → B, x 7→ x√
1 + ‖x‖2

and

ψ : B→ Rn, y 7→ y√
1− ‖y‖2

are Q-semialgebraic, continuous and inverse to each other. For all A ∈ Sn, we have

A closed ⇐⇒ ϕ(A) ∪ S is K-semialgebraically compact.
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Proof. From 6.1.8, the Q-semialgebraicity and the continuity are clear. For all x ∈ Rn,
we have

ψ(ϕ(x)) =

x√
1+‖x‖2√

1− ‖x‖2

1+‖x‖2

=

x√
1+‖x‖2

1√
1+‖x‖2

= x.

For all y ∈ B, we have

ϕ(ψ(y)) =

y√
1−‖y‖2√

1 + ‖y‖2

1−‖y‖2

=

y√
1−‖y‖2√

1
1−‖y‖2

= y.

Now let A ∈ Sn. To show: A closed ⇐⇒ ϕ(A) ∪ S closed.
“⇐=” Suppose ϕ(A) ∪ S is closed. Then ϕ(A) = (ϕ(A) ∪ S) ∩ B is closed in B (with

respect to the topology induced from Rn) and thus also A = ϕ−1(ϕ(A)) in Rn.
“=⇒” Let A be closed. Then ϕ(A) = ψ−1(A) is closed in B and hence ϕ(A) = C ∩ B

for some closed set C ⊆ Rn. WLOG C ⊆ B ∪ S (otherwise replace C by C ∩ (B ∪ S)).
WLOG S ⊆ C (otherwise replace C by C∪ S). Now ϕ(A)∪ S ⊆ C ⊆ (C∩ B)∪ (C∩ S) =
ϕ(A) ∪ S. Hence ϕ(A) ∪ S = C is closed.

Corollary 6.2.4. Let n ∈ N0 and suppose that A ⊆ Rn is closed and f , g : A → R are
continuous K-semialgebraic functions satisfying

∀x ∈ A : ( f (x) = 0 =⇒ g(x) = 0).

Then there are N, k ∈N and C ∈ K≥0 such that

∀x ∈ A : |g(x)|N ≤ C(1 + ‖x‖2)k| f (x)|.

Proof. By 6.1.4, A is K-semialgebraic. If A is bounded, then A is K-semialgebraically
compact and the claim follows (with k := 1) from the Łojasiewicz inequality 6.2.2. Now
suppose that A is unbounded. Since {‖x‖ | x ∈ A} ⊆ R is K-semialgebraic, there is
then some a ∈ K such that (a, ∞)R ⊆ {‖x‖ | x ∈ A}. The functions

f̊ : (a, ∞)R → R, t 7→ max{| f (x)| | x ∈ A, ‖x‖ = t} and
g̊ : (a, ∞)R → R, t 7→ max{|g(x)| | x ∈ A, ‖x‖ = t}

are semialgebraic. By 6.2.1, there are b ∈ K ∩ [a, ∞)R with b ≥ 1 and ` ∈ N such that
f̊ (t) ≤ (1 + t2)` and g̊(t) ≤ (1 + t2)` for all t ∈ (b, ∞)R ⊆ R≥1. Now consider the
continuous K-semialgebraic functions

f0 : A→ R, x 7→ f (x)
(1 + ‖x‖2)`+1 and g0 : A→ R, x 7→ g(x)

(1 + ‖x‖2)`+1 .

We have ∀x ∈ A : ( f0(x) = 0 =⇒ g0(x) = 0) and obviously it is enough to show
that there are N ∈ N and C ∈ K≥0 such that ∀x ∈ A : |g0(x)|N ≤ C| f0(x)| (set then
k := max{1, (N − 1)(` + 1)}). The advantage of f0 and g0 over f and g is that there
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is for all ε ∈ R>0 a semialgebraically compact set B ⊆ A such that | f0(x)| < ε and
|g0(x)| < ε for all x ∈ A \ B. With the notation of Lemma 6.2.3, the K-semialgebraic
functions

f̃ : ϕ(A) ∪ S→ R, y 7→
{

0 if y ∈ S
f0(ψ(y)) if y ∈ ϕ(A)

and

g̃ : ϕ(A) ∪ S→ R, y 7→
{

0 if y ∈ S
g0(ψ(y)) if y ∈ ϕ(A)

are continuous. For example, for f̃ one sees this as follows: Since f0 ◦ ψ|ϕ(A) is contin-
uous and ϕ(A) = (ϕ(A) ∪ S) ∩ B is open in ϕ(A) ∪ S, it suffices to show by 6.1.7 and
6.1.11 that

∀y0 ∈ S : ∀ε ∈ R>0 : ∃δ ∈ R>0 : ∀y ∈ ϕ(A) : (‖y0 − y‖ < δ =⇒ | f0(ψ(y))| < ε).

To this end, let y0 ∈ S and ε ∈ R>0. Choose a semialgebraically compact set B ⊆ A
with | f0(x)| < ε for all x ∈ A \ B. Then ϕ(B) is semialgebraically compact by 6.1.18
and consequently S ∪ ϕ(A \ B) = (S ∪ ϕ(A)) \ ϕ(B) is open in ϕ(A) ∪ S. Thus there is
δ ∈ R>0 with {y ∈ ϕ(A) ∪ S | ‖y0 − y‖ < δ} ⊆ S ∪ ϕ(A \ B), i.e.,

{y ∈ ϕ(A) | ‖y0 − y‖ < δ} ⊆ ϕ(A \ B).

Now let y ∈ ϕ(A) with ‖y0− y‖ < δ. Then y ∈ ϕ(A \ B) and thus ψ(y) ∈ A \ B. Hence
| f0(ψ(y))| < ε. This shows the continuity of f̃ . For all y ∈ ϕ(A), we have obviously

f̃ (y) = 0 =⇒ f0(ψ(y)) = 0 =⇒ g0(ψ(y)) = 0 =⇒ g̃(y) = 0.

Altogether, ∀y ∈ ϕ(A) ∪ S : ( f̃ (y) = 0 =⇒ g̃(y) = 0). Since ϕ(A) ∪ S is K-
semialgebraically compact by 6.2.3, we get from the Łojasiewicz inequality 6.2.2 N ∈N

and C ∈ R≥0 with ∀y ∈ ϕ(A) ∪ S : |g̃(y)|N ≤ C| f̃ (y)|. In particular, we obtain
∀y ∈ ϕ(A) : |g0(ψ(y))|N ≤ C| f0(ψ(y))| which means ∀x ∈ A : |g0(x)|N ≤ C| f0(x)|
as desired.

6.3 The finiteness theorem for semialgebraic sets

Definition 6.3.1. Let n ∈N0. A subset S of Rn is called K-basic
{

open
closed

}
if there are m ∈

N0 and g1, . . . , gm ∈ K[X] satisfying S = {x ∈ Rn | g1(x)
{
>
≥

}
0, . . . , gm(x)

{
>
≥

}
0}.

Remark 6.3.2. Every K-basic
{

open
closed

}
subset of Rn is K-semialgebraic and

{
open

closed

}
in Rn.
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Theorem 6.3.3 (Finiteness theorem for semialgebraic sets). Let n ∈ N0 and S ∈ Sn{
open

closed

}
. Then S is a finite union of K-basic

{
open

closed

}
subsets of Rn.

Proof.

S is a finite union of K-basic open subsets of Rn

⇐⇒ S is a finite union of finite intersections of sets of the form {x ∈ Rn | g(x) > 0}
(g ∈ K[X])

⇐⇒ {S is a finite intersection of finite unions of sets of the form {x ∈ Rn | g(x) ≥ 0}
(g ∈ K[X])

1.8.1⇐⇒ {S is a finite union of finite intersections of sets of the form {x ∈ Rn | g(x) ≥ 0}
(g ∈ K[X])

⇐⇒ {S is a finite union of K-basic closed subsets of Rn.

It is thus enough to show the claim for open S. Write

S =
k⋃

i=1

{x ∈ Rn | fi(x) = 0, gi1(x) > 0, . . . , gim(x) > 0}

according to 6.1.1 with k, m ∈ N0, fi, gij ∈ K[X]. Fix i ∈ {1, . . . , k}. It is enough to find
a K-basic open set U ⊆ Rn such that

{x ∈ Rn | fi(x) = 0, gi1(x) > 0, . . . , gim(x) > 0} ⊆ U ⊆ S.

Consider the closed set A := Rn \ S ∈ Sn and the continuous K-semialgebraic functions

f : A→ R, x 7→ ( fi(x))2 and

g : A→ R, x 7→
m

∏
j=1

(|gij(x)|+ gij(x)).

We have ∀x ∈ A : ( f (x) = 0 =⇒ g(x) = 0). By 6.2.4, there thus exist N, k ∈ N

and C ∈ K≥0 such that ∀x ∈ A : |g(x)|N ≤ C(1 + ‖x‖2)k f (x). For all x ∈ A satisfying
gi1(x) > 0, . . . , gim(x) > 0, we thus have (2m ∏m

j=1 gij(x))N ≤ C(1 + ∑n
j=1 x2

j )
k fi(x)2. Set

U :=

x ∈ Rn | C

(
1 +

n

∑
j=1

x2
j

)k

fi(x)2 <

(
2m

m

∏
j=1

gij(x)

)N

, gi1(x) > 0, . . . , gim(x) > 0

 .

Then U ∩ A = ∅ and {x ∈ Rn | fi(x) = 0, gi1(x) > 0, . . . , gim(x) > 0} ⊆ U ⊆ S.

Example 6.3.4. The “slashed square” S := (−1, 1)2
R \ ([0, 1]R × {0}) is K-semialgebraic

and open. By 6.3.3, it is thus a finite union of K-basic open subsets of R2. Indeed,

S ={(x, y) ∈ R2 | −1 < x < 1,−(y + 1)y2(y− 1) > 0}∪{
(x, y) ∈ R2 |

(
x +

1
2

)2

+ y2 <

(
1
2

)2
}
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is a union of two K-basic open sets. However, S is not K-basic open. To show this, we
assume

S = {(x, y) ∈ R2 | g1(x, y) > 0, . . . , gm(x, y) > 0}

with m ∈ N0, gi ∈ K[X, Y]. For continuity reasons, we have gi(x, 0) ≥ 0 for all x ∈
[0, 1]R and i ∈ {1, . . . , m}. Because of ([0, 1]R × {0}) ∩ S = ∅, we have thus [0, 1]R =⋃m

i=1{x ∈ [0, 1]R | gi(x, 0) = 0}. WLOG #{x ∈ [0, 1]R | g1(x, 0) = 0} = ∞. Then
g1(X, 0) = 0 and consequently (R× {0}) ∩ S = ∅ in contradiction to (−1, 0)R × {0} ⊆
S.

Theorem 6.3.5 (Abstract version of the finiteness theorem for semialgebraic sets). Let
R|K be algebraic, i.e., R be the real closure of (K, K ∩ R2). Let n ∈ N0 and write A := K[X]
and T := ∑ K≥0A2 so that we are in the setting described before 3.6.3. Denote by

Fatten : Sn → C := C(A,T)

again the fattening [→ 3.6.4, 5.3.1]. Let S ∈ Sn. Then

S
{

open
closed

}
in Rn ⇐⇒ Fatten(S)

{
open

closed

}
in sper(A, T).

Proof. It is enough to show: S open ⇐⇒ Fatten(S) open.
“⇐=” By definition of the spectral topology [→ 5.2.1], Fatten(S) is a union of sets of

the form {P ∈ sper(A, T) | ĝ1(P) > 0, . . . , ĝm(P) > 0} (m ∈ N0, g1, . . . , gm ∈ A). By
5.2.3 and 5.1.21, Fatten(S) is quasicompact [→ 5.1.14] with respect to the constructible
topology [→ 5.2.1]. Hence Fatten(S) is a finite union of sets of the described form, i.e.,

(∗∗) Fatten(S) =
k⋃

i=1

{P ∈ sper(A, T) | ĝi1(P) > 0, . . . , ĝim(P) > 0}

with k, m ∈N0, gij ∈ A. It follows by 3.6.4 that

(∗) S =
k⋃

i=1

{x ∈ Rn | gi1(x) > 0, . . . , gim(x) > 0}.

In particular, S is open.
“=⇒” By the finiteness theorem for semialgebraic sets 6.3.3, we can find k, m ∈ N0

and gij ∈ A such that (∗) holds. It follows that (∗∗) holds. In particular, Fatten(S) is
open.

Remark 6.3.6. The description of 6.3.5 as an abstract version of 6.3.3 is motivated by
the fact that one can easily retrieve the latter from the first: Note first that one can
reduce in 6.3.3 to the case where R|K is algebraic by using the transfer between R and
(K, K ∩ R≥0) [→ 1.9.5]. For this, one has to argue that this transfer preserves openness
which can be accomplished by real quantifier elimination 1.8.17. Thus let now R|K be
algebraic, n ∈ N0 and S ∈ Sn open (by the first part of the proof of Theorem 6.3.3, it
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suffices to treat the case of open sets). We have to show that S is a finite union of K-basic
open subsets of Rn. As seen in the easy part “⇐=” of the proof of 6.3.5, for this purpose,
it suffices to show that Fatten(S) is open. This follows from the difficult part “=⇒” of
6.3.5.

Corollary 6.3.7 (Strengthening of 5.3.8). Let R|K be algebraic, i.e., R be the real closure of
(K, K ∩ R≥0). Let n ∈N0 and write A := K[X] and T := ∑ K≥0A2. Then

sper R[X]→ sper(A, T), P 7→ P ∩ A

is a homeomorphism with respect to both, the spectral as well as the constructible topology on
both sides.

Proof. The map is continuous with respect to both topologies by 5.2.7 and bijective by
5.3.8. According to the definition of a homeomorphism 5.2.2 and the definition of both
topologies in 5.2.1, it suffices to show that for all C ∈ CR[X] we have {P ∩ A | P ∈ C} ∈
C(A,T) and that this latter is set is open in sper(A, T) whenever C is open in sper R[X].
For this purpose, let C ∈ CR[X]. The slimming {x ∈ Rn | Px ∈ C} [→ 3.6.4] of C is
then a semialgebraic subset of Rn and thus even K-semialgebraic by 5.3.7 since R|K is
algebraic. By 6.1.1, we thus find k, m ∈N0 and fi, gij ∈ K[X] such that

{x ∈ Rn | Px ∈ C} =
k⋃

i=1

{x ∈ Rn | fi(x) = 0, gi1(x) > 0, . . . , gim(x) > 0},

where one can even choose f1 = . . . = fk = 0 by the finiteness theorem for semialge-
braic sets 6.3.3 in the case where C is open. Fattening this, we obtain

C =
k⋃

i=1

{P ∈ sper R[X] | f̂i(P) = 0, ĝi1(P) > 0, . . . , ĝim(P) > 0}

and therefore [→ 5.2.7]

{P ∩ A | P ∈ C} =
k⋃

i=1

{P ∈ sper(A, T) | f̂i(P) = 0, . . . , ĝi1(P) > 0, . . . , ĝim(P) > 0}

∈ C(A,T).

If C is open, then so is {P ∩ A | P ∈ C} because of the choice of fi = 0.

Remark 6.3.8. In the situation of 6.3.5, one can obviously generalize 6.1.12 as follows:

(a) Rn is equipped with the initial topology with respect to all maps Rn → R, x 7→ p(x)
(p ∈ A).

(b) The topology on Rn is generated by the sets {x ∈ Rn | p(x) > 0} (p ∈ A).

(c) Viewing Rn in virtue of the injective map [→ 3.6.3]

Rn → sper A, x 7→ Px = { f ∈ A | f (x) ≥ 0}
as a subset of sper A, the topology on Rn is induced by the spectral topology on
sper A [→ 6.3.7].
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§7 Convex sets in vector spaces

In this chapter, K denotes always a subfield of R equipped with the order and the
subspace topology [→ 5.1.5(a)] induced by R unless otherwise specified.

7.1 The isolation theorem for cones

Definition 7.1.1. Let V be a K-vector space. A subset C ⊆ V is called a (convex) cone
(in V) if 0 ∈ C, C + C ⊆ C and K≥0C ⊆ C [→ 1.1.18]. A cone C ⊆ V is called proper if
C 6= V.

Example 7.1.2. Let T be a preorder [→ 1.2.1] of K[X] with K≥0 ⊆ T. Then T is a cone.
Moreover, T is proper as a preorder [→ 1.2.5] if and only if T is proper as a cone.

Proposition 7.1.3. Let V be a K-vector space and C ⊆ V. Then the following are equivalent:

(a) C is a cone.

(b) C is convex [→ 2.4.1], C 6= ∅ and K≥0C ⊆ C.

Proof. (a) =⇒ (b) is trivial.

(b) =⇒ (a) Suppose that (b) holds. From C 6= ∅ and 0C ⊆ C, we get 0 ∈ C. To
show: C + C ⊆ C. Let x, y ∈ C. Then x

2 + y
2 ∈ C and thus x + y = 2

( x
2 + y

2

)
∈ C.

Definition 7.1.4. Let C be a cone in the K-vector space V and u ∈ V. Then u is called a
unit for C (in V) if for every x ∈ V there is some N ∈N with Nu + x ∈ C.

Example 7.1.5. [→ 7.1.2] Let T be a preorder of K[X] with K≥0 ⊆ T. Then T is Archimedean
[→ 4.1.2(a)] if and only if 1 is a unit for T.

Proposition 7.1.6. Let C be a cone on the K-vector space V and u ∈ V. Then the following are
equivalent:

(a) u is a unit for C.

(b) V = C−Nu

(c) V = C− K≥0u

(d) u ∈ C and V = C + Zu

(e) u ∈ C and V = C + Ku
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(f) ∀x ∈ V : ∃ε ∈ K>0 : u + εx ∈ C

Proof. (a) =⇒ (b) =⇒ (c) is clear.

(c) =⇒ (d) Suppose that (c) holds. Then u ∈ C − K≥0u and thus (1 + K≥0)u ∈ C
and so u ∈ C. Fix now x ∈ V. To show: x ∈ C + Zu. Choose λ ∈ K≥0 with x ∈ C− λu.
Choose N ∈N with λ ≤ N. Then (N − λ)u ∈ C and hence

x = (x− (N − λ)u) + (N − λ)u ∈ (C− λu− (N − λ)u) + C
⊆ C− Nu ⊆ C−Nu ⊆ C + Zu.

(d) =⇒ (e) is trivial.

(e) =⇒ (f) Suppose that (e) holds and let x ∈ V. Choose λ ∈ K such that x ∈ C−λu.
If λ ≤ 0, then x ∈ C and consequently u + εx = u + x ∈ C + C ⊆ C with ε := 1. If
λ > 0, then set ε := 1

λ > 0. Then u + εx ∈ εC ⊆ C.

(f) =⇒ (a) Suppose that (f) holds and let x ∈ V. To show: ∃N ∈ N : Nu + x ∈ C.
Choose ε ∈ K>0 with u + εx ∈ C. Choose N ∈ N with 1

ε ≤ N. From (f), it follows
also that u ∈ C and hence (N − 1

ε )u ∈ C. Now Nu + x = (N − 1
ε )u + 1

ε u + x ∈
C + 1

ε (u + εx) ⊆ C + 1
ε C ⊆ C + C ⊆ C.

Corollary 7.1.7. Let u be a unit for the cone C in the K-vector space V. Then u ∈ C and
V = C− C.

Remark 7.1.8. The units for a cone in Kn are exactly its interior points [→ 5.2.5, 7.1.6(f)].

Definition 7.1.9. Let V be a K-vector space, C ⊆ V and u ∈ V. A state of (V, C, u) is a
K-linear function ϕ : V → R satisfying ϕ(C) ⊆ R≥0 and ϕ(u) = 1. We refer to the set
S(V, C, u) ⊆ RV of all states of (V, C, u) as the state space of (V, C, u).

Example 7.1.10. Set K := R, V := R[X], C := P∞ ∈ sper R[X]. Then the cone C does
not possess a unit in V and we have S(V, C, u) = ∅ for all u ∈ V. Indeed, let u ∈ V.
Choose d ∈ N with d > deg u. Then u− εXd /∈ C for all ε > 0. By 7.1.6(f), u is thus not
a unit for C. Assume ϕ ∈ S(V, C, u). Then εϕ(Xd)− 1 = ϕ(εXd − u) ∈ ϕ(C) ⊆ R≥0 for
all ε > 0  .

Example 7.1.11. Set K := Q, V := Q2, C := {(x, y) ∈ Q2 | y ≥
√

2x}. All elements of C
except 0 are units for C [→ 7.1.8]. There is no ϕ ∈ V∗ \ {0} satisfying ϕ(C) ⊆ Q≥0 but
for each u ∈ C \ {0}, we have #S(V, C, u) = 1.

Lemma 7.1.12. Let u be a unit for a proper cone C in the K-vector space V. Then

$ : V → R, x 7→ sup{λ ∈ K | x− λu ∈ C}

is well-defined and we have $(x) + $(y) ≤ $(x + y) as well as $(λx) = λ$(x) for all
x, y ∈ V and λ ∈ K≥0.

Tentative Lecture Notes



111

Proof. Let x, y ∈ V and λ ∈ K≥0. For the well-definedness of $, we have to show
that I := {λ ∈ K | x − λu ∈ C} is nonempty and bounded from above [→ 1.1.9,
1.1.16]. Since u is a unit for C, we have I 6= ∅ and furthermore there is N ∈ N such
that −x + Nu ∈ C. Then λ < N + 1 for all λ ∈ I since otherwise, if λ ∈ I satisfied
λ ≥ N + 1, then

−u = Nu− (N + 1)u = (−x + Nu) + x− (N + 1)u
∈ C + x− λu + (λ− (N + 1))u
⊆ C + C + K≥0u ⊆ C.

But now−u /∈ C for otherwise C
7.1.6(b)
= V. Now choose sequences (λn)n∈N and (µn)n∈N

in K such that x − λnu, y − µnu ∈ C for all n ∈ N and limn→∞ λn = $(x) as well
as limn→∞ µn = $(y). Then we have (x + y) − (λn + µn)u ∈ C + C ⊆ C and thus
λn + µn ≤ $(x + y) for all n ∈N. It follows that

$(x) + $(y) =
(

lim
n→∞

λn

)
+
(

lim
n→∞

µn

)
= lim

n→∞
(λn + µn) ≤ $(x + y).

Moreover, λx − λλnu ∈ λC ⊆ C and thus λλn ≤ $(λx) for all n ∈ N. It follows that
λ$(x) = λ limn→∞ λn = limn→∞ λλn ≤ $(λx) and analogously 1

λ $(λx) ≤ $
( 1

λ (λx)
)

if
λ 6= 0, i.e., λ$(x) = $(λx).

Theorem 7.1.13 (Isolation theorem for cones). Let u be a unit for the proper cone C in the
K-vector space V. Then S(V, C, u) 6= ∅.

Proof. Since the union of a nonempty chain of cones in V is again a cone in V, we can use
Zorn’s lemma to enlarge C to a cone of V that is maximal with respect to the property
of not containing −u. WLOG suppose that C has already this maximality property.

Claim 1: C ∪−C = V
Explanation. Let x ∈ V with x /∈ −C. To show: x ∈ C. Due to the maximality of

C it is enough to show that the cone C + K≥0x does not contain −u. But if we had
−u = y + λx for some y ∈ C and λ ∈ K≥0, then λ > 0 and x = 1

λ (−u− y) ∈ −C  .

Consider for each x ∈ V, the sets

Ix := {λ ∈ K | x− λu ∈ C} and Jx := {λ ∈ K | x− λu ∈ −C}.

Claim 2: ∀x ∈ V : ∀λ ∈ Ix : ∀µ ∈ Jx : λ ≤ µ

Explanation. Let x ∈ V, λ ∈ Ix and µ ∈ Jx. Then x− λu ∈ C and µu− x ∈ C. Thus,
(µ− λ)u = (µu− x) + (x− λu) ∈ C + C ⊆ C. If we had µ < λ, then we had −u ∈ C  .

Consider now ϕ : V → R, x 7→ sup Ix [→ 7.1.12].

Claim 3: −ϕ(x) = sup{λ ∈ K | x− λ(−u) ∈ −C} for all x ∈ V

Explanation. Let x ∈ V. From Ix ∪ Jx
Claim 1
= K and Claim 2, we get

ϕ(x) = sup Ix = inf Jx
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and hence

−ϕ(x) = − inf Jx = sup{−λ | λ ∈ K, x− λu ∈ −C} = sup{λ ∈ K | x + λu ∈ −C}.

From 7.1.12, we obtain ϕ(x) + ϕ(y) ≤ ϕ(x + y) and ϕ(λx) = λϕ(x) for all x, y ∈ V
and λ ∈ K≥0. Since −u is a unit for the proper cone −C, 7.1.12 and Claim 3 yield also
−ϕ(x)− ϕ(y) ≤ −ϕ(x + y) for all x, y ∈ V. It follows that

ϕ(x) + ϕ(y) ≤ ϕ(x + y) ≤ ϕ(x) + ϕ(y)

and therefore ϕ(x) + ϕ(y) = ϕ(x + y) for all x, y ∈ V. In particular, ϕ(x) + ϕ(−x) =
ϕ(0) = 0 and hence ϕ(−x) = −ϕ(x) for all x ∈ V from which we deduce

ϕ((−λ)x) = ϕ(−λx) = −ϕ(λx) = −λϕ(x) = (−λ)ϕ(x)

for all x ∈ V and λ ∈ K≥0. Altogether, ϕ(λx) = λϕ(x) for all x ∈ V and λ ∈ K≥0 ∪
K≤0 = K, i.e., ϕ is K-linear. Obviously, ϕ(C) ⊆ R≥0 and ϕ(u) = 1. Therefore ϕ ∈
S(V, C, u).

Lemma 7.1.14. Let C be a cone in the K-vector space V and x ∈ V. Then

x ∈ C ⇐⇒ x ∈ C− K≥0x.

Proof. “=⇒” is trivial.
“⇐=” Let x ∈ C− K≥0x, for instance x = y− λx with y ∈ C and λ ∈ K≥0. Then

x =
1

1 + λ
y ∈ C.

Corollary 7.1.15. Suppose u is a unit for the cone C in the K-vector space V and x ∈ V. If
ϕ(x) > 0 for all ϕ ∈ S(V, C, u), then x ∈ C.

Proof. Suppose x /∈ C. To show: ∃ϕ ∈ S(V, C, u) : ϕ(x) ≤ 0. By 7.1.14, the cone
C−K≥0x is proper. Since u is a unit for C, it is of course also a unit for C−K≥0x. By the
isolation theorem 7.1.13, there is ϕ ∈ S(V, C − K≥0x, u). We have ϕ ∈ S(V, C, u) and
ϕ(x) ≤ 0.

Exercise 7.1.16. [→ 7.1.9] Let V be a K-vector space, C ⊆ V and u ∈ V. We equip
the R-vector space RV of all functions from V to R with the product topology [→
5.1.5(b)]. Then S(V, C, u) is a closed convex subset of RV which we equip with the
subspace topology [→ 5.1.5(a)]. This topology is at the same time also the initial topol-
ogy [→ 5.1.4] with respect to the functions

S(V, C, u)→ R, ϕ 7→ ϕ(x) (x ∈ V)

[→ 5.1.6].
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Theorem 7.1.17. Let u be a unit for the cone C in the K-vector space V. Then the state space
S(V, C, u) is compact [→ 5.1.14].

Proof. Choose for each x ∈ V an Nx ∈N such that ±x + Nxu ∈ C. Then we have for all
ϕ ∈ S(V, C, u) and x ∈ V that ±ϕ(x) + Nx = ϕ(±x + Nxu) ≥ 0 and thus

ϕ(x) ∈ [−Nx, Nx].

Thus S(V, C, u) ⊆ ∏x∈V [−Nx, Nx]. From analysis (cf. 6.1.16) and Tikhonov’s theorem
5.1.18, ∏x∈V [−Nx, Nx] is compact with respect to the product topology. But the product
topology on ∏x∈V [−Nx, Nx] is induced by the topology of RV [→ 5.1.6]. By 7.1.16,
S(V, C, u) is thus closed in the compact space ∏x∈V [−Nx, Nx] and hence is compact
itself [→ 5.1.21].

Exercise 7.1.18. Let M and N be topological spaces and f : M→ N be continuous. If M
is quasicompact [→ 5.1.14], then so is f (M) [→ 5.1.21]

Corollary 7.1.19. Let M be a nonempty quasicompact topological space and f : M → R be
continuous. Then f takes on a minimum and a maximum, i.e., there are x, y ∈ M with

f (x) ≤ f (z) ≤ f (y)

for all z ∈ M.

Proof. f (M) is compact by 7.1.18. Hence f (M) is nonempty, bounded and closed. From
the first two properties, it follows that inf f (M), sup f (M) ∈ R exist [→ 1.1.9(c), 1.1.16].
The last property yields inf f (M) = min f (M) and sup f (M) = max f (M).

Theorem 7.1.20 (Strengthening of 7.1.15). [→ 4.2.2] Let u be a unit for the cone C in the
K-vector space V and x ∈ V. Then the following are equivalent:

(a) ∀ϕ ∈ S(V, C, u) : ϕ(x) > 0

(b) ∃N ∈N : x ∈ 1
N u + C

(c) x is a unit for C.

Proof. (b) =⇒ (a) is trivial.
(a) =⇒ (b) Suppose that (a) holds. If S(V, C, u) = ∅, then C = V by 7.1.13 and

we can choose N ∈ N arbitrarily. Suppose therefore that S(V, C, u) 6= ∅. Then the
continuous function S(V, C, u) → R, ϕ 7→ ϕ(x) takes on by 7.1.17 and 7.1.19 a min-
imum µ for which µ > 0 holds by (a). Choose N ∈ N such that 1

N < µ. Then
ϕ
(
x− 1

N u
)
= ϕ(x) − 1

N ≥ µ − 1
N > 0 for all ϕ ∈ S(V, C, u). Now 7.1.15 yields that

x− 1
N u ∈ C.

(b) =⇒ (c) Suppose that (b) holds and let y ∈ V. To show: ∃N ∈ N : Nx + y ∈ C.
Choose N′, N′′ ∈N with x ∈ 1

N′ u + C and N′′u + y ∈ C. Setting N := N′N′′, we obtain
Nx + y ∈ N′′N′

( 1
N′ u + C

)
+ y ⊆ N′′(u + C) + y ⊆ N′′u + y + C ⊆ C + C ⊆ C.

(c) =⇒ (a) Suppose that (c) holds and let ϕ ∈ S(V, C, u). To show: ϕ(x) > 0.
Choose N ∈ N with Nx − u ∈ C. Then Nϕ(x) − 1 = ϕ(Nx − u) ≥ 0 and thus
ϕ(x) ≥ 1

N > 0 for all ϕ ∈ S(V, C, u).

Version of Thursday 30th August, 2018, 22:11



114

7.2 Separating convex sets in topological vector spaces

Definition 7.2.1. A K-vector space V together with a topology on V [→ 5.1.2(a)] is called
a topological K-vector space if V × V → V, (x, y) 7→ x + y and K × V → V, (λ, x) 7→ λx
are continuous and {0} is a closed set in V.

Example 7.2.2. (a) If I is a set, then K I (endowed with the product topology [→ 5.1.5(b)])
is a topological K-vector space.

(b) A K-vector space V together with the discrete topology on V is a topological vector
space if and only if V = {0}. Indeed, if y ∈ V \ {0}, then

{(λ, x) ∈ K×V | λx = y} = {(λ, λ−1y) | λ ∈ K×}

is not open in K×V.

(c) From analysis, one knows that every normed R-vector space, in particular every
R-vector space with scalar product, is a topological R-vector space.

Lemma 7.2.3. Let V be a K-vector space and A ⊆ V be convex. If 0 /∈ A 6= ∅, then A
generates a proper convex cone, i.e., ∑x∈A K≥0x 6= V.

Proof. Suppose that A 6= ∅ and ∑x∈A K≥0x = V. We show 0 ∈ A. Choose y ∈ A
and write −y = ∑m

i=1 λixi with λ1, . . . , λm ∈ K≥0 and x1, . . . , xm ∈ A. Setting µ :=
1 + ∑m

i=1 λi > 0, we have then 0 = 1
µ y + ∑m

i=1
λi
µ xi ∈ A since 1

µ + ∑m
i=1

λi
µ = µ

µ = 1.

Lemma 7.2.4. [→ 7.1.8] Let V be a topological K-vector space, C ⊆ V a convex cone
and u ∈ C◦ [→ 5.2.5]. Then u is a unit for C [→ 7.1.4].

Proof. We show ∀x ∈ V : ∃ε ∈ K>0 : u + εx ∈ C [→ 7.1.6(f)]. For this aim, fix x ∈ V.
From Definition 7.2.1, it follows that K×V, λ 7→ u + λx is continuous. Choose an open
set A ⊆ V such that u ∈ A ⊆ C. Then {λ ∈ K | u + λx ∈ A} is open and contains 0. In
particular, there is ε ∈ K>0 such that u + εx ∈ A ⊆ C.

Example 7.2.5. Consider the R-vector space V := C([0, 1], R) of all continuous real
valued functions on the interval [0, 1] ⊆ R together with the scalar product defined by

〈 f , g〉 :=
∫ 1

0
f (x)g(x)dx ( f , g ∈ V).

By 7.2.2(c), this is a topological vector space. The constant function u : [0, 1]→ R, x 7→ 1
is a unit for the cone C := C([0, 1], R≥0) of all functions nonnegative on [0, 1] by 7.1.19
(since [0, 1] is compact by 6.1.16). But u does not lie in C◦ since for every ε > 0 there is

some f ∈ V with ‖u− f ‖ =
√∫ 1

0 (u(x)− f (x))2dx < ε and f /∈ C.

Remark 7.2.6. From Definition 7.2.1, it follows that for every topological K-vector space
V the maps V → V, x 7→ λx + y (λ ∈ K×, y ∈ V) are homeomorphisms [→ 5.2.2].
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Lemma 7.2.7. Suppose V is a topological K-vector space and ϕ : V → R is K-linear.
Then the following are equivalent:

(a) ϕ is continuous.

(b) ϕ−1(R>0) is open.

(c) ϕ−1(R≥0) is closed.

Proof. (b)⇐⇒ (c) follows from ϕ−1(R≥0) = −ϕ−1(R≤0) = −(V \ ϕ−1(R>0)) since
V → V, x 7→ −x is a homeomorphism by 7.2.6.

(a) =⇒ (b) is trivial.
(b) =⇒ (a) WLOG ϕ 6= 0. WLOG choose u ∈ V in such a way that ϕ(u) = 1

(otherwise scale ϕ). Suppose that (b) holds. Then the set ϕ−1(R>a) = au + ϕ−1(R>0)
is open and hence ϕ−1(R<−a) = −ϕ−1(R>a) is open for all a ∈ K [→ 7.2.6]. So the set
ϕ−1((a, b)R) = ϕ−1(R>a) ∩ ϕ−1(R<b) is open for all a, b ∈ K. Since every open subset
of R is a union of intervals (a, b)R with a, b ∈ K, the continuity of ϕ follows.

Lemma 7.2.8. Let V be a topological K-vector space and ϕ : V → R be K-linear map.
Then ϕ is continuous if and only if ϕ−1(R≥0) has an interior point.

Proof. WLOG ϕ 6= 0. If ϕ is continuous, then ϕ−1(R>0) is open and because of ϕ 6= 0
nonempty. Conversely, let u be an interior point of ϕ−1(R≥0). By 7.2.7, it is enough to
show that ϕ−1(R>0) is open. For this, consider x ∈ ϕ−1(R>0). We have to show that
there is an open set A ⊆ V such that x ∈ A ⊆ ϕ−1(R>0). Choose u in the interior
of ϕ−1(R≥0). Choose an open set B ⊆ V with u ∈ B ⊆ ϕ−1(R≥0). Choose λ ∈ K>0
such that λϕ(u) < ϕ(x). Then A := x + λ(B − u) is open by 7.2.6, and we have
x = x + λ(u− u) ∈ A and

ϕ(A) = ϕ(x) + λ(ϕ(B)− ϕ(u)) ⊆ ϕ(x) + R≥0 − λϕ(u) ⊆ R>0.

Example 7.2.9. Let V := C([0, 1], R) be the topological K-vector space from 7.2.5 and
x ∈ [0, 1]. Then V → R, f 7→ f (x) is not continuous.

Theorem 7.2.10 (Separation theorem for topological vector spaces). Let A and B be con-
vex sets in the topological K-vector space V with A◦ 6= ∅ 6= B and A ∩ B = ∅. Then there is
a continuous K-linear function ϕ : V → R with ϕ 6= 0 and ϕ(x) ≤ ϕ(y) for all x ∈ A and
y ∈ B.

Proof. Since A is convex, also −A is convex and thus the Minkowski sum B − A =
B + (−A) [→ 7.4.19] is also convex. By hypothesis, we have 0 /∈ B− A 6= ∅, for which
reason there is according to 7.2.3 a proper cone C ⊆ V such that B − A ⊆ C. Due to
A◦ 6= ∅ and B 6= ∅, 7.2.6 yields (B − A)◦ 6= ∅ and thus C◦ 6= ∅. Choose u ∈ C◦.
By 7.2.4, u is a unit for C. By the isolation theorem 7.1.13, there exists a state ϕ of
(V, C, u). Because of ϕ(u) = 1, we have ϕ 6= 0 and because of ϕ(B − A) ⊆ R≥0, we
have ϕ(x) ≤ ϕ(y) for all x ∈ A and y ∈ B. Finally, ϕ is continuous by 7.2.8 since u is an
interior point of C and a fortiori of ϕ−1(R≥0).
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Corollary 7.2.11. Let A and B be nonempty convex sets in the topological K-vector space V
satisfying A ∩ B = ∅. Suppose A is open. Then there is a continuous K-linear function
ϕ : V → R and an r ∈ R such that ϕ(x) < r ≤ ϕ(y) for all x ∈ A and y ∈ B.

Proof. Choose by 7.2.10 a continuous K-linear function ϕ : V → R with ϕ 6= 0 and
ϕ(x) ≤ ϕ(y) for all x ∈ A and y ∈ B. The set {ϕ(x) | x ∈ A} ⊆ R is nonempty because
of A 6= ∅ and bounded from above because of B 6= ∅. It thus possesses a supremum
r ∈ R. We have ϕ(x) ≤ r ≤ ϕ(y) for all x ∈ A and y ∈ B. Let x ∈ A. It remains to
show that ϕ(x) < r. For this purpose, choose z ∈ V such that ϕ(z) > 0. The function
K → V, λ 7→ x + λz is continuous and together with 0, a whole neighborhood of 0 lies
in the preimage of A under this function. In particular, there is an ε ∈ K>0 such that
x + εz ∈ A. Then ϕ(x) < ϕ(x) + εϕ(z) = ϕ(x + εz) ≤ r.

Lemma 7.2.12. Let V be a topological K-vector space, A ⊆ V be convex, x ∈ A◦, y ∈ A
and λ ∈ K with 0 < λ ≤ 1. Then λx + (1− λ)y ∈ A◦.

Proof. Choose an open neighborhood B of x with B ⊆ A. Setting z := λx + (1− λ)y,
C := z+λ(B− x) is by 7.2.6 an open neighborhood of z. It is enough to show C ⊆ A. To
this end, let c ∈ C. Because of B = x + 1

λ (C− z), we have then b := x + 1
λ (c− z) ∈ B ⊆

A. Consequently, c = λ(b− x)+ z = λb−λx+λx+(1−λ)y = λb+(1−λ)y ∈ A.

Proposition 7.2.13. Suppose V is a topological K-vector space and A ⊆ V is convex. Then
both A◦ and A are convex.

Proof. It follows immediately from Lemma 7.2.12 that A◦ is convex. In order to show
that A is convex, fix x, y ∈ A and λ ∈ [0, 1]K. To show: z := λx + (1− λ)y ∈ A. Let B
be a neighborhood of z in V. To show: B ∩ A 6= ∅. Since

V ×V → V, (x′, y′) 7→ λx′ + (1− λ)y′

is continuous, there are neighborhoods C of x and D of y in V such that

λC + (1− λ)D ⊆ B.

Due to x, y ∈ A, we find x0 ∈ C ∩ A and y0 ∈ D ∩ A. Then

z0 := λx0 + (1− λ)y0 ∈ B ∩ A.

Definition 7.2.14. Let V be a K-vector space and A ⊆ V a set. Then A is called balanced
if λx ∈ A for all x ∈ A and λ ∈ K with |λ| ≤ 1.

Proposition 7.2.15. Suppose V be a topological K-vector space and B is a neighborhood of 0 in
V. Then there is a balanced open neighborhood A of 0 in V with A ⊆ B.
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Proof. WLOG B is open [→ 5.1.9]. Since the scalar multiplication is continuous by 7.2.1,
there is an ε ∈ K>0 and an open neighborhood C of 0 in V such that

∀λ ∈ (−ε, ε)K : ∀x ∈ C : λx ∈ B.

By 7.2.6, each λC with λ ∈ K× is open. Thus also A :=
⋃

λ∈(−ε,ε)K\{0} λC ⊆ B is open.
Moreover, we have 0 ∈ A and A is obviously balanced.

Exercise 7.2.16. In a Hausdorff space [→ 5.1.14], every compact subset [→ 5.1.21] is
closed.

Definition 7.2.17. Let V be a K-vector space. We call a topology on V making V into a
topological vector space [→ 7.2.1] a vector space topology on V.

Remark 7.2.18. Up to now the condition {0} = {0} from Definition 7.2.1 has been
used nowhere. From now on, we will however need it. We will show that each finite-
dimensional R-vector space carries exactly one vector space topology which would be
false without the condition {0} = {0} since otherwise the trivial topology [→ 5.1.2(e)]
would also be a vector space topology.

Proposition 7.2.19. Every topological K-vector space is a Hausdorff space.

Proof. Let V be a topological K-vector space [→ 7.2.1] and let x, y ∈ V with x 6= y. Set
z := x − y 6= 0. by Definition 7.2.1, {0} and thus by 7.2.6 also {z} is closed. Hence
V \ {z} is an open neighborhood of 0. Since V ×V → V, (v, w) 7→ v−w is continuous
by 7.2.1, there is a neighborhood U of 0 such that U −U ⊆ V \ {z}. Then (x + U) ∩
(y + U) = ∅ for otherwise there would be u, v ∈ U with x + u = y + v from which it
would follow z = x− y = v− u ∈ U −U  .

Proposition 7.2.20. Let V be a finite-dimensional R-vector space. Then there is exactly one
vector space topology [→ 7.2.17] on V.

Proof. Choose a basis v1, . . . , vn of V. Then f : Rn → V, x 7→ ∑n
i=1 xivi is a vector space

isomorphism. With Rn [→ 7.2.2] also V possesses therefore a vector space topology.
This shows existence. For uniqueness, endow now V with any vector space topology.
We show that f is a homeomorphism. By 7.2.1, f is certainly continuous. It is enough
to show that images of open sets under f are again open. For this purpose, it suffices
to show that for all open balls in Rn the image of their center is an interior point of
their image because if A ⊆ Rn is open then every point in f (A) is the image of the
center of an open ball contained in A. Due to 7.2.6, it suffices to consider the ball B :=
{x ∈ Rn | ‖x‖ < 1} around the origin of radius 1. In order to show that 0 ∈ ( f (B))◦,
we take the sphere S := {x ∈ Rn | ‖x‖ = 1}. By 6.1.16, S is compact and hence so
is by 7.1.18 and 7.2.19 also f (S). According to 7.2.16, f (S) is thus closed in V. Hence
V \ f (S) is a neighborhood of 0 in V. By 7.2.15, there is a balanced open neighborhood
A of 0 in V with A ⊆ V \ f (S), i.e., A ∩ f (S) = ∅. Since f is continuous, f−1(A) is an
open neighborhood of 0 in Rn. Due to the linearity of f , with A also f−1(A) is balanced
according to Definition 7.2.14. Since f−1(A) is disjoint to S, it follows that f−1(A) ⊆ B
and thus A ⊆ f (B). Hence 0 ∈ ( f (B))◦ as desired.
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7.3 Convex sets in locally convex vector spaces

Definition 7.3.1. A locally convex K-vector space is a topological K-vector space [→ 7.2.1]
in which for every x ∈ V each neighborhood of x contains a convex neighborhood of x.

Remark 7.3.2. Because of 7.2.6, one can restrict oneself in 7.3.1 to x = 0.

Example 7.3.3. [→ 7.2.2]

(a) If I is a set, then K I is a locally convex K-vector space.

(b) If a K-vector space V is endowed with the initial topology [→ 5.1.4] with respect to a
family ( fi)i∈I of K-linear functions fi : V → R in such a way that to each x ∈ V \ {0}
there is some i ∈ I with fi(x) 6= 0, then V is a locally convex K-vector space.

(c) Every normed R-vector space V, in particular every R-vector space with scalar
product, is a locally convex R-vector space since

‖λx + (1− λ)y‖ ≤ λ‖x‖+ (1− λ)‖y‖ ≤ λε + (1− λ)ε = ε

for all ε > 0 and x, y ∈ V satisfying ‖x‖, ‖y‖ < ε (“balls are convex”).

Lemma 7.3.4. Suppose V is a topological K-vector space, A ⊆ V is closed and C ⊆ V is
compact. Then A + C is closed.

Proof. Let x ∈ V \ (A + C). We have to show that there is a neighborhood U of the
origin satisfying (x + U) ∩ (A + C) = ∅.

Claim: For each y ∈ C, there exists a neighborhood Uy of the origin such that

(x + Uy) ∩ (y + Uy + A) = ∅.

Explanation. Let y ∈ C. Then V×V → V, (x′, y′) 7→ x− y+ x′− y′ is continuous and
(0, 0) lies in the preimage of the open set V \ A since x − y /∈ A (otherwise we would
have x ∈ A + y ⊆ A + C). Hence there is a neighborhood Uy with

x− y + Uy −Uy ⊆ V \ A,

i.e., (x + Uy − y−Uy) ∩ A = ∅.

By compactness of C, there is a finite subset D ⊆ C such that C ⊆ ⋃y∈D(y + Uy). Now
U :=

⋂
y∈D Uy is a neighborhood of the origin. In order to show that

(x + U) ∩ (A + C) = ∅,

it is enough to prove that (x + U) ∩ (A + y + Uy) = ∅ for all y ∈ D. For this purpose,
it suffices to show that (x + Uy) ∩ (y + Uy + A) = ∅ for all y ∈ D. But this holds even
for all y ∈ C by the above claim.
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Theorem 7.3.5 (Separation theorem for locally convex vector spaces). [→ 7.2.10, 7.2.11]
Let A and C be nonempty convex sets in the locally convex K-vector space V with A ∩ C = ∅.
Let A be closed and C be compact. Then there is a continuous K-linear function ϕ : V → R and
r, s ∈ R with ϕ(x) ≤ r < s ≤ ϕ(y) for all x ∈ A and y ∈ C.

Proof. B := C − A is by 7.3.4 closed and by hypothesis we have 0 /∈ B. Since V is
locally convex, there is in view of 7.2.13 a convex open set D ⊆ V with 0 ∈ D and
D ∩ B = ∅. Since B is also convex, there is by Corollary 7.2.11 a continuous K-linear
function ϕ : V → R and an ε ∈ R such that ϕ(x) < ε ≤ ϕ(y) for all x ∈ D and y ∈ B.
In particular, ε > ϕ(0) = 0 and ϕ(x) + ε ≤ ϕ(y) for all x ∈ A and y ∈ C. Because of
A 6= ∅ 6= C, r := sup{ϕ(x) | x ∈ A} ∈ R and s := inf{ϕ(y) | y ∈ C} ∈ R exist.
Moreover, we have r + ε ≤ s, i.e., r < s.

Definition 7.3.6. Let V be a K-vector space and A ⊆ V be convex. Then a convex set
F ⊆ A is called a face of A if for all x, y ∈ A with x+y

2 ∈ F, we have also x, y ∈ F.

Proposition 7.3.7. Suppose V is a K-vector space, A ⊆ V is convex and x ∈ A. Then x is an
extreme point of A [→ 2.4.1] if and only if {x} is a face of A.

Proof.

x is an extreme point of A

2.4.1⇐⇒ @y, z ∈ A :
(

y 6= z & x =
y + z

2

)
⇐⇒ ∀y, z ∈ A :

(
x =

y + z
2

=⇒ y = z
)

⇐⇒ ∀y, z ∈ A :
(

x =
y + z

2
=⇒ y = z = x

)
⇐⇒ ∀y, z ∈ A :

(
y + z

2
∈ {x} =⇒ y, z ∈ {x}

)

Proposition 7.3.8. [→ 2.4.2] Suppose V is a K-vector space, A ⊆ V is convex, F ⊆ A is
convex and λ ∈ (0, 1)K. Then the following are equivalent:

(a) F is a face of A

(b) ∀x, y ∈ A : (λx + (1− λ)y ∈ F =⇒ x, y ∈ F)

Proof. (b) =⇒ (a) is an easy exercise.

(a) =⇒ (b) Assume that F is a face of A but there are x, y ∈ A such that

λx + (1− λ)y ∈ F
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and WLOG (otherwise permute x and y and replace λ by 1− λ) x /∈ F. If λ < 1
2 , one

then can replace (x, λ) by (x′, λ′) where x′ := x+y
2 and λ′ := 2λ ∈ (0, 1)K because we

then have x′ ∈ A \ F (since A is convex and F is a face of A), λ′ ∈ (0, 1)K and

λ′x′ + (1− λ′)y = 2λ
x + y

2
+ (1− 2λ)y = λx + (1− λ)y ∈ F.

By iterating this in case of need finitely many times, one can suppose λ ≥ 1
2 . Then

z := x + 2((λx + (1− λ)y)− x) = (2λ− 1)x + 2(1− λ)y ∈ A

since 2λ− 1 ≥ 0, 2(1− λ) ≥ 0 and (2λ− 1) + 2(1− λ) = 1. Now

x + z
2

= x + (λx + (1− λ)y)− x = λx + (1− λ)y ∈ F

and thus x, z ∈ F since F is a face of A  .

Example 7.3.9. (a) If V is a K-vector space and A ⊆ V is convex, then both ∅ and A
are faces of A. We call these the trivial faces of A.

(b) The faces of [0, 1]2 ⊆ R2 are ∅, {(0, 0)}, {(0, 1)}, {(1, 0)}, {(1, 1)}, {0} × [0, 1],
{1} × [0, 1], [0, 1]× {0}, [0, 1]× {1}, [0, 1]2.

(c) The faces of B := {x ∈ R2 | ‖x‖ ≤ 1} are ∅, {x} (x ∈ B \ B◦) and B.

(d) {x ∈ R2 | ‖x‖ < 1} has only the trivial faces.

Definition and Proposition 7.3.10. Let V be a K-vector space and suppose A ⊆ V is convex.
We call F an exposed face of A if there is a K-linear function ϕ : V → R such that

F = {x ∈ A | ∀y ∈ A : ϕ(x) ≤ ϕ(y)}.

Every exposed face of A is a face of A.

Proof. Let F be an exposed face of A. To show: F is a face of A. It is easy to show that F
is convex. Choose a K-linear ϕ : V → R such that F = {x ∈ A | ∀y ∈ A : ϕ(x) ≤ ϕ(y)}.
Let x, y ∈ A such that x+y

2 ∈ F. To show: x, y ∈ F. It is obviously enough to show that

ϕ(x) = ϕ
(

x+y
2

)
= ϕ(y). We have that

ϕ(x) + ϕ(y) = ϕ

(
x + y

2

)
+ ϕ

(
x + y

2

) x,y∈A
≤

x+y
2 ∈F

ϕ(x) + ϕ(y)

where the inequality would be strict if one of ϕ(x) and ϕ(y) were different from ϕ
(

x+y
2

)
.

Example 7.3.11. [→ 7.3.9]
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(a) If V is a K-vector space and A ⊆ V is convex, then A is an exposed face of A while
∅ might be exposed [→ 7.3.9(d)] or non-exposed [7.3.9(c)].

(b) All faces of [0, 1]2 ⊆ R2 are exposed except ∅.

(c) All faces of {x ∈ R2 | ‖x‖ ≤ 1} are exposed except ∅.

(d) All faces of {x ∈ R2 | ‖x‖ < 1} are exposed.

(e) ((−∞, 0] × [0, ∞)) ∪ {(x, y) ∈ R2
≥0 | y ≥ x2} has exactly one nonexposed face,

namely {0}.

Proposition 7.3.12. Suppose V is a K-vector space, A ⊆ V is convex, F is a face of A and
G ⊆ F. Then the following holds:

G is a face of F ⇐⇒ G is a face of A.

Proof. “=⇒” Let G be a face of F and let x, y ∈ A with x+y
2 ∈ G. To show: x, y ∈ G.

Because of x+y
2 ∈ G ⊆ F, we have x, y ∈ F. Since G is a face of F, it follows that x, y ∈ G.

“⇐=” Let G be a face of A and let x, y ∈ F with x+y
2 ∈ G. Because of x, y ∈ F ⊆ A,

we then have x, y ∈ G.

Remark 7.3.13. Every intersection of faces of a convex set in a K-vector space V is
obviously again a face of this convex set.

Lemma 7.3.14. Let C 6= ∅ be a compact convex subset of a locally convex K-vector
space V. Then C possesses an extreme point.

Proof. Every intersection of a nonempty chain of closed nonempty faces of C is again a
closed nonempty face of C. Indeed, if the intersection were empty, then a finite subinter-
section would be empty by the compactness of C [→ 5.1.14] which is impossible since
we dealt with a chain. By Zorn’s lemma there is thus a minimal closed nonempty face
F of C. Being a closed subset of a compact set, F is compact itself [→ 5.1.21]. By 7.3.7,
it suffices to show that #F = 1. Due to F 6= ∅, it suffices to exclude #F ≥ 2. Assume
x, y ∈ F such that x 6= y. By 7.3.5, there is a continuous K-linear function ϕ : V → R

such that ϕ(x) < ϕ(y). Then

G := {v ∈ F | ∀w ∈ F : ϕ(v) ≤ ϕ(w)}

is nonempty by 7.1.19 because F is compact and nonempty and ϕ is continuous. Ac-
cording to 7.3.10, G is an (exposed) face of F. Hence G is a face of C by 7.3.12. From the
continuity of ϕ, we deduce that

G = F ∩
⋂

w∈F

ϕ−1((−∞, ϕ(w)])

is closed. Moreover, y /∈ G since ϕ(y) 6≤ ϕ(x). Therefore G is a closed nonempty face
of C that is properly contained in F, contradicting the minimality of F.
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Notation 7.3.15. Let A be a convex set in a K-vector space V. Then we write

extr A

for the set of extreme points of A.

Theorem 7.3.16. [→ 7.1.19] Suppose C is a nonempty compact convex subset of a locally
convex K-vector space V and ϕ : V → R is a continuous K-linear function. Then ϕ attains on
C a minimum and a maximum in an extreme point of C. In other words, there are x, y ∈ extr C
such that

ϕ(x) ≤ ϕ(z) ≤ ϕ(y)

for all z ∈ C.

Proof. Since one could replace ϕ by −ϕ, we show only the existence of x ∈ extr C such
that ϕ(x) ≤ ϕ(z) for all z ∈ C. By 7.1.19, there is y ∈ C such that ϕ(y) ≤ ϕ(z) for all
z ∈ C, i.e., the exposed face [→ 7.3.10]

F := {y ∈ C | ∀z ∈ C : ϕ(y) ≤ ϕ(z)}

of C is nonempty. Since ϕ is continuous,

F = C ∩
⋂
z∈C

ϕ−1((−∞, ϕ(z)]R)

is a closed subset of the compact set C and hence compact itself. By Lemma 7.3.14, F
possesses an extreme point x which is by 7.3.12 and 7.3.7 also an extreme point of C.

Corollary 7.3.17 (Krein–Milman theorem). Suppose C is a compact convex subset of a locally
convex K-vector space V. Then C is the closure of the convex hull of the set of its extreme points,
i.e.,

C = conv(extr C).

Proof. “⊇” From extr C ⊆ C and the convexity of C, we get conv(extr C) ⊆ C. Being
a compact subset of a Hausdorff space [→ 7.2.19], C is closed [→ 7.2.16] which entails
even conv(extr C) ⊆ C.

“⊆” WLOG C 6= ∅. A := conv(extr C) is closed, nonempty by Lemma 7.3.14 and
convex by 7.2.13. We show V \ A ⊆ V \ C. Let x ∈ V \ A. By the separation theorem
for locally convex vector spaces 7.3.5, there is a continuous K-linear function ϕ : V → R

such that ϕ(y) < ϕ(x) for all y ∈ A. By 7.3.16, there is y ∈ extr C ⊆ A satisfying
ϕ(z) ≤ ϕ(y) for all z ∈ C. It follows that ϕ(z) ≤ ϕ(y) < ϕ(x) for all z ∈ C. Therefore
x /∈ C.

Definition 7.3.18. Let V be a K-vector space, C ⊆ V and u ∈ V. We call an extreme
point [→ 2.4.1] of the state space S(V, C, u) [→ 7.1.9, 7.1.16] a pure state of (V, C, u).

Theorem 7.3.19 (Strengthening of 7.1.20). Suppose u is a unit for the cone C in the K-vector
space V and let x ∈ V. Then the following are equivalent:
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(a) ∀ϕ ∈ extr S(V, C, u) : ϕ(x) > 0

(b) ∀ϕ ∈ S(V, C, u) : ϕ(x) > 0

(c) ∃N ∈N : x ∈ 1
N u + C

(d) x is a unit for C.

Proof. (b)⇐⇒ (c)⇐⇒ (d) is 7.1.20.

(b) =⇒ (a) is trivial.

(a) =⇒ (b) WLOG S(V, C, u) 6= ∅. It suffices to show that the function

S(V, C, u)→ R, ϕ 7→ ϕ(x)

attains a minimum in an extreme point of S(V, C, u). But this follows from 7.3.16 be-
cause S(V, C, u) is a nonempty compact [→ 7.1.17] convex [→ 7.1.16] subset of the lo-
cally convex [→ 7.2.2(a)] R-vector space RV and

RV → R, ϕ 7→ ϕ(x)

is continuous [→ 5.1.5(b)].

Corollary 7.3.20 (Strengthening of 7.1.15). Suppose u is a unit for the cone C in the K-vector
space V and let x ∈ V. If ϕ(x) > 0 for all pure states ϕ of (V, C, u), then x ∈ C.

7.4 Convex sets in finite-dimensional vector spaces

Lemma 7.4.1. Let C be a cone in a finite-dimensional K-vector space V. Then U :=
C− C is a subspace of V and C possesses in U a unit [→ 7.1.4].

Proof. On the basis of Definition 7.1.1, it is easy to see that U is a subspace of V. Choose
a basis u1, . . . , um of U and write ui = vi − wi with vi, wi ∈ C for i ∈ {1, . . . , m}. We
show that u := ∑m

i=1 vi + ∑m
i=1 wi ∈ C is a unit for C in U. For this purpose, fix v ∈ U.

To show: ∃N ∈ N : Nu + v ∈ C. Write v = ∑m
i=1 λiui with λi ∈ K for i ∈ {1, . . . , m}.

Choose N ∈N with N ≥ |λi| for i ∈ {1, . . . , m}. Then

Nu + v =
m

∑
i=1

(N + λi)︸ ︷︷ ︸
≥0

vi +
m

∑
i=1

(N − λi)︸ ︷︷ ︸
≥0

wi ∈ C.

Theorem 7.4.2 (Finite-dimensional isolation theorem). [→ 7.1.13] Let C be a proper cone
in the finite-dimensional K-vector space V. Then there is a K-linear function ϕ : V → R with
ϕ 6= 0 and ϕ(C) ⊆ R≥0.
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Proof. U := C− C is by 7.4.1 a subspace of V.

Case 1: C = U

Then U is a proper subspace of V and by linear algebra it is easy to see that there is
some ϕ ∈ V∗ \ {0} such that ϕ(U) = {0}.

Case 2: C 6= U

By 7.4.1, there exists a unit u for C in U. The isolation theorem 7.1.13 provides us with
some ϕ0 ∈ S(U, C, u). Extend ϕ0 by linear algebra to a K-linear function ϕ : V → R.

Remark 7.4.3. Example 7.1.10 shows that one cannot omit the hypothesis dim V < ∞
in 7.4.1 and 7.4.2.

Theorem 7.4.4 (Separation theorem for finite-dimensional vector spaces). [→ 7.2.10] Let
A and B be convex sets in the finite-dimensional K-vector space V such that A 6= ∅ 6= B and
A ∩ B = ∅. Then there is a K-linear function ϕ : V → R such that ϕ 6= 0 and ϕ(x) ≤ ϕ(y)
for all x ∈ A and y ∈ B.

Proof. Completely analogous to the proof of 7.2.10.

Definition 7.4.5. [→ 2.4.1] Let V be a K-vector space and A ⊆ V. Then A is called an
affine subspace of V if ∀x, y ∈ A : ∀λ ∈ K : λx + (1 − λ)y ∈ A. The smallest affine
subspace of V containing A is obviously

aff A :=

{
m

∑
i=1

λixi | m ∈N, λi ∈ K, xi ∈ A,
m

∑
i=1

λi = 1

}
,

called the affine subspace generated by A or the affine hull of A.

Definition and Proposition 7.4.6. Let V be a K-vector space. Then for each A ⊆ V, the
following are equivalent:

(a) A is a nonempty affine subspace of V.

(b) There is an x ∈ V and a subspace U of V such that A = x + U.

If these conditions are met, then U as in (b) is uniquely determined and is called the direction
of A. Then dim A := dim U ∈N0 ∪ {∞} is the dimension of A. We set dim ∅ := −1.

Proof. (b) =⇒ (a) is easy.

(a) =⇒ (b) Suppose that (a) holds. Choose x ∈ A. Set U := A − x. To show:
U + U ⊆ U and KU ⊆ U. Let u, v ∈ U and λ ∈ K. To show: u + v ∈ U and λu ∈ U.
Choose a, b ∈ A such that u = a− x and v = b− x. Then u + v = (1a + 1b + (−1)x)−
x ∈ (aff A)− x = A− x = U and λu = (λa+ (1− λ)x)− x ∈ (aff A)− x = A− x = U.

Uniqueness claim Whenever x, y ∈ V and U and W are subspaces of V satisfying
x + U = y + W, then x− y ∈W and thus U = (y− x) + W = W.
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Definition 7.4.7. Let V be a K-vector space and A ⊆ V be convex. Then

dim A := dim aff A ∈ {−1} ∪N0 ∪ {∞}

is the dimension of A.

Proposition 7.4.8. [→ 7.3.8] Suppose that V is a K-vector space, A ⊆ V is convex and F is
a face of A. Let m ∈ N, x1, . . . , xm ∈ A and λ1, . . . , λm ∈ K>0 such that ∑m

i=1 λi = 1 and
∑m

i=1 λixi ∈ F. Then x1, . . . , xm ∈ F.

Proof. WLOG m ≥ 2. Let i ∈ {1, . . . , m}. To show: xi ∈ F. WLOG i = 1. We have
0 < λ1 < 1 and y := ∑m

i=2
λi

1−λ1
xi ∈ A since ∑m

i=2
λi

1−λ1
= 1−λ1

1−λ1
= 1. From ∑m

i=1 λixi =

λ1x1 + (1− λ1)y it follows thus by 7.3.8 that x1, y ∈ F.

Proposition 7.4.9. Suppose V is a K-vector space, A ⊆ V is convex and F is a face of A. Then
F = (aff F) ∩ A.

Proof. “⊆” is trivial.
“⊇” Let x ∈ (aff F) ∩ A. To show: x ∈ F. Write x = ∑m

i=1 λiyi − ∑n
j=1 µjzj with

m, n ∈ N0, λi, µj ∈ K>0, yi, zj ∈ F and ∑m
i=1 λi − ∑n

j=1 µj = 1. Setting λ := ∑m
i=1 λi

and µ := ∑n
j=1 µj, it follows that 1

1+µ x + ∑n
j=1

µj
1+µ zj = ∑m

i=1
λi
λ yi ∈ F and thus x ∈ F by

7.4.8.

Proposition 7.4.10. Let V be a finite-dimensional K-vector space.

(a) If A and B are affine subspaces of V with A ⊆ B, then

A = B ⇐⇒ dim A = dim B.

(b) If F and G are faces of the convex set A ⊆ V with F ⊆ G, then

F = G ⇐⇒ dim F = dim G.

Proof. (a) follows from 7.4.6 by linear algebra and (b) follows hereof by 7.4.7 and 7.4.9.

Remark 7.4.11. Suppose V is a topological K-vector space, K′ is a subfield of K and
V ′ a K′-vector subspace of the K′-vector space V. Then V induces on V ′ a vector space
topology. This is easy to see since V×V induces on V ′×V ′ the product topology of the
induced topologies and K×V induces on K′ ×V ′ the product topology of the induced
topologies.

Definition and Proposition 7.4.12. Let A be a convex set in the topological K-vector space
V. The interior of A in the topological space aff A (endowed with the topology induced by V) is
called the relative interior of A, denoted by relint A. This is a convex set.

Proof. WLOG A 6= ∅. Write aff A = x + U for some x ∈ V and some subspace U of V
[→ 7.4.6]. WLOG x = 0 [→ 7.2.6]. WLOG U = V [→ 7.4.11]. Then relint A = A◦ is
convex by 7.2.13.
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Remark 7.4.13. Let V be a finite-dimensional K-vector space. Choose a basis v1, . . . , vn
of V. Then f : Kn → V, x 7→ ∑n

i=1 xivi is a vector space isomorphism that is continu-
ous with respect to every vector space topology of V [→ 7.2.17] and that is a homeo-
morphism with respect to exactly one vector space topology of V [→ 7.2.2(a)]. Conse-
quently, there is a finest [→ 5.1.2(c)] vector space topology on V (cf. also 7.2.20). With
respect to this topology on V, we have for all A ⊆ V that

A open in V ⇐⇒ f−1(A) open in Kn,

independently of the choice of the basis v1, . . . , vn. It is easy to see that Kn carries

the initial topology with respect to all
{

linear forms on Kn

K-linear functions Kn → R

}
. The finest vec-

tor space topology on V is therefore also the initial topology [→ 5.1.4] with respect to

all
{

linear forms on V
K-linear functions V → R

}
. If U is a subspace of V, then the finest vector space

topology of V induces on U again the finest vector space topology because one can
extend every linear form on U to one on V.

Example 7.4.14. Since R is a topological R-vector space and thus also a topological Q-
vector space, also Q +

√
2Q ⊆ R is a topological Q-vector space with respect to the

induced topology [→ 7.4.11]. One sees easily that

Q +
√

2Q→ Q, x +
√

2y 7→ x (x, y ∈ Q)

is not continuous.

Lemma 7.4.15. Let A ⊆ Kn be convex. Then A◦ = ∅ =⇒ aff A 6= Kn.

Proof. Suppose that aff A = Kn. We show that A◦ 6= ∅. Denote by e1, . . . , en the stan-
dard basis of Kn and set e0 := 0 ∈ Kn. Write ei = ∑m

j=1 λijxij with m ∈ N, λij ∈ K,
xij ∈ A and ∑m

j=1 λij = 1 for i ∈ {0, . . . , n}. We show that

x :=
n

∑
i=0

m

∑
j=1

1
m(n + 1)

xij ∈ A◦.

Since A is convex, we have x ∈ A and it suffices to show that for each i ∈ {1, . . . , n},
there is an ε > 0 such that x± εei ∈ A (cf. also 7.1.8). For this purpose, fix i ∈ {1, . . . , n}.
From ei = ei − 0 = ei − e0 = ∑m

j=1 λijxij + ∑m
j=1(−λ0j)x0j and ∑m

j=1 λij − ∑m
j=1 λ0j =

1− 1 = 0, the existence of such an ε > 0 easily follows.

Theorem 7.4.16. Suppose V is a finite-dimensional topological K-vector space that is equipped
with the finest vector space topology [→ 7.4.13] and A ⊆ V is convex. Then A ⊆ relint A.

Proof. WLOG A 6= ∅. Write aff A = x + U for some x ∈ V and some subspace U

of V. Obviously, aff(A− x) 7.4.5
= (aff A)− x = U, relint(A− x) 7.2.6

= (relint A)− x and
relint(A− x) = relint A− x. Replacing A by A− x, we can thus suppose that aff A = U.

Tentative Lecture Notes



127

Using the last remark from 7.4.13, we can therefore suppose that aff A = V (otherwise
replace V by U). According to 7.4.13, we can reduce to the case where V = Kn (with
the product topology). We have to show A ⊆ A◦. Choose y ∈ A◦ with Lemma 7.4.15.
Let x ∈ A. To show: x ∈ A◦. By 7.2.12, we have (1− λ)x + λy ∈ A◦ for all λ ∈ (0, 1]K.
Obviously, we have x ∈ {(1− λ)x + λy | λ ∈ (0, 1]K} ⊆ A◦.

Theorem 7.4.17. Let V be a finite-dimensional K-vector space that is equipped with the finest
vector space topology [→ 7.4.13]. Let A ⊆ V be convex and x ∈ A \ relint A. Then there is an
exposed face F of A satisfying dim F < dim A and x ∈ F.

Proof. Similarly to the proof of 7.4.16, we reduce again to the case aff A = V. Note that
A◦ is convex [→ 7.4.12] and nonempty [→ 7.4.16]. The separation theorem 7.4.4 yields
a K-linear function ϕ : V → R with ϕ 6= 0 and ϕ(x) ≤ ϕ(y) for all y ∈ A◦. Since ϕ
is continuous [→ 7.4.13], the set ϕ−1([ϕ(x), ∞)R) is closed and contains with A◦ also
A◦ and hence by 7.4.16 also A, i.e., ϕ(x) ≤ ϕ(y) for all y ∈ A. In other words, x is an
element of the exposed face [→ 7.3.10] F := {z ∈ A | ∀y ∈ A : ϕ(z) ≤ ϕ(y)} of A. By
7.4.10, it is enough to show F 6= A. If we had F = A, we would have ϕ|A = ϕ(x) and
hence by linearity of ϕ also ϕ = ϕ|aff A = ϕ(x), i.e., ϕ = 0  .

Remark 7.4.18. If we use topological notions in a finite-dimensional R-vector space V,
then we tacitly furnish V with its unique vector space topology [→ 7.2.20] which is the
initial topology with respect to the family of all linear forms on V [→ 7.4.13].

Theorem 7.4.19 (Minkowski’s theorem). [→ 2.4.4, 7.3.17] Let V be a finite-dimensional
R-vector space. Let A ⊆ V be convex and compact. Then

A = conv(extr A).

Proof. Since A is closed [→ 7.2.16], all faces of A are also closed [→ 7.4.9, 7.4.6, 7.2.6] and
therefore compact [→ 5.1.21]. By induction, we can thus assume that F = conv(extr F)
for all faces F of A that satisfy dim F < dim A.

“⊇” is trivial.
“⊆” Let x ∈ A. To show: x ∈ conv(extr A). WLOG x /∈ extr A. Choose y, z ∈ A

with y 6= z and x ∈ conv{y, z}. Because of the assumptions on A, WLOG y, z ∈
A \ relint A. By 7.4.17, there are (exposed) faces F and G of A such that dim F < dim A,
dim G < dim A, y ∈ F and z ∈ G. From 7.3.7 and 7.3.12, we get extr F ⊆ extr A and
extr G ⊆ extr A. Consequently, y ∈ F = conv(extr F) ⊆ conv(extr A) and z ∈ G =
conv(extr G) ⊆ conv(extr A) where the equalities follow from the induction hypothe-
sis. Finally, x ∈ conv{y, z} ⊆ conv(extr A).

Theorem 7.4.20. Let (K,≤) be an arbitrary ordered field, let V be a K-vector space with n :=
dim V < ∞. Suppose that E ⊆ V is a finite set that generates V and x ∈ V. Then exactly one
of the following conditions occurs:

(a) E contains a basis of V that generates a cone containing x.
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(b) There is some ` ∈ V∗ with `(E) ⊆ K≥0 and `(x) < 0 and a linear independent set
F ⊆ E ∩ ker ` with #F = n− 1.

Proof. It is easy to see that (a) and (b) cannot occur both at the same time. Indeed, from
(a) it follows that x ∈ ∑v∈E K≥0v which is not compatible with (b) because if ` ∈ V∗

with `(E) ⊆ K≥0, then `(x) ∈ ` (∑v∈E K≥0v) ⊆ K≥0.

We choose an order ≤ on E [→ 1.1.1] and a basis B ⊆ E of V. We show that the
following algorithm always terminates:

(1) Write x = ∑v∈B λvv with λv ∈ K for all v ∈ B.

(2) If λv ≥ 0 for all v ∈ B, then stop since (a) occurs.

(3) u := min{v ∈ B | λv < 0}

(4) Define ` ∈ V∗ by `(u) = 1 and `(v) = 0 for all v ∈ B \ {u} (so that `(x) = λu < 0).

(5) If `(E) ⊆ K≥0, then stop since (b) occurs.

(6) w := min{v ∈ E | `(v) < 0}

(7) Replace B by the new basis (B \ {u}) ∪ {w} and go to (1).

Observe first of all that in Step (7) the set (B \ {u})∪ {w} is again a basis since B is one.
Indeed, w does not lie in the subspace generated by B \ {u} since ` vanishes according
to its choice in (4) on this subspace while it does not vanish on w by the choice of w in
(6).

To show that this algorithm terminates, we assume that this is not the case. Let then
denote by (Bk, uk, wk, `k) the value of (B, u, w, `) after Step (6) in the k-th iteration of the
loop. We first argue that the existence of s, t ∈N with

(∗) ut ≤ us = wt and {v ∈ Bs | v > us} = {v ∈ Bt | v > us}

causes a contradiction. For this purpose, let x = ∑v∈Bs
λvv with λv ∈ K for all v ∈ Bs

be the representation of x from the s-th iteration of the loop. We will apply `t to this
representation of x. For that matter, observe the following:

• For all v ∈ Bs with v < us = wt, we have by the assignment to us in (3) that
λv ≥ 0.

• For all v ∈ E ⊇ Bs with v < us = wt, we have by the assignement to wt in (6) that
`t(v) ≥ 0.

• λus < 0 according to (3)

• `t(us) = `t(wt) < 0 according to (6)

• For all v ∈ Bs with v > us = wt, we have `t(v) = 0 since for these v we have by
(∗) that v ∈ Bt \ {ut} (using that ut ≤ us) and thus `t(v) = 0 by (4).
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It thus follows that

0
(4)
> `t(x) = ∑

v∈Bs
v<us

λv︸︷︷︸
≥0

`t(v)︸ ︷︷ ︸
≥0︸ ︷︷ ︸

≥0

+ λus︸︷︷︸
<0

`t(us)︸ ︷︷ ︸
<0︸ ︷︷ ︸

>0

+ ∑
v∈Bs
v>us

λv `t(v)︸ ︷︷ ︸
=0︸ ︷︷ ︸

=0

> 0

which is the desired contradiction.

Finally, we show the existence of s, t ∈N with (∗). For clarity, we first generalize the
algorithm by looking at the following more abstract version of it:

Suppose E is a finite set, ≤ an order on E and B a subset of E.

(1’) Choose u ∈ B.

(2’) Choose w ∈ E \ B.

(3’) Replace B by (B \ {u}) ∪ {w} and go to (1’).

Denote by (Bk, uk, wk) the value of (B, u, w) after Step (2’) in the k-th iteration of the
algorithm. We show the existence of s, t ∈ N satisfying (∗). Since E is finite, the power
set of E is also finite. Consequently, there are p, q ∈ N such that p < q and Bp = Bq.
Because of (3’), it then obviously holds that {us | p ≤ s < q} = {wt | p ≤ t < q}. Set
v0 := max{us | p ≤ s < q} = max{wt | p ≤ t < q}. Then

{v ∈ Bs | v > v0} = {v ∈ Bt | v > v0}

for all s, t ∈ {p, . . . , q− 1}. Choose s, t ∈ {p, . . . , q− 1} with us = v0 = wt (note that
s < t or t < s but certainly not s = t). Now (∗) holds.

Corollary 7.4.21. [→ 2.3.2] Let (K,≤) be an arbitrary ordered field. Let m, n ∈N0, f , `1, . . . , `m ∈
K[X1, . . . , Xn] be linear forms [→ 1.6.1(a)] and set

S := {x ∈ Kn | `1(x) ≥ 0, . . . , `m(x) ≥ 0}.

Then the following are equivalent:

(a) f ≥ 0 on S

(b) f ∈ K≥0`1 + . . . + K≥0`m

(c) There are i1, . . . , is ∈ {1, . . . , m} such that `i1 , . . . , `is are linearly independent and

f ∈ K≥0`i1 + . . . + K≥0`is .

Proof. (c) =⇒ (b) =⇒ (a) is trivial.
(a) =⇒ (c) Suppose that (a) holds.

Claim: f ∈ V := K`1 + . . . + K`m
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Explanation. Assume f /∈ V. Then there is some ϕ ∈ (KX1 + . . . + KXn)∗ such that
ϕ(`1) = . . . = ϕ(`m) = 0 and ϕ( f ) = −1. Set x := (ϕ(X1), . . . , ϕ(Xn)) ∈ Kn. Then
`i(x) = ϕ(`i) = 0 for all i ∈ {1, . . . , m}. Hence x ∈ S and f (x) = ϕ( f ) = −1 < 0.  
Now apply 7.4.20 to V and E := {`1, . . . , `m} (taking account of the claim). Then it
suffices to show that for all ϕ ∈ V∗ with ϕ(E) ⊆ K≥0 also ϕ( f ) ≥ 0 holds. Thus
let ϕ ∈ V∗ with ϕ(E) ⊆ K≥0. Choose ψ ∈ (KX1 + . . . + KXn)∗ with ψ|V = ϕ. Set
x := (ψ(X1), . . . , ψ(Xn)) ∈ Kn. Then `i(x) = ψ(`i) = ϕ(`i) ≥ 0 for all i ∈ {1, . . . , m}
and thus x ∈ S and ϕ( f ) = ψ( f ) = f (x) ≥ 0.

Corollary 7.4.22 (Linear Nichtnegativstellensatz). [→ 2.3.5, 3.7.7] Let (K,≤) be an arbi-
trary ordered field. Let m, n ∈N0, f , `1, . . . , `m ∈ K[X1, . . . , Xn]1 [→ 1.5.1] and suppose

S := {x ∈ Kn | `1(x) ≥ 0, . . . , `m(x) ≥ 0} 6= ∅.

Then the following are equivalent:

(a) f ≥ 0 on S

(b) f ∈ K≥0 + K≥0`1 + . . . + K≥0`m

(c) There are i1, . . . , is ∈ {0, . . . , m} such that `i1 , . . . , `is are linearly independent and

f ∈ K≥0`i1 + . . . + K≥0`is

where `0 := 1.

Proof. (c) =⇒ (b) =⇒ (a) is trivial.
(a) =⇒ (c) Suppose that (a) holds. Due to 7.4.21, it suffices to show that f ∗ ≥ 0 on

S∗ := {x = (x0, . . . , xn) ∈ Kn+1 | x0 ≥ 0, `∗1(x) ≥ 0, . . . , `∗m(x) ≥ 0} [→ 2.2.1(c)(d),
2.2.2(e)]. To this end, let (x0, . . . , xn) ∈ S∗.

Case 1: x0 > 0

Then
(

1, x1
x0

, . . . , xn
x0

)
= 1

x0
(x0, . . . , xn) ∈ S∗ and hence

(
x1
x0

, . . . , xn
x0

)
∈ S. From (a),

it follows that f ∗
(

1, x1
x0

, . . . , xn
x0

)
= f

(
x1
x0

, . . . , xn
x0

)
≥ 0 and hence also f ∗(x0, . . . , xn) =

x0 f ∗
(

1, x1
x0

, . . . , xn
x0

)
≥ 0

Case 2: x0 = 0

Then (LF(`i))(x1, . . . , xn)
2.2.2(a)
= `∗i (x0, . . . , xn) ≥ 0 and therefore

(LF(`i))(λx1, . . . , λxn) ≥ 0

for all i ∈ {1, . . . , m} and λ ∈ K≥0. Because of S 6= ∅, we can choose (y1, . . . , yn) ∈ S.
Then `i(y1 + λx1, . . . , yn + λxn) ≥ 0 for all λ ∈ K≥0 and i ∈ {1, . . . , m}. Due to
(a), we have thus f (y1 + λx1, . . . , yn + λxn) ≥ 0 for all λ ∈ K≥0. It follows that
(LF( f ))(x1, . . . , xn) ≥ 0. Hence

f ∗(x0, . . . , xn)
2.2.2(a)
= (LF( f ))(x1, . . . , xn) ≥ 0.
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Definition 7.4.23. Let V be a K-vector space and C ⊆ V a cone [→ 7.1.1].

(a) The sets of the form K≥0x with x ∈ C \ {0} are called the rays of C.

(b) Rays of C that are at the same time faces [→ 7.3.6] of C are called extreme rays of C.

(c) A set B ⊆ C \ {0} is called a base of C, if for each x ∈ C \ {0} there is exactly one
λ ∈ K>0 such that λx ∈ B, i.e., if every ray of C hits the set B in exactly one point.

Proposition 7.4.24. Suppose V is a K-vector space and C ⊆ V is a cone with convex base B.
Then for all x ∈ V,

K≥0x is an extreme ray of C ⇐⇒ ∃λ ∈ K>0 : λx ∈ extr B.

Proof. Let x ∈ V.
“=⇒” Let K≥0x be an extreme ray of C. Then it follows that x ∈ C \ {0}. Hence

there is exactly one λ ∈ K>0 such that λx ∈ B. We claim λx ∈ extr B. For this purpose,
consider y, z ∈ B with y+z

2 = λx. To show: y = z = λx. From y, z ∈ C and y+z
2 ∈ K≥0x,

we deduce y, z ∈ K≥0x. Due to y, z ∈ B and 0 /∈ B, we get y, z ∈ K>0x. Again from
y, z ∈ B and the uniqueness of λ, we get y = λx = z.

“⇐=” WLOG let x ∈ extr B. To show: K≥0x is an extreme ray of C. Since x ∈ B ⊆
C \ {0}, K≥0x is a ray of C. Let y, z ∈ C with y+z

2 ∈ K≥0x. To show: y, z ∈ K≥0x. WLOG
y 6= 0 and z 6= 0. If we had y + z = 0, then one could easily show 0 ∈ B  . WLOG
y + z = x. Choose µ, ν ∈ K>0 such that µy, νz ∈ B. Then

x = y + z = (µ−1 + ν−1)

(
µ−1

µ−1 + ν−1 (µy) +
ν−1

µ−1 + ν−1 (νz)
)

︸ ︷︷ ︸
∈B

and thus µ−1 + ν−1 = 1. Since x = µ−1(µy) + ν−1(νz), µy, νz ∈ B and x ∈ extr B, we
have µy = x = νy.

Theorem 7.4.25. [→ 7.4.19] Every convex cone with compact [→ 7.4.18] convex base in a
finite-dimensional R-vector space is the sum of its extreme rays.

Proof. Suppose V is a finite-dimensional R-vector space and C ⊆ V is a convex cone
with compact convex base B. Let x ∈ C. To show: x is a sum of elements of extreme
rays of C. WLOG x ∈ B. By Minkowski’s theorem 7.4.19, we have x ∈ conv(extr B),
say x = ∑m

i=1 λixi with m ∈ N, λ1, . . . , λm ∈ K≥0, λ1 + . . . + λm = 1 and xi ∈ extr B.
According to 7.4.24, K≥0xi is for all i ∈ {1, . . . , m} an extreme ray of C.

Proposition 7.4.26. Every convex cone with compact [→ 7.4.18] base in a finite-dimensional
R-vector space is closed.

Proof. Suppose V is a finite-dimensional R-vector space and C ⊆ V is a convex cone
with compact base B. By Tikhonov’s theorem 5.1.18, also [0, 1]R × B is compact. From
7.1.18 together with the continuity of the scalar multiplication, we obtain that

A := {λx | λ ∈ [0, 1]R, x ∈ B}
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is again compact. WLOG V = Rn by 7.2.20. WLOG B 6= ∅. Set

d := min{‖y‖ | y ∈ B} > 0.

In order to show that C is closed, we now let x ∈ V \ C. WLOG ‖x‖ < d
2 [→ 7.2.6].

Since A is closed by 7.2.16, there is an ε > 0 such that {y ∈ V | ‖x− y‖ < ε} ∩ A = ∅.
From 0 ∈ A, we get ε ≤ ‖x‖ < d

2 . Then {y ∈ V | ‖x − y‖ < ε} ∩ C = ∅ for if
y ∈ C \ A, then there is λ ∈ K with 0 < λ < 1 and λy ∈ B and it follows that
‖y‖ = 1

λ‖λy‖ ≥ 1
λ d > d which is incompatible with ‖x− y‖ < d

2 (which would imply
contrarily ‖y‖ ≤ ‖y− x‖+ ‖x‖ < d

2 +
d
2 = d). This shows that C is closed.

7.5 Application to ternary quartics

A ternary quartic is a 4-form (also called quartic form [→ 2.3.4]) in 3 variables.

Lemma 7.5.1. Let (K,≤) be an ordered field and G ∈ SKm×m. Then G is psd [→ 2.3.1]
if and only if xTGx ≥ 0 for all x ∈ (K×)m.

Proof. Suppose xTGx ≥ 0 for all x ∈ (K×)m. Let z ∈ Km. We have to show that

zTGz ≥ 0.

Choose y ∈ (K×)m arbitrary. Then z + λy ∈ (K×)m and therefore

zTGz + 2λyTGz + λ2yTGy = (z + λy)TG(z + λy) ≥ 0

for all but finitely many λ ∈ K. For example, by 1.5.3(b) applied to the polynomial

zTGz + 2yTGzT + yTGyT2 ∈ K[T],

it follows that zTGz ≥ 0.

Lemma 7.5.2. Let K be an Euclidean field and f ∈ K[X, Y, Z] a 4-form. Suppose that
there are linearly independent v1, v2, v3 ∈ K3 such that f (v1) = f (v2) = f (v3) = 0.
Then the following are equivalent:

(a) f is psd [→ 2.3.1(a)]

(b) f ∈ ∑ K[X, Y, Z]2

(c) f is a sum of 3 squares of quadratic forms in K[X, Y, Z].

Proof. Denote by e1, e2, e3 the standard basis of K3. Set A :=
(
v1 v2 v3

)
∈ GL3(K) and

g := f
(

A
( X

Y
Z

))
∈ K[X, Y, Z]. Then g is a 4-form satisfying g(e1) = g(e2) = g(e3) = 0.

Since A defines a permutation (even a vector space isomorphism)

K3 → K3,
( x

y
z

)
7→ A

( x
y
z

)
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on K3, we have that
f is psd ⇐⇒ g is psd.

Since A induces on the other hand a ring automorphism

K[X, Y, Z]→ K[X, Y, Z], h 7→ h
(

A
( X

Y
Z

))
,

we obtain
f ∈∑ K[X, Y, Z]2 ⇐⇒ g ∈∑ K[X, Y, Z]2.

Since this ring automorphism permutes the quadratic forms in K[X, Y, Z], we have that

(c) ⇐⇒ g is a sum of 3 squares of quadratic forms.

Replacing f by g, we can henceforth suppose that v1 = e1, v2 = e2 and v3 = e3.

(c) =⇒ (b) =⇒ (a) is trivial.

(a) =⇒ (c) It is easy to see that each polynomial g ∈ K[T] with g ≥ 0 on K and
g(0) = 0 lies in the ideal (T2) [→ 1.5.3(b)]. Suppose now that (a) holds. The vanishing
at 0 and the nonnegativity of the polynomials

f (1, T, 0), f (1, 0, T), f (T, 1, 0), f (0, 1, T), f (0, T, 1), f (T, 0, 1) ∈ K[T]

therefore forces the coefficients of

X4, X3Y, X3Z, Y4, Y3X, Y3Z, Z4, Z3X, Z3Y

in f to vanish. For example, the first polynomial forces the coefficients of X4 and X3Y
to vanish, and the second one the coefficients of again X4 and of X3Z. It follows that

N( f ) ⊆ conv{(2, 2, 0),���
�XXXX(2, 1, 1), (2, 0, 2), (0, 2, 2),���

�XXXX(1, 2, 1),���
�XXXX(1, 1, 2)}, i.e.,

1
2

N( f ) ⊆ conv{(1, 1, 0), (1, 0, 1), (0, 1, 1)} and thus

1
2

N( f ) ∩N3
0 ⊆ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}.

By the Gram matrix method 2.6.1, we have to show that there is a psd matrix G ∈ SK3×3

satisfying

(∗) f =
(
XY XZ YZ

)
G

XY
XZ
YZ

 .

Since every monomial occurring in f is a product of two entries of
(
XY XZ YZ

)
,

there is certainly a G ∈ SK3×3 satisfying (∗) (actually one sees easily that there is a
unique such G which does however not play an immediate role). But from (∗) it follows
automatically that G is psd since f is psd. In order to see this, let v ∈ K3. We have to show
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that vTGv ≥ 0. Using 7.5.1, one reduces to the case v ∈ (K×)3. Then set λ := v1v2v3

and x := 1
v3

, y := 1
v2

and z := 1
v1

. Now v = λ

xy
xz
yz

 and therefore

vTGv = λ2 (xy xz yz
)

G

xy
xz
yz

 (∗)
= λ2 f (x, y, z) ≥ 0.

Lemma 7.5.3. Let K be an Euclidean field and f ∈ K[X, Y, Z] a 4-form. Suppose there
are linearly independent v1, v2, v3 ∈ K3 satisfying f (v1 + Tv2) ∈ (T3) and f (v3) = 0.
Then the following are equivalent:

(a) f is psd

(b) f ∈ ∑ K[X, Y, Z]2

(c) f is a sum of 3 squares of quadratic forms in K[X, Y, Z].

Proof. Almost exactly as in the proof of 7.5.2, one sees that one can suppose WLOG
v1 = e1, v2 = e2 and v3 = e3.

(c) =⇒ (b) =⇒ (a) is again trivial.

(a) =⇒ (c) One sees easily that a polynomial g ∈ K[T] with g ≥ 0 on K and
g ∈ (T2k−1) lies in (T2k) for k ∈ N. Suppose now that (a) holds. By considering
the polynomials

f (1, T, 0), f (1, 0, T), f (0, T, 1), f (T, 0, 1) ∈ K[T],

one sees easily that the coefficients of

X4, X3Y, X2Y2, XY3, X3Z, Z4, Z3Y, Z3X

in f must vanish. More precisely, the first polynomial ist responsible for the first four
of these coefficients, the second for the coefficients of X4 (again) and X3Z, the third for
the coefficients of Z4 and Z3Y, and the last for the coefficients of Z4 (again) and Z3X. It
follows that

N( f ) ⊆ conv{(2, 0, 2), (2, 1, 1),���
�XXXX(1, 1, 2),���

�XXXX(1, 2, 1), (0, 2, 2),���
�XXXX(0, 3, 1), (0, 4, 0)}, i.e.,

1
2

N( f ) ⊆ conv
{
(1, 0, 1),

(
1,

1
2

,
1
2

)
, (0, 1, 1), (0, 2, 0)

}
and thus

1
2

N( f ) ∩N3
0 ⊆ {(1, 0, 1), (0, 1, 1), (0, 2, 0)}.
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By the Gram matrix method 2.6.1, we have to show that there is a psd matrix G ∈ SK3×3

satisfying

(∗) f =
(
XZ YZ Y2)G

XZ
YZ
Y2

 .

If the monomial X2YZ actually appeared in f , we would now run into a big problem
that we did not have in the proof of 7.5.2 because this monomial is not a product of
two entries of

(
XZ YZ Y2). But this coefficient vanishes as one easily shows since

for all y ∈ K, the leading coefficient of f (X, y, 1) ∈ K[X] is nonnegative since this
polynomial is nonnegative on K. As in the proof of 7.5.2, one sees again that there
exists G ∈ SK3×3 satisfying (∗) (one could again see easily that G is unique). From (∗)
it follows automatically that G is psd since f is psd. To see this, let v ∈ K3. To show:
vTGv ≥ 0. Using 7.5.1, one reduces to the case v ∈ K × (K×)2. Then set λ := v2

2v3 and

x := v1
v2

2
, y := 1

v2
, z := 1

v3
. Now v = λ

xz
yz
y2

 and therefore

vTGv = λ2 (xz yz y2)G

xz
yz
y2

 (∗)
= λ2 f (x, y, z) ≥ 0.

Lemma 7.5.4. Let K be an Euclidean field and f ∈ K[X, Y, Z] a 4-form. Suppose there
are linearly independent v1, v2 ∈ K3 satisfying f (v1 + Tv2) ∈ (T3) and f (v2) = 0. Then
the following are equivalent:

(a) f is psd

(b) f ∈ ∑ K[X, Y, Z]2

(c) f is a sum of 3 squares of quadratic forms in K[X, Y, Z].

Proof. One can again suppose WLOG v1 = e1 and v2 = e2.
(c) =⇒ (b) =⇒ (a) is again trivial.
(a) =⇒ (c) One uses again that a polynomial g ∈ K[T] with g ≥ 0 on K and

g ∈ (T2k−1) lies in (T2k) for k ∈ N. Suppose now that (a) holds. By considering
the polynomials

f (1, T, 0), f (1, 0, T), f (T, 1, 0), f (0, 1, T) ∈ K[T],

one sees easily that the coefficients of

X4, X3Y, X2Y2, XY3, X3Z, Y4, Y3Z

in f must vanish. More precisely, the first polynomial ist responsible for the first four
of these coefficients, the second for the coefficients of X4 (again) and X3Z, the third for
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the coefficients of Y4 and XY3 (again), and the last for the coefficients of Y4 (again) and
Y3Z. It follows that

N( f ) ⊆ conv{(2, 0, 2), (2, 1, 1), (1, 2, 1), (0, 2, 2),���
�XXXX(0, 1, 3), (0, 0, 4),���

�XXXX(1, 0, 3),���
�XXXX(1, 1, 2)}, i.e.,

1
2

N( f ) ⊆ conv
{
(1, 0, 1),

(
1,

1
2

,
1
2

)
,
(

1
2

, 1,
1
2

)
, (0, 1, 1), (0, 0, 2)

}
and thus

1
2

N( f ) ∩N3
0 ⊆ {(1, 0, 1), (0, 1, 1), (0, 0, 2)}.

By the Gram matrix method 2.6.1, we have to show that there is a psd matrix G ∈ SK3×3

satisfying

(∗) f =
(
XZ YZ Z2)G

XZ
YZ
Z2

 .

If one of the monomials X2YZ and XY2Z actually appeared in f , we would have trouble
since these monomials are not a product of two entries of

(
XZ YZ Z2). But these

coefficients vanish as one easily shows since for all x, y ∈ K, the leading coefficients
of f (X, y, 1) ∈ K[X] and f (x, Y, 1) ∈ K[Y] are nonnegative since these polynomials are
nonnegative on K. One sees again that there exists G ∈ SK3×3 satisfying (∗) (one could
again see easily that G is unique). From (∗) it follows automatically that G is psd since f
is psd. To see this, let v ∈ K3. To show: vTGv ≥ 0. Using 7.5.1, one reduces to the case

v ∈ K × (K×)2. Then set λ := v2
2v3 and x := v1

v2v3
, y := 1

v3
, z := 1

v2
. Now v = λ

xz
yz
z2


and therefore

vTGv = λ2 (xz yz z2)G

xz
yz
z2

 (∗)
= λ2 f (x, y, z) ≥ 0.

Lemma 7.5.5. Let f ∈ R[X, Y, Z] be a psd 4-form that is not a sum of 3 squares of
quadratic forms in R[X, Y, Z] and that has two linear independent zeros in R3. Then
there is a linear form ` ∈ R[X, Y, Z] \ {0} such that f − `4 is psd.

Proof. By Lemma 7.5.2, the zeros of f span a two-dimensional subspace of R3. By a
change of coordinates, we can thus achieve that f (e2) = f (e3) = 0 and

f > 0 on R× ×R2.

We now claim that there is some ε ∈ R>0 such that f−εX4 is psd. By homogeneity, it
suffices to find ε > 0 such that f − εX4 ≥ 0 holds on the compact set

[−1, 1]3R \ (−1, 1)3
R.
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For this purpose, it is enough show that for each two-dimensional face F of the polytope
[−1, 1]3 (i.e., for each side of the cube [−1, 1]3) there is some ε > 0 such that f − εX4 ≥ 0
on F. On the two sides {−1} × [−1, 1]2 and {1} × [−1, 1]2, f is positive so that the
existence of such an ε for them follows from 7.1.19. After a further change of coordi-
nates, it suffices to consider from the remaining four sides just [−1, 1]2 × {1}. Consider
therefore f̃ := f (X, Y, 1) ∈ R[X, Y] [→ 2.2.1(d)]. From Lemma 7.5.4, we deduce

∂2 f̃
∂Y2 (0, y) > 0

for all y ∈ R that satisfy f̃ (0, y) = 0 (apply 7.5.4 to f , v1 := (0, y, 1) and v2 := (0, 1, 0),

taking into account that ∂ f̃
∂Y (0, y) = 0 due to f̃ ≥ 0 on R2). In the same way, Lemma

7.5.3 implies that for each y ∈ R satisfying f̃ (0, y) = 0 all other directional derivatives
of f̃ in (0, y) are also positive. Altogether, f̃ has thus only zeros in R2 at which the
second derivative (i.e., the Hessian) is pd (recall that all zeros of f̃ lie on the y-axis).
From analysis we know know that each zero of the nonnegative polynomial f̃ (in R2,
or equivalently {0} ×R since all zeros lie on the y-axis) is an isolated global minimizer.
Therefore

{(x, y) ∈ R2 | f̃ (x, y) = 0} = {(0, y1), . . . , (0, ym)}
for some m ∈ N and y1, . . . , ym ∈ R (one of the yi is 0). Since −X4 as well as its first
and second derivative vanishes on the y-axis (since ∂X4

∂X = 4X3, ∂X4

∂Y = 0, ∂2X4

∂X2 = 12X2,
∂2X4

∂X∂Y = 0 and ∂2X4

∂Y2 = 0), every (0, yi) is a zero and an isolated local minimizer of f̃ − X4.
Choose for each i ∈ {1, . . . , m} an open neighborhood Ui of (0, yi) such that f̃ − X4 > 0
on Ui \ {(0, yi)}. Then of course also f̃ − εX4 > 0 on Ui \ {(0, yi)} for all ε ≤ 1 and i ∈
{1, . . . , m}. Since f̃ is positive on the compact set [−1, 1]2 \ (U1 ∪ · · · ∪Um), there is an
ε ∈ (0, 1)R such that f̃ − εX4 > 0 on [−1, 1]2 \ (U1 ∪ · · · ∪Um). Altogether, f̃ − εX4 > 0
on [−1, 1]2 \ {(0, y1), . . . , (0, ym)} and f̃ − εX4 = 0 on {(0, y1), . . . , (0, ym)}.

Lemma 7.5.6. Suppose f lies on an extreme ray [→ 7.4.23(b)] of the cone P of the psd
4-forms in R[X, Y, Z]. Then there are linear independent v1, v2 ∈ R3 such that f (v1) =
f (v2) = 0.

Proof. If f were pd, then the forms f ± εX4 would be psd for some ε > 0 (choose ε
for instance as the minimum of f on the compact unit sphere of R3) and because of
f = 1

2 ( f − εX4) + 1
2 ( f + εX4) it would follow that f + εX4 ∈ R≥0 f and thus f ∈ RX4

 . Hence f has at least one zero v1 ∈ R3 \ {0}. After a change of coordinates, we can
without loss of generality achieve v1 = e1. Since (0, 0) is a local (even a global) mini-
mizer of f (1, Y, Z) ∈ R[Y, Z], we know from analysis that ∂ f

∂Y (1, 0, 0) = ∂ f
∂Z (1, 0, 0) = 0.

It follows that there are a, b, c ∈ R[Y, Z] such that

f = aX2 + bX + c.

We have to show that there exists v2 ∈ R× (R2 \ {0}) such that f (v2) = 0. We make a
case distinction by rk(a) [→ 1.6.1(h)].
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Case 1: rk(a) = 0

Then a = 0 and thus b(y, z) = 0 for all (y, z) ∈ R2 from which b = 0 follows by 2.2.3.
If f = c ∈ R[Y, Z] was pd, then c± εY4 ∈ R[Y, Z] would be psd for some ε > 0 and it
would follow that c + εY4 ∈ R≥0c and thus c ∈ RY4  .

Case 2: rk(a) = 1

By a coordinate change in the y-z-plane WLOG a = Y2. Then b(0, z) = 0 for all
z ∈ R and hence b(0, Z) = 0, i.e., b = Yb′ for some b ∈ R[X, Y]. It follows that

f = X2Y2 + b′XY + c =
(

XY + b′
2

)2
+
(

c− b′2
4

)
. For all (y, z) ∈ R× ×R, we find some

x ∈ R satisfying xy + b′(y,z)
2 = 0 from which c(y, z)− b′(y,z)2

4 = f (x, y, z) ≥ 0 follows.
Hence c − b′2

4 ∈ P. Aside from that, we have of course (XY + b′
2 )

2 ∈ P. Since f lies
on an extreme ray of P, it follows that (XY + b′

2 )
2 ∈ R f (and c − b′2

4 ∈ R f ). Now

choose (y, z) ∈ R× ×R arbitrary and with it x ∈ R such that xy + b′(y,z)
2 = 0. Then

f (x, y, z) = 0.

Case 3: rk(a) = 2

By a coordinate change in the y-z-plane WLOG a = Y2 + Z2. Since f is psd, also the
6-form 4ac− b2 ∈ R[Y, Z] is psd. We have to show that there is (y, z) ∈ R2 \ {0} such
that there exists x ∈ R satisfying a(y, z)x2 + b(y, z) + c(y, z) = 0. Because of a(y, z) 6= 0
for all (y, z) ∈ R2 \ {0}, this is equivalent to the existence of (y, z) ∈ R2 \ {0} with
(b2 − 4ac)(y, z) ≥ 0, i.e., (4ac− b2)(y, z) = 0 (since 4ac− b2 is psd). We have thus to
show that 4ac− b2 is not pd. Aiming for a contradiction, assume that 4ac− b2 is psd.
Then also the 6-forms 4a(c± εY4)− b2 are psd for some ε > 0 (choose for example 4ε as
the minimum of 4ac− b2 on the compact unit sphere of R2 and take into account that
a = Y2 + Z2). It follows that f ± εY4 ∈ P. From f = 1

2 ( f + εY4) + 1
2 ( f − εY4), we obtain

f + εY4 ∈ R≥0 f and thus f ∈ RY4  .

Lemma 7.5.7. Let d, n ∈ N0 and let V be the R-vector space of all 2d-forms in R[X] =
R[X1, . . . , Xn] and P ⊆ V be the cone of all psd forms in V. Then P is a closed cone with
compact convex base [→ 7.4.23(c)].

Proof. As an intersection of closed sets, P =
⋂

x∈Rn{p ∈ V | p(x) ≥ 0} is closed. By
2.2.3,

‖p‖ :=
d

∑
x1=−d

. . .
d

∑
xn=−d

|p(x1, . . . , xn)| (p ∈ V)

defines a norm on V. Then

B := {p ∈ P | ‖p‖ = 1} =
{

p ∈ V |
d

∑
x1=−d

. . .
d

∑
xn=−d

p(x1, . . . , xn) = 1

}

is a compact convex base of P.
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Lemma 7.5.8. Let V denote the R-vector space of all 4-forms in R[X, Y, Z] and P ⊆ V
the cone of all psd forms in V. Suppose that f lies on an extreme ray of P. Then f is a
square of a quadratic form.

Proof. It is enough to show that f is a sum of squares of quadratic forms for if f =

∑m
i=1 q2

i 6= 0 with 2-forms qi ∈ R[X, Y, Z], then

f =
1
2

2q2
1︸︷︷︸

∈P

+
1
2

2
m

∑
i=2

q2
i︸ ︷︷ ︸

∈P

and thus q2
1 ∈ R≥0 f . If there is a linear form ` ∈ R[X, Y, Z] \ {0} such that f − `4 is psd,

then `4 ∈ R≥0 f and f = (c`2)2 for some c ∈ R× so that we are done. From now on
therefore suppose that such a linear form does not exist. From the Lemmata 7.5.5 and
7.5.6, it follows now that f is a sum of 3 squares of 2-forms in R[X, Y, Z].

Theorem 7.5.9. Let R be a real closed field and f ∈ R[X, Y, Z] a 4-form. Then the following
are equivalent:

(a) f is psd.

(b) f ∈ ∑ R[X, Y, Z]2

(c) f is a sum of squares of quadratic forms in R[X, Y, Z].

Proof. (c) =⇒ (b) =⇒ (a) is trivial.
(a) =⇒ (c) follows for R = R from 7.5.8 together with the conic version 7.4.25 of

Minkowski’s theorem. Using the Gram matrix method 2.6.1 (or 7.4.20), one sees that
the class of all real closed fields R for which (a) =⇒ (c) holds for all f ∈ R[X, Y, Z],
is semialgebraic. By 1.8.5, every real closed field belongs to this class. In short, the
statement follows thus from the case R = R by the Tarski principle 1.8.19.

Corollary 7.5.10 (dehomogenized version of 7.5.9). Let R be a real closed field and f ∈
R[X, Y]4. Then

f ≥ 0 on R2 ⇐⇒ f ∈∑ R[X, Y]2.

Proof. “⇐=” is trivial.
“=⇒” Suppose f ≥ 0 on R2. WLOG f /∈ R. Then deg f = 2 or deg f = 4 by

2.2.4(b). For deg f = 2, the claim follows from 2.3.5. Suppose therefore deg f = 4. Then
f ∗ := Z4 f

(X
Z , Y

Z

)
∈ R[X, Y, Z] is the homogenization of f with respect to Z [→ 2.2.1(c)]

and f ∗ is psd by 2.2.6(a). Now 7.5.9 yields f ∗ ∈ ∑ R[X, Y, Z]2. By dehomogenization
[→ 2.2.1(d), 2.2.2], it follows that f ∈ ∑ R[X, Y]2.

Remark 7.5.11. A posteriori, we see now that in the situation of Lemma 7.5.6, there
actually exist even infinitely many pairwise distinct zeros of f . This follows from 7.5.8.
Indeed, if f = q2 with a 2-form q ∈ R[X, Y, Z] with rk q = 3, then WLOG sg q ≥ 0
(otherwise replace q by −q) and thus sg q ∈ {3, 1}. If sg q = 3, then q and thus f is pd.
If sg q = 1, then q and thus f have infinitely many pairwise linearly independent zeros.
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Remark 7.5.12. We will neither use nor prove the following:

(a) In 1888, Hilbert showed a strengthening of 7.5.9 (“sum of three squares” instead of
“sum of squares”, cf. also 7.5.2, 7.5.3, 7.5.4 and 7.5.5) [Hil]. A very long and tedious
elementary proof for this has been given by Scheiderer and Pfister in 2012 [PS]..

(b) Scheiderer showed in 2016 that

X4 + XY3 + Y4 − 3X2YZ− 4XY2Z + 2X2Z2 + XZ3 + YZ3 + Z4

is psd but does not belong to ∑ Q[X, Y, Z]2 [S2]. In the same year, Henrion, Naldi,
Safey El Din gave an elementary proof for this [HNS].
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§8 Nonnegative polynomials with zeros

Throughout this chapter, K denotes again always a subfield of R with the induced or-
der. Moreover, we let A always be a commutative ring (e.g., A = K[X1, . . . , Xn]).

8.1 Modules over semirings

Definition 8.1.1. Let T ⊆ A. Then we call T a semiring of A if {0, 1} ⊆ T, T + T ⊆ T
and TT ⊆ T [→ 1.2.1]. If T is a semiring of A, then M ⊆ A is called a T-module of A if
0 ∈ M, M + M ⊆ M and TM ⊆ M.

Remark 8.1.2. (a) T is a preorder of A ⇐⇒ (T is a semiring of A & A2 ⊆ T)

(b) If T is a semiring of A, then T − T is a subring of A.

(c) If T is a semiring of A and M a T-module of A, then M−M is a (T− T)-module of
A.

(d) If T is a semiring of A, then T is a T-module of A.

Definition 8.1.3. Let T be a semiring of A and M a T-module of A. Then M is called
Archimedean (in A) if ∀a ∈ A : ∃N ∈N : N + a ∈ M [→ 4.1.2(a)].

Remark 8.1.4. Due to 8.1.2(d), the notion of an Archimedean semiring is also defined
by 8.1.3. Because of 8.1.2(a), this generalizes the notion of an Archimedean preorder of
A [→ 4.1.2(a)].

Definition 8.1.5. [→ 4.3.1] Let T be a semiring of A, M a T-module of A and u ∈ A.
Then

B(A,M,u) := {a ∈ A | ∃N ∈N : Nu± a ∈ M}
the set of with respect to M by u arithmetically bounded elements of A. If u = 1, then we
write B(A,M,u) := B(A,M) and omit the specification “by u”.

Proposition 8.1.6. Suppose T is a semiring of A, M1 and M2 are T-modules of A, u1 ∈ M1
and u2 ∈ M2. Then ∑ M1M2 is also a T-module of A and we have

B(A,M1,u1)B(A,M2,u2) ⊆ B(A,∑ M1 M2,u1u2).

Proof. Let ai ∈ B(A,Mi ,ui), say Nui ± ai ∈ Mi for i ∈ {1, 2} with N ∈ N. Then (cf. the
proof of 4.3.1)

3N2u1u2 ± a1a2 = (Nu1 + a1)(Nu2 ± a2) + Nu2(Nu1 − a1) + Nu1(Nu2 ∓ a2).

141



142

Corollary 8.1.7. Let T be a semiring of A, M a T-module of A, u ∈ T and v ∈ M. Then
B(A,T,u)B(A,M,v) ⊆ B(A,M,uv).

Proof. Apply 8.1.6 to M1 := T, M2 := M, u1 := u, u2 := v and observe ∑ M1M2 =

∑ TM = M.

Corollary 8.1.8. [→ 4.3.1] Let T be a semiring of A. Then B(A,T) is a subring of A. Moreover,
if M a T-module of A and u ∈ M, then B(A,M,u) is a B(A,T)-module of A.

Remark 8.1.9. [→ 8.1.3, 4.3.3] If T ⊆ A is a semiring and M ⊆ A a T-module, then M
is Archimedean if and only if B(A,M) = A.

Theorem 8.1.10. [→ 4.3.4] Let n ∈ N0 and T ⊆ K[X] a semiring with K≥0 ⊆ T. Then the
following are equivalent:

(a) T is Archimedean.

(b) ∃N ∈N : ∀i ∈ {1, . . . , n} : N ± Xi ∈ T

(c) ∃m ∈N : ∃`1, . . . , `m ∈ T ∩ K[X]1 : ∃N ∈N :
∅ 6= {x ∈ Kn | `1(x) ≥ 0, . . . , `m(x) ≥ 0} ⊆ [−N, N]nK

Proof. Write A := K[X]. From K≥0 ⊆ T, it follows that K ⊆ B(A,T). Hence we have
B(A,T) = A ⇐⇒ X1, . . . , Xn ∈ B(A,T) which shows (a)⇐⇒ (b). The implication (b) =⇒
(c) is trivial and (c) =⇒ (b) is an easy consequence of the linear Nichtnegativstellensatz
7.4.22.

Lemma 8.1.11. [→ 4.3.2] Suppose that 1
2 ∈ A (i.e., 2 ∈ A×), let M ⊆ A be a (∑ A2)-

module with 1 ∈ M and let a ∈ A. Then

a2 ∈ B(A,M) ⇐⇒ a ∈ B(A,M).

Proof. “=⇒” If N ∈N with (N − 1)− a2 ∈ M, then

N ± a = (N − 1)− a2 +

(
1
2
± a
)2

+ 3
(

1
2

)2

∈ M

(exactly as in the proof of 4.3.2).
“⇐=” If N ∈N with (2N − 1)± a ∈ M, then

N2(2N − 1)− a2 = 2
(

1
2

)2

((N − a)2(2N − 1 + a) + (N + a)2(2N − 1− a)) ∈ M.

Proposition 8.1.12. Suppose 1
2 ∈ A, T ⊆ A is a preorder and M ⊆ A is a T-module with

1 ∈ M. Then B(A,M) is a subring of A and B(A,M,u) a B(A,M)-module of A for each u ∈ T.
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Proof. It obviously suffices to show B(A,M)B(A,M,u) ⊆ B(A,M,u) for all u ∈ T (since this
means B(A,M)B(A,M) ⊆ B(A,M) for u = 1). If a ∈ B(A,M), then we have

a =

(
1
2

)2

((a + 1)2 − (a− 1)2)

and because of 1 ∈ M also a + 1, a − 1 ∈ B(A,M). Therefore it is enough to show
a2B(A,M,u) ⊆ B(A,M,u) for all a ∈ B(A,M) and u ∈ T. For this purpose, fix a ∈ B(A,M),
u ∈ T and b ∈ B(A,M,u). To show: a2b ∈ B(A,M,u). From 8.1.11, we get a2 ∈ B(A,M).
Choose N ∈ N such that N − a2, Nu ± b ∈ M. Due to a2, u ∈ T, we get now Nu −
ua2, Nua2 ± a2b ∈ M. Consequently,

N2u± a2b = (N2u− Nua2) + (Nua2 ± a2b) ∈ M + M ⊆ M.

Theorem 8.1.13. [→ 4.3.4, 8.1.10] Suppose n ∈ N0 and M ⊆ K[X] is a (∑ K≥0K[X]2)-
module with 1 ∈ M. Then the following are equivalent:

(a) M is Archimedean.

(b) ∃N ∈N : N −∑n
i=1 X2

i ∈ M

(c) ∃N ∈N : ∀i ∈ {1, . . . , n} : N ± Xi ∈ M

(d) ∃m ∈N : ∃`1, . . . , `m ∈ M ∩ K[X]1 : ∃N ∈N :
∅ 6= {x ∈ Kn | `1(x) ≥ 0, . . . , `m(x) ≥ 0} ⊆ [−N, N]nK

Proof. (a) =⇒ (b) is trivial.

(b) =⇒ (c) If (b) holds, then N − X2
i ∈ M and thus X2

i ∈ B(K[X],M) for all i ∈
{1, . . . , n}. Apply now 8.1.11.

(c) =⇒ (d) is trivial and (d) =⇒ (c) follows again from the linear Nichtnegativstel-
lensatz 7.4.22.

(c) =⇒ (a) follows from 8.1.12.

8.2 Pure states on rings and ideals

In this section, we always suppose that the field K is a subring of A. In particular,
Q ⊆ A and A is a K-vector space.

Remark 8.2.1. Under the just made mild hypothesis Q ⊆ A, one can reformulate the
abstract Archimedean Positivstellensatz 4.1.3 as follows:

For arbitrary A and K as above, let T be an Archimedean preorder of A such
that K≥0 ⊆ T and a ∈ A. Then the following are equivalent:

(a) ϕ(a) > 0 for all K-linear ring homomorphisms ϕ : A→ R with ϕ(T) ⊆ R≥0.

(b) ∃N ∈N : a ∈ 1
N + T
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To see this, first note that in (a), one can omit the K-linearity of ϕ since it just means
that ϕ|K = idK which follows from 1.1.15 by K≥0 ⊆ T since the identity is the only
embedding of ordered fields from K to R (cf. the proof of 4.2.1). But then the theorem
becomes strongest for K = Q and we can thus assume K = Q which makes redundant
the hypothesis K≥0 ⊆ T since for all m, n ∈N, we have m

n = mn
( 1

n

)2 ∈ ∑ A2 ⊆ T. This
last fact also shows (b) ⇐⇒ (b’) where we denote by (a’) and (b’) the corresponding
conditions from 4.1.3, namely:

(a’) â > 0 on sper(A, T)

(b’) ∃N ∈N : Na ∈ 1 + T

It remains to show that (a) ⇐⇒ (a’). To this end, it suffices by 4.1.4(d) to show that (a)
is equivalent to

(a”) â(Q) > 0 for all maximal elements Q of sper(A, T).

It is clear that (a’) =⇒ (a”). To show (a”) =⇒ (a’), suppose that (a”) holds and let
P ∈ sper(A, T). To show: â(P) > 0. Using 3.2.3 or 3.2.5, we find a maximal element Q
of sper(A, T) such that P ⊆ Q. By 3.2.4, we have Q = P ∪ supp(Q). Due to (a”), we
have a ∈ Q \ −Q, i.e., a ∈ Q \ supp(Q) ⊆ P, and because of a /∈ −P (for otherwise
a ∈ −Q) it follows that a ∈ P \ −P, i.e., â(P) > 0. This shows (a’) ⇐⇒ (a”). These
arguments were implicitly present already in the proof of 4.2.2.

Remark 8.2.2. Suppose T is a semiring of A with K≥0 ⊆ T and M a T-module of A.
Then M is a cone in the K-vector space A and we have:

M is Archimedean [→ 8.1.3] ⇐⇒ 1 is a unit for M [→ 7.1.4]

Motivation 8.2.3. If T is an Archimedean preorder of A with K≥0 ⊆ T, then the Archimedean
Positivstellensatz 4.1.3 in the version of 8.2.1 amounts to the equivalence of

∃N ∈N : a ∈ 1
N

+ T

with

(∗) ϕ(a) > 0 for all (K-linear) ring homomorphisms ϕ : A→ R with ϕ(T) ⊆ R≥0

while 7.3.19, paying attention to 8.2.2, tells that the same condition is equivalent to

(∗∗) ϕ(a) > 0 for all pure states ϕ of (A, T, 1).

The following imprecise questions arise:

(a) What do pure states “on rings” have to do with ring homomorphisms?

(b) Can the Archimedean Positivstellensatz be generalized from preorders to semirings
or even to modules over semirings?
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(c) If (∗) holds only with “≥” instead of “>”, then ∃N ∈ N : a ∈ 1
N + T can of course

not hold anymore but one would still want to prove that a ∈ T. In this case, is it
possible to find an ideal I ⊆ A (e.g., the kernel of a ring homomorphism ϕ from (∗)
with ϕ(a) = 0) such that I ∩ T possesses in the K-vector space I a unit u in such a
way that a ∈ I and (∗∗) holds for (I, I ∩ T, u) instead of (A, T, 1)? Then one could
apply 7.3.19 or 7.3.20 in order to finally still show that a ∈ T (even a ∈ 1

N u+(I∩T)).

(d) What can one say about pure states “on ideals”? This question generalizes (a) and
is motivated by (c).

Reminder 8.2.4. For z ∈ C and k ∈N0, the binomial coefficient(
z
k

)
:=

k

∏
i=1

z− i + 1
i

is declared. From analysis, one knows that

√
1 + t = (1 + t)

1
2 =

∞

∑
i=0

( 1
2
i

)
ti

for all t ∈ R with |t| < 1.

Lemma 8.2.5. For all k ∈N, the coefficients of

pk :=

(
k

∑
i=0

( 1
2
i

)
(−T)i

)2

− (1− T) ∈ Q[T]

are nonnegative.

Proof. In the ring Q[[T]] of formal power series, we have because of 8.2.4 and the iden-
tity theorem for power series from analysis that(

∞

∑
i=0

( 1
2
i

)
(−T)i

)2

= 1− T.

Now let k ∈ N be fixed. For i ∈ N0 with i ≤ k, the coefficient of Ti in pk obviously
equals the coefficient of Ti in(

∞

∑
i=0

( 1
2
i

)
(−T)i

)2

− (1− T)

which is zero. The binomial coefficient (
1
2
i ) is positive for i ∈ {0, 1, 3, 5, . . . } and negative

for i ∈ {2, 4, 6, . . . }. The only positive coefficient of

∞

∑
i=0

( 1
2
i

)
(−T)i

is thus the constant term. Hence, for i ∈N0 with i > k, the coefficient of Ti in pk is thus
a sum of products of two nonpositive reals and therefore nonnegative.
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Lemma 8.2.6. Suppose I is an ideal of A, T is a preorder of A with K≥0 ⊆ T, M ⊆ I is a
T-module of A, u is a unit for M in I, a ∈ T and (1− 2a)u ∈ M. Then [→ 7.1.9]

S(I, M, u) ⊆ S(I, (1− a)M, u).

Proof. Let ϕ ∈ S(I, M, u). To show: ϕ((1− a)M) ⊆ R≥0. Let b ∈ M. To show:

ϕ((1− a)b) ≥ 0.

WLOG u − b ∈ M (otherwise choose N ∈ N with Nu − b ∈ M and replace b by
1
N b ∈ M). We show ϕ((1− a)b) > −ε for all ε > 0. To this end, let ε > 0. It is enough to
show that there is a k ∈N satisfying

ϕ((1− a)b) > ϕ

( k

∑
i=0

( 1
2
i

)
(−a)i

)2

b

− ε

since A2M ⊆ TM ⊆ M ⊆ ϕ−1(R≥0). Because of a ∈ T, we have

(1− (2a)i)u =
i−1

∑
j=0

((2a)j − (2a)j+1)u =
i−1

∑
j=0

(2a)j(1− 2a)u ∈ M

for all i ∈N0, i.e.,

(�)
(

1
2i − ai

)
u ∈ M

for all i ∈N0. By 8.2.4, we can choose k ∈N such that(
k

∑
i=0

( 1
2
i

)(
−1

2

)i
)2

<

(
1− 1

2

)
+ ε,

i.e., pk
( 1

2

)
< ε with pk as in Lemma 8.2.5. We show that ϕ(pk(a)b) < ε. Since pk(a) ∈ T

holds by Lemma 8.2.5, it is enough to show that ϕ(pk(a)u) < ε since ϕ(pk(a)b) ≤
ϕ(pk(a)u) holds due to pk(a)(u− b) ∈ M. But we have

ϕ(pk(a)u) ≤ ϕ(pk

(
1
2

)
u) = pk

(
1
2

)
ϕ(u) = pk

(
1
2

)
< ε

due to (pk
( 1

2

)
− pk(a))u ∈ M (use 8.2.5 and (�)).

Theorem 8.2.7 (Burgdorf, Scheiderer, Schweighofer [BSS]). [→ 8.2.3(d)] Suppose that I is
an ideal of A, T is a preorder or an Archimedean semiring of A, K≥0 ⊆ T, M ⊆ I is a T-module
of A, u is a unit for M in I and ϕ is a pure state of (I, M, u). Then

(∗) ϕ(ab) = ϕ(au)ϕ(b)

for all a ∈ A and b ∈ I.
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Proof. Due to T − T = A [→ 1.2.3, 8.1.3] it suffices to show (∗) for all a ∈ T and

b ∈ I. If T is
{

an Archimedean semiring
a preorder

}
, then one can here suppose by scaling a that{

1− a ∈ T
u− 2au ∈ M

}
and thus because of

{
TM ⊆ M

Lemma 8.2.6

}
that

S(I, M, u) ⊆ S(I, (1− a)M, u).

Moreover, we can suppose that ϕ(au) < 1. Fix therefore a ∈ T with S(I, M, u) ⊆
S(I, (1− a)M, u) and ϕ(au) < 1. We have to show (∗) for all b ∈ I.

Case 1: ϕ(au) = 0

Then we have to show that ϕ(ab) = 0 for all b ∈ I. For this purpose, fix b ∈ I.
Choose N ∈ N such that Nu ± b ∈ M. Then Nau ± ab ∈ TM ⊆ M and therefore
|ϕ(ab)| ≤ Nϕ(au) = 0. Hence ϕ(ab) = 0.

Case 2: ϕ(au) 6= 0

Then ϕ(au) > 0 because of au ∈ TM ⊆ M. Furthermore, we have ϕ((1− a)u) > 0
since ϕ(au) < 1 = ϕ(u). For each c ∈ A with ϕ(cu) > 0 and ϕ ∈ S(I, cM, u),

ϕc : I → R, b 7→ ϕ(cb)
ϕ(cu)

is a state of (I, M, u). In particular, ϕa, ϕ1−a ∈ S(I, M, u). Because of ϕ = ϕ(au)ϕa +
ϕ((1− a)u)ϕ1−a, ϕ(au) > 0, ϕ((1− a)u) > 0 and ϕ(au) + ϕ((1− a)u) = ϕ(u) = 1, we
have by 2.4.2 or 7.3.8 that ϕ = ϕa (and ϕ = ϕ1−a).

Corollary 8.2.8. [→ 8.2.3(a)] Let T be an Archimedean semiring of A such that K≥0 ⊆ T and
M a T-module of A with 1 ∈ M. Then every pure state of (A, M, 1) is a ring homomorphism.

Corollary 8.2.9. [→ 8.2.3(a)] Let M be an Archimedean
(
∑ K≥0A2)-module of A. Then every

pure state of (A, M, 1) is a ring homomorphism.

Corollary 8.2.10 (Becker, Schwartz [BS], first generalization of the abstract Archimedean
Positivstellensatz 4.1.3 in the version of 8.2.1). [→ 8.2.3(b)] Let T be an Archimedean semir-
ing of A with K≥0 ⊆ T, M a T-module of A with 1 ∈ M and a ∈ A. Then the following are
equivalent:

(a) ϕ(a) > 0 for all (K-linear) ring homomorphisms ϕ : A→ R with ϕ(M) ⊆ R≥0.

(b) ∃N ∈N : a ∈ 1
N + M

Proof. 7.3.19, 8.2.2, 8.2.8

Corollary 8.2.11 (Jacobi [Jac], second generalization of the abstract Archimedean Posi-
tivstellensatz 4.1.3 in the version of 8.2.1). [→ 8.2.3(b)] Let M be an Archimedean

(
∑ K≥0A2)-

module of A. Then (a) and (b) from 8.2.10 are equivalent.
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Remark 8.2.12. Using Lemma 4.2.1, one gets for the polynomial ring K[X] concrete
geometric versions of 8.2.10 and 8.2.11 which are completely analogous to 4.2.2 (first
and second generalization of the Archimedean Positivstellensatz). Instead of stating
them, we give immediately concrete examples.

Example 8.2.13. [→ 8.2.10] Let `1, . . . , `m ∈ R[X]1 such that

{x ∈ Rn | `1(x) ≥ 0, . . . , `m(x) ≥ 0}

is nonempty and compact. Moreover, let g1, . . . , g` ∈ R[X] and set

S := {x ∈ Rn | `1(x) ≥ 0, . . . , `m(x) ≥ 0, g1(x) ≥ 0, . . . , g`(x) ≥ 0}.

Then for each f ∈ R[X] with f > 0 on S, we have

f ∈
`

∑
i=0

∑
α∈Nm

0

R≥0`
α1
1 · · · `

αm
m gi =: M

where g0 := 1. This is because M is a T-module with 1 ∈ M for the semiring

T := ∑
α∈Nm

0

R≥0`
α1
1 · · · `

αm
m

which is Archimedean by 8.1.10(c).

Example 8.2.14 (Putinar). [→ 8.2.11] Let R ∈ R≥0 and let g1, . . . , gm ∈ R[X]. Set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0, ‖x‖ ≤ R}.

Then for every f ∈ R[X] with f > 0 on S, we have

f ∈
m+1

∑
i=0

∑ R[X]2gi

with g0 := 1 and gm+1 := R2 −∑n
i=1 X2

i [→ 8.1.13(b)].

Example 8.2.15 (Pólya [Pól]). [→ 8.2.10] Let k ∈ N0 and suppose f ∈ R[X] a k-form
such that f (x) > 0 for all x ∈ Rn

≥0 \ {0}. Then there is some N ∈N such that

(X1 + · · ·+ Xn)
N f ∈ ∑

α∈Nn
0

|α|=N+k

R>0Xα.

This can be shown as follows: We have f > 0 on ∆ := {x ∈ Rn
≥0 | x1 + . . . + xn = 1}.

By 8.2.10, we obtain analogously to 8.2.13 that

f − ε ∈ ∑
α∈Nn+2

0

R≥0Xα1
1 · · ·X

αn
n (1− (X1 + · · ·+ Xn))

αn+1(X1 + · · ·+ Xn − 1)αn+2 .

By substituting Xi 7→ Xi
X1+···+Xn

and clearing denominators, one gets the claim due to
homogeneity of f .

Tentative Lecture Notes



149

8.3 Dichotomy of pure states on ideals

In this section, we let K again be a subring of A so that we consider A also as a K-vector
space.

Proposition 8.3.1. Let I be a ideal of A and u ∈ I. Let ϕ ∈ S(I, ∅, u) [→ 7.1.9]. Then the
following are equivalent:

(a) ∀a ∈ A : ∀b ∈ I : ϕ(ab) = ϕ(au)ϕ(b) [→ 8.2.7(∗)]

(b) There is a ring homomorphism Φ : A→ R such that

(∗∗) ∀a ∈ A : ∀b ∈ I : ϕ(ab) = Φ(a)ϕ(b).

In Condition (b), Φ is uniquely determined since (∗∗) implies Φ(a) = ϕ(au) for all a ∈ A and
we call Φ the ring homomorphism belonging to or associated to ϕ (on A). Note that Φ does
not depend on u for if v ∈ I with ϕ(v) = 1 then (∗∗) of course also implies Φ(a) = ϕ(av).
Exactly one of the following alternatives occurs:

(1) Φ(u) 6= 0 and ∀b ∈ I : ϕ(b) = Φ(b)
Φ(u)

(2) Φ|I = 0

Proof. (a) =⇒ (b) If (a) holds, then Φ : A → R, a 7→ ϕ(au) is a ring homomorphism

since Φ(a)Φ(b) = ϕ(au)ϕ(bu)
(∗)
= ϕ(abu) = Φ(ab) holds for all a, b ∈ A.

(b) =⇒ (a) is clear.

Because of u ∈ I it is clear that (1) and (2) exclude each other. If ϕ(u2) 6= 0, then (1)
occurs since (∗) implies ϕ(bu) = ϕ(u2)ϕ(b) for all b ∈ I. If ϕ(u2) = 0, then ϕ(bu) =
ϕ(u2)ϕ(b) = 0ϕ(b) = 0 for all b ∈ I.

Theorem 8.3.2 (Dichotomy). Under the hypotheses of 8.2.7, exactly one of the following cases
occurs:

(1) ϕ is the restriction of a scaled ring homomorphism: There is a ring homomorphism Φ : A→
R such that Φ(u) 6= 0 and ϕ = 1

Φ(u)Φ|I .

(2) There is a ring homomorphism Φ : A → R with Φ|I = 0 such that (∗∗) from 8.3.1(b)
holds.

We have (1) ⇐⇒ ϕ(u2) 6= 0 and (2) ⇐⇒ ϕ(u2) = 0. In both (1) and (2), Φ is uniquely
determined, namely it is the ring homomorphism that according to 8.3.1 belongs to ϕ. We have
Φ(T) ⊆ R≥0. If u ∈ T, then additionally Φ(M) ⊆ R≥0.

Proof. Easy with 8.2.7 and 8.3.1.

Corollary 8.3.3. Let M be a
(
∑ K≥0A2)-module of A with 1 ∈ M. If M has a unit in A, then

M is Archimedean.
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Proof. Let u be a unit for M in A. By 7.3.19, it is enough to show that ϕ(1) > 0 for all
ϕ ∈ extr S(A, M, u). Now let ϕ be a pure state of (A, M, u) with the associated ring
homomorphism Φ : A → R. Due to Φ(1) = 1 6= 0, in the Dichotomy 8.3.2 only case
(1) can occur, i.e., Φ(u) 6= 0 and ϕ = 1

Φ(u)Φ. Because of Φ(u) = ϕ(u2) = ϕ(u2 · 1) ∈
ϕ(M) ⊆ R≥0, we have Φ(u) > 0. It follows that ϕ(1) > 0.

Example 8.3.4. Consider the semiring T := ∑α,β,γ∈N0
K≥0XαYβ(1− X − Y)γ of K[X, Y]

and

S := {(x, y) ∈ R2 | ∀p ∈ T : p(x, y) ≥ 0} = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x + y ≤ 1}.

Since S is bounded and X, Y, 1− X − Y are linear, T is Archimedean by 8.1.10(c). Con-
sider the ideal I := (X, Y) and the T-module M := T ∩ I of K[X, Y]. Then u := X + Y
is a unit for M in I because B(A,T)

8.1.9
= K[X, Y] and thus by 8.1.8 B(A,M,u) is an ideal of

K[X, Y] that contains X, Y and thus I since u±X, u±Y ∈ M. The ring homomorphisms

Φ : K[X, Y]→ R

satisfying Φ(T) ⊆ R≥0 are obviously exactly the evaluations evx in points x ∈ S (com-
pare Lemma 4.2.1). Now let ϕ be a pure state of (I, M, u). By the Dichotomy 8.3.2,
exactly one of the following cases occurs:

(1) There is some (x, y) ∈ S \ {(0, 0)} with ϕ(p) = p(x,y)
x+y for all p ∈ I.

(2) ϕ(pX + qY) = ϕ(pX) + ϕ(qY) = p(0, 0)ϕ(X) + q(0, 0)ϕ(Y) for all p, q ∈ K[X, Y].

In Case (2), one can set λ1 := ϕ(X) ≥ 0 and λ2 := ϕ(Y) ≥ 0 and one obtains λ1 + λ2 =

ϕ(X + Y) = ϕ(u) = 1 as well as ϕ = λ1ϕ1 + λ2ϕ2 with ϕ1 : I → R, p 7→ ∂p
∂X (0, 0)

and ϕ2 : I → R, p 7→ ∂p
∂Y (0, 0). Since every polynomial in M vanishes in the origin and

is nonnegative on S, we obtain ϕ1, ϕ2 ∈ S(I, M, u). Because of ϕ ∈ extr S(I, M, u), in
Case (2) we have ϕ = ϕ1 or ϕ = ϕ2. Using 7.3.19, we now obtain: If f ∈ K[X, Y] with
f > 0 on S \ {0}, f (0) = 0, ∂ f

∂X (0) > 0 and ∂ f
∂Y (0) > 0, then f ∈ T.

Example 8.3.5. Let T and S be as in Example 8.3.4. Consider the ideal I := (X) and the
T-module M := T ∩ I of K[X, Y]. Then u := X is a unit for M in I since B(I,M,u) is an
ideal of K[X, Y] by 8.1.8 that contains X and thus I because u± X ∈ M. Let ϕ be a pure
state of (I, M, u). By the Dichotomy 8.3.2, exactly one of the following cases occurs:

(1) There is some (x, y) ∈ S \ ({0} ×R) with ϕ(p) = p(x,y)
x for all p ∈ I.

(2) There is some y ∈ [0, 1] such that ϕ(pX) = p(0, y)ϕ(X) = p(0, y)ϕ(u) = p(0, y) for
alle p ∈ K[X, Y].

In Case (2), there is obviously a y ∈ [0, 1] such that ϕ(p) = ∂p
∂X (0, y) for all p ∈ K[X, Y].

Observe that each f ∈ K[X, Y] with f = 0 on S ∩ ({0} ×R) satisfies f (0, Y) = 0 and
thus f ∈ I. Now 7.3.19 yields: If f ∈ K[X, Y] with f > 0 on S \ ({0} ×R), f = 0 on
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S ∩ ({0} ×R) and ∂ f
∂X (0, y) > 0 for all y ∈ [0, 1], then f ∈ T. At first glance, it might

irritate that one would have to check here that ∂ f
∂X f (0, 1) > 0. However, note that for

y = 1 and in fact for every y ∈ R, ∂ f
∂X f (0, y) is the derivative of f in every direction (1, z)

with z ∈ R since ∂ f
∂Y f (0, y) = 0.

Example 8.3.6. Let T and S again be as in 8.3.4 and 8.3.5. Consider the ideal I :=
(X2, XY) and the T-module M := T ∩ I of K[X, Y]. Then u := X2 + XY is a unit for M
in I since u ± X2, u ± XY ∈ M. Let ϕ be a pure state of (I, M, u). By the Dichotomy
8.3.2, exactly one of the following cases occurs:

(1) There is some (x, y) ∈ S \ ({0} ×R) with ϕ(p) = p(x,y)
x(x+y) for all p ∈ I.

(2) There is some y ∈ [0, 1] such that ϕ(pX2 + qXY) = p(0, y)ϕ(X2) + q(0, y)ϕ(XY) for
all p, q ∈ K[X, Y].

Suppose now that (2) holds and fix y ∈ [0, 1] accordingly. Consider λ1 := ϕ(X2) ≥ 0,
λ2 := ϕ(XY) ≥ 0. Then λ1 + λ2 = ϕ(u) = 1.

Consider first the case y > 0. From 0 = ϕ(YX2 − X(XY)) = λ1y − λ20 = λ1y we
get λ1 = 0. Then 1

y
∂(pX2+qXY)

∂X (0, y) = 1
y q(0, y)y = q(0, y) = λ1 p(0, y) + λ2q(0, y) =

ϕ(pX2 + qXY) for all p, q ∈ K[X, Y]. Hence ϕ = ϕy with

ϕy : I → R, p 7→ 1
y

∂p
∂X

(0, y).

Consider now the case y = 0. Then 1
2

∂2(pX2+qXY)
∂X2 (0, 0) = p(0, 0) = p(0, y) and

∂2(pX2+qXY)
∂X∂Y (0, 0) = q(0, 0) = q(0, y) for all p, q ∈ K[X, Y]. Hence ϕ = λ1ψ1 + λ2ψ2

with

ψ1 : I → R, p 7→ 1
2

∂2 p
∂X2 (0, 0) and ψ2 : I → R, p 7→ ∂2 p

∂X∂Y
(0, 0).

Before we give a summary, we observe that

I =
{

f ∈ K[X, Y] | f = 0 on S ∩ ({0} ×R),
∂ f
∂X

(0) = 0
}

where “⊆” is clear since the right hand side forms obviously an ideal and “⊇” can be
seen as follows: If f ∈ K[X, Y] with f = 0 on S ∩ ({0} × R), then f (0, Y) = 0 and
thus f ∈ (X). If f = Xg ∈ K[X, Y] with ∂ f

∂X (0) = 0, then g(0) = 0, hence g ∈ (X, Y)
and consequently f ∈ (X2, XY). Taking into account that each polynomial in M is
nonnegative on S, one obtains ϕy ∈ S(I, M, u) for all y ∈ (0, 1]R and ψ1, ψ2 ∈ S(I, M, u).
The above considerations therefore yield

extr S(I, M, u) ⊆ {ϕy | y ∈ (0, 1]R} ∪ {ψ1, ψ2}

from which one obtains with 7.3.19: If f ∈ K[X, Y] with
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• f > 0 on S \ ({0} ×R),

• f = 0 on S ∩ ({0} ×R),

• ∂ f
∂X (0, y) > 0 for y ∈ (0, 1]R,

• ∂ f
∂X (0, 0) = 0,

• ∂2 f
∂X2 (0, 0) > 0 and

• ∂2 f
∂X∂Y (0, 0) > 0,

then f ∈ T.

8.4 A local-global-principle

Proposition 8.4.1. Let T be a semiring of A with K≥0 ⊆ T, M a T-module of A, n ∈ N0 and

a1, . . . , an ∈ A. Set I := (a1, . . . , an). Moreover, let u be a unit for
{

T
M

}
in A and suppose

a1, . . . , an ∈
{

M
T

}
. Then u(a1 + . . . + an) is a unit for M ∩ I in I.

Proof. Let b ∈ I and set v := u(a1 + · · ·+ an). To show: ∃N ∈ N : Nv + b ∈ M ∩ I.

Write b = ∑n
i=1 ciai with c1, . . . , cn ∈ A. Choose N ∈ N such that Nu± ci ∈

{
T
M

}
for

i ∈ {1, . . . , n}. Then Nv± b = ∑n
i=1(Nuai ± ciai) = ∑n

i=1(Nu± ci)ai ∈ M.

Theorem 8.4.2 (Burgdorf, Scheiderer, Schweighofer [BSS]). Let T be an Archimedean
semiring of A with K≥0 ⊆ T and M a T-module of A. Let a ∈ A such that there is for
each maximal ideal m of A some t ∈ T \m with ta ∈ M. Then a ∈ M.

Proof. Set I := ({b ∈ M | ∃t ∈ T : ta− b ∈ M}). By hypothesis and by the definition of
I, for each maximal ideal m of A there exists t ∈ T \m such that ta ∈ M ∩ I.

Claim: a ∈ I
Explanation. ({t ∈ T | ta ∈ I}) is not contained in any maximal ideal of A. Thus

there are m ∈ N and t1, . . . , tm ∈ T with t1a, . . . , tma ∈ I and d1, . . . , dm ∈ A with
1 = ∑m

i=1 diti. It follows that

a = 1 · a =
m

∑
i=1

di (tia)︸︷︷︸
∈I

∈ I.

By the just proven claim, there are m ∈ N, bi, ci ∈ M and ti ∈ T such that tia− bi = ci
for i ∈ {1, . . . , m} and a ∈ (b1, . . . , bm) ⊆ (b1, . . . , bm, c1, . . . , cm) =: J. By the (first
version of) 8.4.1, u := ∑m

i=1(bi + ci) = a ∑m
i=1 ti = at with t := ∑m

i=1 ti ∈ T is a unit for
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M ∩ J in J. To show that a ∈ M, we will now apply 7.3.20. So let ϕ be a pure state of
(J, J ∩M, u). To show: ϕ(a) > 0. Denote by Φ the ring homomorphism that belongs to
ϕ according to 8.3.1. We have Φ(T) ⊆ R≥0 [→ 8.3.2]. Now

1 = ϕ(u) = ϕ(at) = ϕ(ta) = Φ(t)︸︷︷︸
≥0

ϕ(a).

Thus ϕ(a) > 0.
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§9 Nonnegative polynomials and truncated
quadratic modules

9.1 Pure states and polynomials over real closed fields

Throughout this section, we let R be a real closed extension field of R, we set O := OR,
m := mR and we make extensive use of the standard part maps O → R, a 7→ st(a),
O [X] → R[X], p 7→ st(p) [→ 5.4.7] and On → Rn, x 7→ st(x) := (st(x1), . . . , st(xn))
which are surjective ring homomorphisms.

Definition 9.1.1. [→ 1.2.1, 4.1.2(a)] Let A be a commutative ring and M ⊆ A. Then M
is called a quadratic module of A if M is a ∑ A2-module of A containing 1 [→ 8.1.1], or in
other words, if {0, 1} ⊆ M, M + M ⊆ M and A2M ⊆ M. We call a quadratic module
M of A Archimedean if B(A,M) = A [→ 4.3.1, 4.3.3, 8.1.5].

Proposition 9.1.2. [→ 8.1.13] Suppose n ∈ N0 and M is a quadratic module of O [X]. Then
the following are equivalent:

(a) M is Archimedean.

(b) ∃N ∈N : N −∑n
i=1 X2

i ∈ M

(c) ∃N ∈N : ∀i ∈ {1, . . . , n} : N ± Xi ∈ M

Proof. (a) =⇒ (b) is trivial.

(b) =⇒ (c) If (b) holds, then N − X2
i ∈ M and thus X2

i ∈ B(O [X],M) for all i ∈
{1, . . . , n}. Apply now 8.1.11.

(c) =⇒ (a) follows from 8.1.12 since O ⊆ B(O [X],M).

Remark 9.1.3. In contrast to 8.1.13(d), one cannot add

∃m ∈N : ∃`1, . . . , `m ∈ M ∩O [X]1 : ∃N ∈N :
∅ 6= {x ∈ Rn | `1(x) ≥ 0, . . . , `m(x) ≥ 0} ⊆ [−N, N]nR

as another equivalent condition in 9.1.2. Indeed, choose R non-Archimedean [→ 5.4.4]
and ε ∈ m \ {0}. Then ∅ 6= {0} = {x ∈ R | εx ≥ 0,−εx ≥ 0} ⊆ [−1, 1]R but the
quadratic module

∑ O [X]2 + ∑ O [X]2εX + ∑ O [X]2(−εX)
1.2.3
= ∑ O [X]2 +O [X]εX
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generated by εX and −εX in O [X] is not Archimedean for if we had N ∈N with

N − X2 ∈∑ O [X]2 +O [X]εX,

then taking standard parts would yield N − X2 ∈ ∑ R[X]2 which contradicts 2.2.4(b).

Definition 9.1.4. [→ 4.2.1] For every x ∈ On, we define the ring homomorphism

evx : O [X]→ O , p 7→ p(x)

and set Ix := ker evx.

Proposition 9.1.5. Let x ∈ On. Then Ix = (X1 − x1, . . . , Xn − xn).

Proof. It is trivial that J := (X1 − x1, . . . , Xn − xn) ⊆ Ix. Conversely, p ≡J p(x) = 0 for
all p ∈ Ix. This shows the converse inclusion Ix ⊆ J.

Notation 9.1.6. Suppose A is a commutative ring and I is an ideal of A. As it is cus-
tomary in commutative algebra, we will in the following often denote by I2 the product
of the ideal I with itself which in our suggestive notation [→ 1.1.18] would be written
∑ I I. From the context, the reader should be able to avoid misinterpreting I2 as what it
would mean in this suggestive notation, namely {a2 | a ∈ I}. The same applies to I3

and so on. Another source of confusion could be that, we will often use the notation mn

to denote the Cartesian power
m× . . .×m︸ ︷︷ ︸

n times

.

Lemma 9.1.7. Suppose x, y ∈ On with x − y /∈ mn. Then Ix and Iy are coprime, i.e.,
1 ∈ Ix + Iy.

Proof. WLOG x1 − y1 /∈ m. Then x1 − y1 ∈ O× and

1 =
x1 − X1

x1 − y1
+

X1 − y1

x1 − y1
∈ Ix + Iy.

Lemma 9.1.8. Let M be an Archimedean quadratic module of O [X] and x ∈ On. Then

u := (X1 − x1)
2 + . . . + (Xn − xn)

2

is a unit for M ∩ I2
x in the real vector space I2

x [→ 7.1.4].

Proof. Using the ring automorphism

O [X]→ O [X], p 7→ p(X1 − x1, . . . , Xn − xn),

which is also an isomorphism of real vector spaces, we can reduce to the case x =
0. Since u ∈ I2

0 , it suffices to show that I2
0 ⊆ B(O [X],M,u). Since M is Archimedean,
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8.1.12 yields that B(O [X],M,u) is an O [X]-module of O [X] [→ 8.1.1], i.e., an ideal of O [X].
Because of

I2
0 = (XiXj | i, j ∈ {1, . . . , n}),

it suffices therefore to show that XiXj ∈ B(O [X],M,u) for all i, j ∈ {1, . . . , n}. Thus fix
i, j ∈ {1, . . . , n}. Then 1

2 (X2
i + X2

j )± XiXj =
1
2 (Xi ± Xj)

2 ∈ M and thus 1
2 u± XiXj ∈ M.

Since u ∈ M, this implies u± XiXj ∈ M.

Notation 9.1.9. We use the symbols∇ and Hess to denote the gradient and the Hessian
of a real-valued function of n real variables, respectively. For a polynomial p ∈ R[X], we
understand its gradient ∇p as a column vector from R[X]n, i.e., as a vector of polyno-
mials. Similarly, its Hessian Hess p is a symmetric matrix polynomial of size n, i.e., a
symmetric matrix from R[X]n×n. Using formal partial derivatives, we more generally
define ∇p ∈ R[X]n and Hess p ∈ R[X]n×n even for p ∈ R[X].

Lemma 9.1.10. Let x ∈ On and set u := (X1 − x1)
2 + . . . + (Xn − xn)2 ∈ I2

x . Suppose
ϕ ∈ S(I2

x , ∑ O [X]2 ∩ I2
x , u) [→ 7.1.9] such that ϕ|I3

x
= 0. Then there exist v1, . . . , vn ∈ Rn

such that ∑n
i=1 vT

i vi = 1 and

ϕ(p) =
1
2

st

(
n

∑
i=1

vT
i (Hess p)(x)vi

)

for all p ∈ I2
x .

Proof. As in the proof of Lemma 9.1.8, one easily reduces to the case x = 0.

Claim 1: ϕ(au) = 0 for all a ∈ m.

Explanation. Let a ∈ m. WLOG a ≥ 0. Then a ∈ O ∩ R≥0 = O2 and thus au ∈
∑ O [X]2 ∩ I2

0 . This shows ϕ(au) ≥ 0. It remains to show that ϕ(au) ≤ 1
N for all N ∈ N.

For this purpose, fix N ∈ N. Then 1
N − a ∈ O ∩ R≥0 = O2 and thus

( 1
N − a

)
u ∈

∑ O [X]2 ∩ I2
0 . It follows that ϕ

(( 1
N − a

)
u
)
≥ 0, i.e., ϕ(au) ≤ 1

N .

Claim 2: ϕ(aX2
i ) = 0 for all a ∈ m and i ∈ {1, . . . , n}.

Explanation. Let a ∈ m. WLOG a ≥ 0 and thus a ∈ O2. Then

n

∑
i=1

ϕ(

∈O [X]2∩I2
0︷︸︸︷

aX2
i )︸ ︷︷ ︸

≥0

= ϕ(au) Claim 1
= 0.

Claim 3: ϕ(aXiXj) = 0 for all a ∈ m and i, j ∈ {1, . . . , n}.
Explanation. Fix i, j ∈ {1, . . . , n} and a ∈ m. If i = j, then we are done by Claim 2. So

suppose i 6= j. WLOG a ≥ 0 and thus a ∈ O2. Then

a(X2
i + X2

j ± 2XiXj) = a(Xi ± Xj)
2 ∈ O [X]2 ∩ I2

0
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and thus ±2ϕ(aXiXj) =
Claim 2

ϕ(aX2
i ) + ϕ(aX2

j )± 2ϕ(aXiXj) ≥ 0.

Claim 4: ϕ(p) = 1
2 st (tr ((Hess p)(0)A)) for all p ∈ I2

0 where

A :=

ϕ(X1X1) . . . ϕ(X1Xn)
...

. . .
...

ϕ(XnX1) . . . ϕ(XnXn)

 .

Explanation. Let p ∈ I2
0 . By ϕ|I3

0
, we can reduce to the case p = aXiXj with i, j ∈

{1, . . . , n} and a ∈ O . Using Claim 3, we can assume a = 1. Comparing both sides,
yields the result.

Claim 5: A is psd [→ 2.3.1(b)].
Explanation. If x ∈ Rn, then xT Ax = ϕ((x1X1 + . . . + xnXn)2) ≥ 0 since

(x1X1 + . . . + xnXn)
2 ∈ R[X]2 ∩ I2

0 ⊆∑ O [X]2 ∩ I2
0 .

By 2.3.3(c), we can choose B ∈ Rn×n such that A = BTB. Denote by vi the i-th row of B
for i ∈ {1, . . . , n}. Then by Claim 4, we get

ϕ(p) =
1
2

st(tr((Hess p)(0)A)) =
1
2

st(tr((Hess p)(0)BTB))

=
1
2

st(tr(B(Hess p)(0)BT)) =
1
2

st

(
n

∑
i=1

vT
i (Hess p)(0)vi

)
for all p ∈ I2

0 . In particular, we obtain 1 = ϕ(u) = ∑n
i=1 vT

i vi.

Lemma 9.1.11. Let Φ : O [X]→ R be a ring homomorphism. Then there is some x ∈ Rn

such that Φ(p) = st(p(x)) for all p ∈ O [X].

Proof. By 1.1.15, we have Φ|R = idR. It is easy to see that Φ|m = 0. Indeed, for each
N ∈ N and a ∈ m, we have 1

N ± a ∈ R≥0 ∩ O = O2 and therefore 1
N ± Φ(a) ∈ R≥0.

Finally set
x := (Φ(X1), . . . , Φ(Xn)) ∈ Rn

and use that Φ|R = idR, Φ|m = 0 and that Φ is a ring homomorphism.

Theorem 9.1.12. [→ 8.3.2] Let M be an Archimedean quadratic module of O [X] and set

S := {x ∈ Rn | ∀p ∈ M : st(p(x)) ≥ 0}.

Moreover, suppose k ∈ N0 and let x1, . . . , xk ∈ On satisfy xi − xj /∈ mn for i, j ∈ {1, . . . , k}
with i 6= j. Set

ui := (X1 − xi1)
2 + . . . + (Xn − xin)

2 ∈ O [X]

for i ∈ {1, . . . , k}. Then u := u1 · · · uk is a unit for the ∑ O [X]2-module M ∩ I in

I := I2
x1
· · · I2

xk
= I2

x1
∩ . . . ∩ I2

xk

and for all pure states ϕ of (I, M ∩ I, u) (where I is understood as a real vector space), exactly
one of the following cases occurs:

Tentative Lecture Notes



159

(1) There is an x ∈ S \ {st(x1), . . . , st(xk)} such that

ϕ(p) = st
(

p(x)
u(x)

)
for all p ∈ I.

(2) There is an i ∈ {1, . . . , k} and v1, . . . , vn ∈ Rn such that ∑n
`=1 vT

` v` = 1 and

ϕ(p) = st

∑n
`=1 vT

` (Hess p)(xi)v`
2 ∏k

j=1
j 6=i

uj(xi)


for all p ∈ I.

Proof. The Chinese remainder theorem from commutative algebra shows that

I = I2
x1
· · · I2

xk
= I2

x1
∩ . . . ∩ I2

xk

since Ixi and Ixj and thus also I2
xi

and I2
xj

are coprime for all i, j ∈ {1, . . . , k}with i 6= j. By
9.1.8, ui is a unit for M ∩ I2

xi
in I2

xi
for each i ∈ {1, . . . , k}. To show that u is a unit for the

cone M ∩ I in the real vector space I, it suffices to find for all a1, b1 ∈ Ix1 , . . . , ak, bk ∈ Ixk

an N ∈N such that Nu+ ab ∈ M where we set a := a1 · · · ak and b := b1 · · · bk. Because
of Nu + ab = (Nu− 1

2 a2− 1
2 b2) + 1

2 (a + b)2, it is enough to find N ∈N with Nu− a2 ∈
M and Nu − b2 ∈ M. By symmetry, it suffices to find N ∈ N with Nu − a2 ∈ M.
Choose Ni ∈ N with Niui − a2

i ∈ M for i ∈ N. We now claim that N := N1 · · ·Nk does
the job. Indeed, the reader shows easily by induction that actually

N1 · · ·Niu1 · · · ui − a2
1 · · · a2

i ∈ M

for i ∈ {1, . . . , k}. Now let ϕ be a pure state of (I, M∩ I, u). Denote by Φ : O [X]→ R the
ring homomorphism belonging to ϕ, i.e., Φ(p) = ϕ(up) for all p ∈ O [X]. By Lemma
9.1.11, we can choose x ∈ Rn such that

Φ(p) = st(p(x))

for all p ∈ O [X]. Since u ∈ ∑ O [X]2, we have Φ(M) ⊆ R≥0 by 8.3.2. This means x ∈ S.
Now first suppose that Case (1) in the Dichotomy 8.3.2 occurs. We show that x

satisfies (1). Note that Φ(u) 6= 0 by 8.3.2. This means st(ui(x)) 6= 0 and therefore
st(x) 6= st(xi) for all i ∈ {1, . . . , k}. The rest follows from 8.3.2.

Now suppose that Case (2) in the Dichotomy 8.3.2 occurs. We show that then (2)
holds. Then ∏k

i=1 Φ(ui) = Φ(u) = 0 because u ∈ I and Φ|I = 0. Choose i ∈ {1, . . . , k}
such that st(ui(x)) = Φ(ui) = 0. Then x = st(xi). Define

ψ : I2
xi
→ R, p 7→ ϕ

p
k

∏
j=1
j 6=i

uj

 .
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Since uj ∈ ∑ O [X]2 ∩ I2
xj

for all j ∈ {1, . . . , k}, it follows that ψ ∈ S(I2
xi

, M ∩ I2
xi

, ui). If
p ∈ Ixi and q ∈ I2

xi
, then

ψ(pq) = ϕ

pq
k

∏
j=1
j 6=i

uj

 (∗∗)
=

8.3.1(b)
Φ(p)ϕ

q
k

∏
j=1
j 6=i

uj

 = 0

since Φ(p) = st(p(x)) = (st(p))(x) = (st(p))(st(xi)) = st(p(xi)) = st(0) = 0. It
follows that ψ|I3

xi
= 0. We can thus apply Lemma 9.1.10 to ψ and obtain v1, . . . , vn ∈ Rn

such that ∑n
`=1 vT

` v` = 1 and

ψ(p) =
1
2

st

(
n

∑
`=1

vT
` (Hess p)(xi)v`

)

for all p ∈ I2
xi

. Because of st(xi) 6= st(xj) for j ∈ {1, . . . , k} \ {i}, we have

c := Φ

 k

∏
j=1
j 6=i

ui

 =
k

∏
j=1
j 6=i

Φ(ui) =
k

∏
j=1
j 6=i

(st(uj))(st(xi)) 6= 0.

Hence we obtain
cϕ(p)

(∗∗)
=

8.3.1(b)
ψ(p)

for all p ∈ I.

It only remains to show that (1) and (2) cannot occur both at the same time. If
(1) holds, then we have obviously ϕ(u2) 6= 0. If (2) holds, then ϕ(u2) = 0 since
Hess(u2)(xi) = 0 for all i ∈ {1, . . . , k} as one easily shows.

Lemma 9.1.13. For all x ∈ On, we have

I2
x = {p ∈ O [X] | p(x) = 0,∇p(x) = 0} .

Proof. For x = 0 it is easy. One reduces the general case to the case x = 0 as in the proof
of 9.1.8.

Theorem 9.1.14. Let M be an Archimedean quadratic module of O [X] and set

S := {x ∈ Rn | ∀p ∈ M : st(p(x)) ≥ 0}.

Moreover, suppose k ∈ N0 and let x1, . . . , xk ∈ On satisfy xi − xj /∈ mn for i, j ∈ {1, . . . , k}
with i 6= j. Let f ∈ O [X] such that

f (x1) = . . . = f (xk) = 0 and ∇ f (x1) = . . . = ∇ f (xk) = 0.
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Suppose
st( f (x)) > 0

for all x ∈ S \ {st(x1), . . . , st(xk)} and

st(vT(Hess f )(xi)v) > 0

for all i ∈ {1, . . . , k} and v ∈ Rn \ {0}. Then f ∈ M.

Proof. Define I and u as in Theorem 9.1.12. By Lemma 9.1.13, we have f ∈ I. We will
apply 7.3.20 to the real vector space I, the cone M∩ I in I and the unit u for M∩ I. From
Theorem 9.1.12, we see indeed easily that ϕ( f ) > 0 for all ϕ ∈ extr S(I, M ∩ I, u).

Corollary 9.1.15. Let M be an Archimedean quadratic module of O [X] and set

S := {x ∈ Rn | ∀p ∈ M : st(p(x)) ≥ 0}.

Moreover, let k ∈ N0 and x1, . . . , xk ∈ On such that the standard parts st(x1), . . . , st(xk) ∈
Rn are pairwise distinct and lie in the interior of S. Let f ∈ O [X] such that

f (x1) = . . . = f (xk) = 0 and ∇ f (x1) = . . . = ∇ f (xk) = 0.

Define u ∈ O [X] as in Theorem 9.1.12. Suppose there is ε ∈ R>0 such that

f ≥ εu on S.

Then f ∈ M.

Proof. By 9.1.14, we have to show:

(a) ∀x ∈ S \ {st(x1), . . . , st(xk)} : st( f (x)) > 0

(b) ∀i ∈ {1, . . . , k} : ∀v ∈ Rn \ {0} : st(vT(Hess f )(xi)v) > 0

It is easy to show (a). To show (b), fix i ∈ {1, . . . , k}. Because of f − εu ≥ 0 on S and

( f − εu)(xi) = f (xi)− εu(xi) = 0− 0 = 0,

st(xi) is a local minimum of st( f − εu) ∈ R[X] on Rn. From elementary analysis,
we know therefore that (Hess st( f − εu))(st(xi)) is psd. Because of ui(xi) = 0 and
∇ui(xi) = 0, we get

Hess u(xi) =

 k

∏
j=1
j 6=i

uj(xi)

Hess ui(xi) = 2

 k

∏
j=1
j 6=i

uj(xi)

 In.

Therefore

st(vT(Hess f )(xi)v) ≥ ε st(vT(Hess u)(xi)v) = 2εvTv st

 k

∏
j=1
j 6=i

uj(xi)

 > 0

for all v ∈ Rn \ {0}.
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Corollary 9.1.16. Let n, m ∈ N0 and suppose g1, . . . , gm ∈ R[X] generate an Archimedean
quadratic module in R[X] [→ 8.1.13]. Set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Moreover, let k ∈N0 and x1, . . . , xk ∈ On and ε ∈ R>0 such that the sets x1 + εB, . . . , xk + εB
are pairwise disjoint and all contained in S where [→ 6.1.10]

B := {x ∈ Rn | ‖x‖2 < 1} ⊆ On.

Define u ∈ O [X] as in Theorem 9.1.12. Let f ∈ O [X] such that f ≥ εu on S and

f (x1) = . . . = f (xk) = 0.

Then f lies in the quadratic module generated by g1, . . . , gm in O [X].

Proof. This follows easily from 9.1.15 once we show that

∇ f (x1) = . . . = ∇ f (xk) = 0.

Since f ≥ εu ≥ 0 on S and thus f ≥ 0 on xi + εB for all i ∈ {1, . . . , k}, it suffices to prove
the following: If p ∈ R[X], x ∈ Rn, δ ∈ R>0 such that p ≥ 0 on x + δB and p(x) = 0,
then ∇p(x) = 0. To see this, we employ the Tarski principle [→ 1.8.19]: For each
fixed number of variables n and d ∈ N, the class of all R ∈ R [→ 1.8.3] such that this
holds true for all p ∈ R[X]d is obviously a 0-ary semialgebraic class by real quantifier
elimination. By elementary analysis, R is an element of this class. We conclude thus by
1.8.5.

9.2 Degree bounds and quadratic modules

Definition 9.2.1. Let d, m ∈ N0, g1, . . . , gm ∈ R[X] and set g0 := 1 ∈ R[X]. For i ∈
{0, . . . , m}, set ri := d−deg gi

2 if gi 6= 0 and ri := −∞ if gi = 0. Then we denote by
M(g1, . . . , gm) the quadratic module generated by g1, . . . , gm in R[X]. Moreover, we
define the d-truncated quadratic module Md(g1, . . . , gm) associated to g1, . . . , gm by

Md(g1, . . . , gm) :=

{
m

∑
i=0

∑
j

p2
ijgi | pij ∈ R[X]ri

}
⊆ M(g1, . . . , gm) ∩R[X]d.

Remark 9.2.2. Let m ∈N0 and g1, . . . , gm ∈ R[X]. Set again g0 := 1 ∈ R[X].

(a) M(g1, . . . , gm) =
⋃

d∈N0
Md(g1, . . . , gm)

(b) For all d ∈N0,

Md(g1, . . . , gm) =
m

∑
i=0

((
∑ R[X]2gi

)
∩R[X]d

)
by 2.2.4(b).
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(c) In general, the inclusion Md(g1, . . . , gm) ⊆ M(g1, . . . , gm) ∩R[X]d is proper as 5.4.8
shows. In fact, the validity of Schmüdgen’s and Putinar’s Positivstellensätze 4.3.5
and 8.2.14 strongly relies on this.

Theorem 9.2.3 (Putinar’s Positivstellensatz with zeros and degree bounds). Let n, m ∈
N0 and g1, . . . , gm ∈ R[X] such that M(g1, . . . , gm) is Archimedean. Set

B := {x ∈ Rn | ‖x‖ < 1} and
S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Moreover, let k ∈N0, N ∈N and ε ∈ R>0. Then there exists

d ∈N0

such that for all f ∈ R[X]N with all coefficients in [−N, N]R and #{x ∈ S | f (x) = 0} = k,
we have: Denoting by x1, . . . , xk the distinct zeros of f on S, if the sets x1 + εB, . . . , xk + εB are
pairwise disjoint and contained in S and if we have f ≥ εu on S where u ∈ R[X] is defined as
in Theorem 9.1.12, then

f ∈ Md(g1, . . . , gm).

Proof. (cf. the proof of Theorem 5.4.5) Set ν := dim R[X]N . For each d ∈N0, the class Sd
of all pairs (R, a) where R is a real closed extension field of R and a ∈ Rν such that the
following holds is obviously a ν-ary R-semialgebraic class [→ 1.8.3]: If a ∈ [−N, N]νR
and if a is the vector of coefficients (in a certain fixed order) of a polynomial f ∈ R[X]N
with exactly k zeros x1, . . . , xk on S′ := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}, then at
least one of the following conditions (a), (b) and (c) is fulfilled:

(a) The sets x1 + εB′, . . . , xk + εB′ are not pairwise disjoint or not all contained in S′

where B′ := {x ∈ Rn | ‖x‖2 < 1}.

(b) f ≥ εu on S′ is violated where u ∈ R[X] is defined as in Theorem 9.1.12.

(c) f is not a sum of d elements from R[X] where each term in the sum is of degree at
most d and is of the form p2gi with p ∈ R[X] and i ∈ {0, . . . , m} where g0 := 1 ∈
R[X].

Set E := {Sd | d ∈N0} and observe that ∀d1, d2 ∈N0 : ∃d3 ∈N0 : Sd1 ∪ Sd2 ⊆ Sd3 (take
d3 := max{d1, d2}). By 9.1.16, we have

⋃
E = Rν. Now 5.4.2 yields Sd = Rν for some

d ∈N0.

Corollary 9.2.4 (Putinar’s Positivstellensatz with degree bounds [NS]). [→ 8.2.14] Let
n, m ∈N0 and g1, . . . , gm ∈ R[X] such that M(g1, . . . , gm) is Archimedean. Set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Moreover, let N ∈N and ε ∈ R>0. Then there exists

d ∈N0

such that for all f ∈ R[X]N with all coefficients in [−N, N]R and with f ≥ ε on S, we have

f ∈ Md(g1, . . . , gm).
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Proposition 9.2.5. Suppose S ⊆ Rn is compact, x1, . . . , xk ∈ S◦ are pairwise distinct, u ∈
R[X] is defined as in Theorem 9.1.12 and f ∈ R[X] with f (x1) = . . . = f (xk) = 0. Then the
following are equivalent:

(a) f > 0 on S \ {x1, . . . , xk} and Hess f (x1), . . . , Hess f (xk) are pd.

(b) There is some ε ∈ R>0 such that f ≥ εu on S.

Proof. (b) =⇒ (a) is easy to show (cf. the proof of 9.1.15).

(a) =⇒ (b) It is easy to show that one can WLOG assume that S =
⋃̇k

i=1(xi + εB) for
some ε > 0 where B is the closed unit ball in Rn. Then one finds easily an Archimedean
quadratic module M of R[X] such that

S = {x ∈ Rn | ∀p ∈ M : p(x) ≥ 0}.

A strengthened version of Theorem 9.1.14 now yields f − εu ∈ M for some ε ∈ R>0 and
thus f − εu ≥ 0 on S. One gets this strengthened version of Theorem 9.1.14 by applying
(a) =⇒ (c) from 7.3.19 instead of 7.3.20 in its proof. Alternatively, we leave it as an
exercise to the reader to give a direct proof using only basic multivariate analysis.

Corollary 9.2.6 (Putinar’s Positivstellensatz with zeros [S1]). Let g1, . . . , gm ∈ R[X] such
that M(g1, . . . , gm) is Archimedean. Set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Moreover, suppose k ∈ N0 and x1, . . . , xk ∈ S◦ are pairwise distinct. Let f ∈ R[X] such that
f (x1) = . . . = f (xk) = 0, f > 0 on S \ {x1, . . . , xk} and Hess f (x1), . . . , Hess f (xk) are pd.
Then

f ∈ M(g1, . . . , gm).

Proof. This follows from 9.2.3 by Proposition 9.2.5.

Remark 9.2.7. Because of Proposition 9.2.5, Theorem 9.2.3 is really a quantitative ver-
sion of Corollary 9.2.6.

Remark 9.2.8. (a) In Condition (c) from the proof of Theorem 9.2.3, we speak of “a sum
of d elements” instead of “a sum of elements” (which would in general be strictly
weaker). Our motivation to do this was that this is the easiest way to make sure that
we can formulate (c) in a “semialgebraic way”. A second motivation could have
been to formulate Theorem 9.2.3 in stronger way, namely by letting d be a bound not
only on the degree of the quadratic module representation but also on the number
of terms in it. This second motivation is however not interesting because we get
also from the Gram matrix method 2.6.1 a bound on this number of terms (a priori
bigger than d but after readjusting d we can again assume it to be d). We could have
used the Gram matrix method already to see that “a sum of elements” (instead of
“a sum of d elements”) can also be expressed semialgebraically.
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(b) We could strengthen condition (c) from the proof of Theorem 9.2.3, by writing “with
p ∈ R[X] all of whose coefficients lie in [−d, d]R” instead of just “with p ∈ R[X]”.
Then

⋃
E = Rν would still hold since Corollary 9.1.16 states that f lies in the

quadratic module generated by g1, . . . , gm even in O [X] not just in R[X]. This would
lead to a real strengthening of Theorem 9.2.3, namely we could ensure that d is a
bound not only on the degree of the quadratic module representation but also on
the size of the coefficients in it. However, we do currently not know of any applica-
tion of this and therefore renounced to carry this out.

9.3 Concavity and Lagrange multipliers

Definition 9.3.1. [→ 2.4.1] Suppose (K,≤) is an ordered field, A ⊆ Kn is convex and

f ∈ K[X]. Then f is called
{

convex
concave

}
on A if for all x, y ∈ A and λ ∈ [0, 1]K, we have

f (λx + (1− λ)y)
{
≤
≥

}
λ f (x) + (1− λ) f (y),

Exercise 9.3.2. Suppose (K,≤) is an ordered field, A ⊆ Kn is convex and f ∈ K[X].
Then the following are equivalent:

(a) f is
{

convex
concave

}
on A.

(b) The
{

epigraph
hypograph

} {
(x, y) ∈ Rn ×R | f (x)

{
≤
≥

}
y
}

is convex.

(c) For all ` ∈N, x1, . . . , x` ∈ A and λ1, . . . , λ` ∈ K≥0 with λ1 + . . . + λ` = 1, we have

f

(
`

∑
i=1

λixi

){
≤
≥

} `

∑
i=1

λi f (xi).

Lemma 9.3.3 (Existence of Lagrange multipliers). Let u ∈ Rn, f , g1, . . . , gm ∈ R[X], let
U be a convex subset of Rn containing u and set

S := {x ∈ U | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.

Suppose f is convex on U, g1, . . . , gm are concave on U,

f (u) = g1(u) = . . . = gm(u) = 0,

S has nonempty interior and f ≥ 0 on S. Then there are λ1, . . . , λm ∈ R≥0 such that
f −∑m

i=1 λigi ≥ 0 on U.
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Proof. WLOG gi 6= 0 for all i ∈ {1, . . . , m}. Consider the set

A := conv{(− f (x), g1(x), . . . , gm(x)) | x ∈ U} ⊆ Rm+1.

Claim: A ∩Rm+1
>0 = ∅

Explanation. Assume that x1, . . . , x` ∈ U and λ1, . . . , λ` ∈ R≥0 with λ1 + . . . + λ` = 1
such that

w :=
`

∑
j=1

λi(− f (xj), g1(xj), . . . , gm(xj)) ∈ Rm+1
>0 .

Setting x := ∑`
j=1 λjxj ∈ U, we get

(∗) f (x) ≤
`

∑
j=1

λj f (xj) < 0

since f is convex on U and

(∗∗) gi(x) ≥
`

∑
j=1

λjgi(xj) > 0

since gi is concave on U for i ∈ {1, . . . , m}. Hence x ∈ S by (∗∗) but f (x) < 0 by (∗)  .

By the separation theorem for finite-dimensional vector spaces [→ 7.4.4], we find a
linear ϕ : Rm+1 → R such that ϕ 6= 0 and ϕ(x) ≤ ϕ(y) for all x ∈ A and y ∈ Rm+1

>0 .
By continuity, it follows that ϕ(x) ≤ ϕ(0) = 0 for all x ∈ A and 0 = ϕ(0) ≤ ϕ(y)
for all y ∈ Rm+1

≥0 (use that 0 ∈ A). Choosing λ := (λ0, . . . , λm) ∈ Rm+1 \ {0} such that
ϕ(y0, . . . , ym) = ∑m

i=0 λiyi for all (y0, . . . , ym) ∈ Rm+1, we thus have (λ0, . . . , λm) ∈ Rm+1
≥0

due to ϕ(Rm+1
≥0 ) ⊆ R≥0 and λ0 f −∑m

i=1 λigi ≥ 0 on U because of ϕ(A) ⊆ R≤0. It only
remains to show λ0 6= 0.

So assume λ0 = 0. Then ∑m
i=1 λigi ≤ 0 on U and hence on S. For all

i ∈ I := {i ∈ {1, . . . , m} | λi 6= 0}
λ 6=0
6= ∅,

it follows that gi = 0 on S and hence gi = 0 since S has nonempty interior. This is
impossible because I 6= ∅ and gi 6= 0 for all i ∈ {1, . . . , m}.

Definition 9.3.4. [→ 2.3.1(b)] Let (K,≤) be an ordered field and A ∈ SKn×n. We write

A
{
�
�

}
0 to express that A is psd, i.e., A is symmetric and xT Mx

{
≥
>

}
0 for all x ∈{

Kn

Kn \ {0}

}
. If B ∈ Kn×n is another matrix, we write A

{
�
�

}
B or B

{
�
≺

}
A to express

that A− B
{
�
�

}
0. We say that A is

{
negative semidefinite (nsd)

negative definite (nd)

}
if A � 0.
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Definition 9.3.5. Suppose (K,≤) be an ordered field and f ∈ K[X]. If x ∈ Kn, then we

call f strictly
{

convex
concave

}
at x if (Hess f )(x)

{
�
≺

}
0 and strictly

{
quasiconvex
quasiconcave

}
at x if

((∇ f )(x))Tv = 0 =⇒ vT(Hess f )(x)v
{
>
<

}
0

for all v ∈ Kn \ {0}. If A ⊆ Kn, we call f strictly (quasi-)
{

convex
concave

}
on A is f is strictly

(quasi-)
{

convex
concave

}
at every point of A.

Proposition 9.3.6. Rn×n
�0 := {A ∈ Rn×n | A � 0} is a cone in the vector space SRn×n whose

interior [→ 7.4.18] is Rn×n
�0 := {A ∈ Rn×n | A � 0}.

Proof. Equip SRn×n with the norm defined by

‖A‖ := max
x∈Rn

‖x‖≤1

xT Ax

for A ∈ SRn×n. By 7.2.2(c), this norm (as any other norm) induces the unique vector
space topology on SRn×n.

If A is an interior point of Rn×n
�0 , then there exists ε ∈ R>0 such that A− εIn � 0 and

thus A � εIn � 0.
Conversely, let A ∈ Rn×n satisfy A � 0. We show that A is an interior point of Rn×n

�0 .
By 2.3.3, the lowest eigenvalue ε of A is nonnegative since A � 0. Actually, we have
even ε > 0 since A has trivial kernel due to A � 0. Now A− εIn has only nonnegative
eigenvalues and thus A − εIn � 0 by 2.3.3. It suffices to show that a ball around A
with radius ε in SRn×n is contained in Rn×n

�0 . For this purpose, let B ∈ SRn×n with
‖B− A‖ ≤ ε and fix x ∈ Rn with ‖x‖ = 1. We have to show that xTBx ≥ 0. But we
have xTBx = xT Ax + xT(B− A)x ≥ xT Ax− ‖B− A‖ ≥ εxT Inx− ε = 0.

Lemma 9.3.7. Suppose g ∈ R[X] and S ⊆ Rn is compact. Then the following are
equivalent:

(a) g is strictly quasiconcave on S.

(b) ∃λ ∈ R : ∀x ∈ S : λ(∇g(x))(∇g(x))T � (Hess g)(x)

Proof. (b) =⇒ (a) WLOG S = {x}. If λ ∈ R such that λ(∇g(x))(∇g(x))T � Hess g
and v ∈ Kn \ {0} such that ((∇g)(x))Tv = 0, then

0 = λvT(∇g(x))(∇g(x))Tv > vT(Hess g)(x)v.

(a) =⇒ (b) Consider the unit ball U := {x ∈ Rn | ‖x‖ = 1}. It is easy to show that
(a) is equivalent to

∀x ∈ S : ∀v ∈ U : ∃λ ∈ R : λvT(∇g(x))(∇g(x))Tv > vT(Hess g)(x)v.
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Suppose that this holds. We have to show

∃λ ∈ R : ∀x ∈ S : ∀v ∈ U : λvT(∇g(x))(∇g(x))Tv > vT(Hess g)(x)v.

For this purpose, we will use the compactness of S × U which is due to Tikhonov’s
theorem 5.1.18. For all (x, v) ∈ S×U, we choose λ(x,v) ∈ R such that

λ(x,v)v
T(∇g(x))(∇g(x))Tv > vT(Hess g)(x)v.

Then S×U =
⋃

(x,v)∈S×U A(x,v) where

A(x,v) := {(y, u) ∈ S×U | λ(y,u)u
T(∇g(y))(∇g(y))Tu > uT(Hess g)(y)u}

is open in S × U for each (x, v) ∈ S × U. WLOG n > 0. By compactness, there is a
nonempty finite subset F ⊆ S×U such that S×U =

⋃
(x,v)∈F A(x,v). Now

λ := max{λ(x,v) | (x, v) ∈ F}

will do the job.

Lemma 9.3.8. Let g ∈ R[X]. If g is strictly
{

concave
quasiconcave

}
at x ∈ Rn, then there is a

neighborhood A of x such that g is
{

strictly concave
strictly quasiconcave

}
on A.

Proof. The first statement follows from the openness of Rn×n
�0 [→ 9.3.6] by the continuity

of Rn → SRn×n, x 7→ (Hess g)(x). The second statement follows similarly by using the
equivalence of (a) and (b) in 9.3.7.

Lemma 9.3.9. If A ⊆ Rn be convex and g ∈ R[X] is strictly concave on A, then g is
concave on A.

Proof. One easily reduces to the case n = 1. Hence let x, y ∈ A ⊆ R with x < y and λ ∈
(0, 1)R. We have to show that g(z) ≥ λg(x) + (1− λ)g(y) where z := λx + (1− λ)y.
This is equivalent to

g(z)− g(x)
z− x

≥ g(y)− g(z)
y− z

since y − z = λ(y − x) and z − x = (1− λ)(y − x). By applying 1.4.18 twice to g, it
suffices thus to show that g′ is anti-monotonic on [x, y]R [→ 1.4.19(b)] since x < z < y.
By 1.4.20, this follows from the nonpositivity of g′′ on [x, y]R (actually g′′ is even negative
on A ⊇ [x, y]R).

Exercise 9.3.10. Let R be a real closed field. Let g ∈ R[X] and x ∈ Rn with g(x) = 0.
Then

(∇(g(1− g)k))(x) = (∇g)(x) and

(Hess(g(1− g)k))(x) = (Hess g− 2k(∇g)(∇g)T)(x).
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Lemma 9.3.11. Suppose g ∈ R[X], S ⊆ Rn is compact and g = 0 on S. Then the
following are equivalent:

(a) g is strictly quasiconcave on S.

(b) There exists k ∈N such that g(1− g)k is strictly concave on S.

(c) There exists k ∈ N such that for all ` ∈ N with ` ≥ k, we have that g(1− g)` is
strictly concave on S.

Proof. Combine 9.3.10 and 9.3.7.

Definition 9.3.12. [→ 5.2.5] Let M be a topological space and A ⊆ M. We call

∂A := A \ A◦ = A ∩M \ A

the boundary of A.

Notation and Terminology 9.3.13. Let S ⊆ Rn. We call

convbd S := S ∩ ∂ conv S

the convex boundary of S. Obviously,

convbd S = {x ∈ S | ∀U ∈ Ux : U 6⊆ conv S}.

We say that S has nonempty interior near its convex boundary if convbd S ⊆ S◦.

Proposition 9.3.14. Let S ⊆ Rn. Then

convbd S = {u ∈ S | ∃ϕ ∈ (Rn)∗ \ {0} : ∀x ∈ S : ϕ(u) ≤ ϕ(x)}.

Proof. “⊇” Let u ∈ S and ϕ ∈ (Rn)∗ \ {0} such that ∀x ∈ S : ϕ(u) ≤ ϕ(x). Then even
∀x ∈ conv S : ϕ(u) ≤ ϕ(x). Choose v ∈ Rn such that ϕ(v) > 0. Then ϕ(u− εv) < ϕ(u)
and hence u− εv /∈ conv S for each ε ∈ R>0. It follows that every neighborhood of u
intersects the complement of conv S. Hence u ∈ convbd S.

“⊆” If dim conv S < n [→ 7.4.7], we have ∂ conv S = conv S and hence convbd S = S
and one easily finds ϕ ∈ (Rn)∗ \ {0} that is constant on conv S. So now suppose that
dim conv S = n. Let u ∈ convbd S. By Theorem 7.4.17, we get an exposed face F of
conv S with dim F < n and u ∈ F. Choose ϕ : Rn → R linear such that

F = {y ∈ conv S | ∀x ∈ conv S : ϕ(y) ≤ ϕ(x)}.

Since dim F < n, we have obviously ϕ 6= 0.

Notation 9.3.15. For g ∈ R[X], set Z(g) := {x ∈ Rn | g(x) = 0}.

Lemma 9.3.16. Let B ⊆ Rn be a closed ball in Rn and suppose that g1, . . . , gm ∈ R[X]
are strictly quasiconcave on B. Then the following hold:
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(a) S := {x ∈ B | g1(x) ≥ 0, . . . , gm(x) ≥ 0} is convex.

(b) Every linear form from R[X] \ {0} [→ 1.6.1(a)] has at most one minimizer on S.

(c) Let u be a minimizer of the linear form f ∈ R[X] \ {0} on S and set

I := {i ∈ {1, . . . , m} | gi(u) = 0}.

Then u is also minimizer of f on S′ := {x ∈ B | ∀i ∈ I : gi(x) ≥ 0} ⊇ S.

Proof. (a) Let x, y ∈ S with x 6= y and i ∈ {1, . . . , m}. The polynomial

f := gi(Tx + (1− T)y) ∈ R[T]

attains a minimum a on [0, 1]R [→ 7.1.19]. We have to show a ≥ 0. Because of f (0) =
gi(y) ≥ 0 and f (1) = gi(x) ≥ 0, it is enough to show that this minimum is not attained
in a point t ∈ (0, 1)R. Assume it is. Then f ′(t) = 0, i.e., ((∇gi)(z))Tv = 0 for z :=
tx + (1− t)y and v := x− y 6= 0. Since z ∈ B and hence gi is strictly quasiconcave at z,
it follows that vT((Hess gi)(z))v < 0, i.e., f ′′(t) < 0. Then f < a on a neighborhood of
t [→ 1.5.3(b)]  .

(b) Suppose x and y are minimizers of the linear form f ∈ R[X] \ {0} on S. Then
x, y ∈ convbd S by 9.3.14. Since f is linear, it is constant on aff{x, y}. Hence even

conv{x, y}
(a)
⊆ aff{x, y} ∩ S

9.3.14
⊆ convbd S

(a)
= S ∩ ∂S = S ∩ (S \ S◦) S closed

= S \ S◦ = ∂S.

Since conv{x, y} \ {x, y} ⊆ B◦, we have then that conv{x, y} \ {x, y} ⊆ Z(g1 · · · gm).
Assume now for a contradiction that x 6= y. Then this implies that at least one of
the gi vanishes on aff{x, y}. Fix a corresponding i. Setting v := y − x, we have then
((∇gi)(x))Tv = 0 and vT((Hess gi)(x))v = 0. Since gi is strictly quasiconcave at x, this
implies v = 0, i.e., x = y as desired.

(c) By definition of I, the sets S and S′ coincide on a neighborhood of u in Rn. Hence
u is a local minimizer of f on S′. Since S′ is convex by (a) and f is linear, u is also a
(global) minimizer of f on S′.

Lemma 9.3.17. Suppose B is a closed ball in Rn, g1, . . . , gm ∈ R[X] are strictly quasicon-
cave on B and

S := {x ∈ B | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

has nonempty interior. Then the following hold:

(a) For every real closed extension field R of R and all linear forms f ∈ R[X] \ {0}, f
has a unique minimizer on TransferR,R(S).

(b) For every real closed extension field R of R, all linear forms f ∈ R[X] with

‖∇ f ‖2 = 1
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[→ 6.1.10] (note that ∇ f ∈ Rn as f is linear) and every u ∈ TransferR,R(B◦) which
minimizes f on TransferR,R(S), there are λ1, . . . , λm ∈ OR ∩ R≥0 with

λ1 + . . . + λm /∈ mR

such that both f − f (u)−∑m
i=1 λigi and its gradient vanish at u.

Proof. (a) Consider the class of all real closed extension fields R of R such that all linear
forms from R[X] \ {0} have a unique minimizer on TransferR,R(S). By real quantifier
elimination [→ 1.8.17], this is easily seen to be a 0-ary R-semialgebraic class [→ 1.8.3].
By 1.8.5, this class is either empty or consists of all real closed extensions fields of R.
Hence it suffices to prove the statement in the case R = R [→ 1.8.19]. But then the
unicity part follows from Lemma 9.3.16(b) and the existence part from 7.1.19.

(b) By a scaling argument, we can suppose WLOG gi < 1 on B for all i ∈ {1, . . . , m}.
Now let R be a real closed field extension of R, f ∈ R[X] a linear form with ‖∇ f ‖2 = 1
and u a minimizer of f on TransferR,R(S) which lies in TransferR,R(B◦). Set

I := {i ∈ {1, . . . , m} | gi(u) = 0}

and define
S′ := {x ∈ B | ∀i ∈ I : gi(x) ≥ 0} ⊇ S.

Using the Tarski principle 1.8.19, one shows easily that u is a minimizer of f on TransferR,R(S′)
by Lemma 9.3.16(c). Note also that of course u ∈ On

R and st(u) ∈ S. Using Lemma
9.3.11, choose k ∈N such that

hi := gi(1− gi)
k

is strictly concave at st(u) for i ∈ I. In particular, we note for later use that of course
hi 6= 0 for all i ∈ I. Choose an ε ∈ R>0 such that hi is strictly concave and therefore
concave on

U := {x ∈ B | ‖x− st(u)‖ < ε}

for all i ∈ I [→ 9.3.8, 9.3.9]. Now Theorem 7.4.16 implies that S∩U and hence S′ ∩U ⊇
S ∩U has nonempty interior since st(u) ∈ S, the set S is convex by Lemma 9.3.16(a)
and has nonempty interior (so that S◦ = relint S).

Now Lemma 9.3.3 says in particular that for all linear forms f̃ ∈ R[X] and minimizers
ũ of f̃ on S′ ∩U with ∀i ∈ I : gi(ũ) = 0, there is a family (λi)i∈I in R≥0 such that

f̃ − f̃ (ũ)−∑
i∈I

λihi ≥ 0 on U.

Using the Tarski priniciple [→ 1.8.19], we see that actually for all real closed extension
fields R̃ of R, all linear forms f̃ ∈ R̃[X] and all minimizers ũ of f̃ on TransferR,R(S′ ∩U)
with ∀i ∈ I : gi(ũ) = 0, there is a family (λi)i∈I in R≥0 such that

f̃ − f̃ (ũ)−∑
i∈I

λihi ≥ 0 on Transfer
R,R̃(U).
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We apply this to R̃ := R, ũ := u, f̃ := f and thus obtain a family (λi)i∈I in R≥0 such
that

(∗) f − f (u)−∑
i∈I

λihi ≥ 0 on TransferR,R(U).

Since h := ∏i∈I hi 6= 0 and S∩U has nonempty interior (as seen above), there is a point

x ∈ S ∩U ⊆ U ⊆ TransferR,R(U) ⊆ On
R

with h(x) 6= 0 [→ 2.2.3] and thus hi(x) > 0 for all i ∈ I. Evaluating (∗) in x, we get

f (x)− f (u)−∑
i∈I

λihi(x) ≥ 0.

Since f (x) ∈ OR and f (u) ∈ OR, this implies

∑
i∈I

λi︸︷︷︸
∈R≥0

hi(x)︸ ︷︷ ︸
∈R>0

∈ OR

and thus λi ∈ OR ∩ R≥0 for all i ∈ I.
It now suffices to show that ∑i∈I λi /∈ mR and that the gradient of the polynomial

f − f (u)− ∑i∈I λigi vanishes at u (it is clear that the polynomial itself vanishes at u).
From u ∈ TransferR,R(B◦) and u ∈ U, it follows that u ∈ TransferR,R(U◦). Together
with (∗) and the Tarski principle, this implies

∇ f = ∑
i∈I

λi(∇hi)(u)
9.3.10
= ∑

i∈I
λi(∇gi)(u)

since the gradient of any real polynomial vanishes at each of its local minimizers. In
particular, we get

1 = ‖∇ f ‖2 ≤∑
i∈I

λi‖(∇hi)(u)‖2 ≤
(

∑
i∈I

λi

)
max

i∈I
‖(∇hi)(u)‖2

(note that I 6= ∅ by the first inequality) which readily implies ∑i∈I λi /∈ mR.

9.4 Linear polynomials and truncated quadratic modules

Lemma 9.4.1. Let g1, . . . , gm ∈ R[X] define a compact set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

that has nonempty interior near its convex boundary. Suppose that gi is strictly quasi-
concave on (convbd S) ∩ Z(gi) for each i ∈ {1, . . . , m}. Let R be real closed extension
field of R and f ∈ R[X] be a linear form with ‖∇ f ‖2 = 1. Then the following hold:

(a) F := {u ∈ S | ∀x ∈ S : st( f (u)) ≤ st( f (x))} is a finite subset of convbd S.
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(b) S′ := TransferR,R(S) ⊆ On
R and f has a unique minimizer xu on

{x ∈ S′ | st(x) = u}

for each u ∈ F.

(c) For every u ∈ F, there are λu1, . . . , λum ∈ OR ∩ R≥0 with

λu1 + . . . + λum /∈ mR

such that both f − f (xu)−∑m
i=1 λuigi and its gradient vanish at xu.

Proof. (a) Obviously st( f ) 6= 0 and hence

F = {u ∈ S | ∀x ∈ S : (st( f ))(u) ≤ (st( f ))(x)} ⊆ convbd S

by Proposition 9.3.14. We now prove that F is finite. WLOG S 6= ∅. Set [→ 7.1.19]

a := min{(st( f ))(x) | x ∈ S}

so that
F = {u ∈ S | (st( f ))(u) = a}.

By compactness of S, it is enough to show that every x ∈ S possesses a neighborhood
U in S such that U ∩ F ⊆ {x}. This is trivial for the points of S \ F. So consider an
arbitrary point x ∈ F. Since x ∈ convbd S, each gi is positive or strictly quasiconcave
at x. According to 9.3.8, we can choose a closed ball B of positive radius around x in
Rn such that each gi is positive or strictly quasiconcave even on B. By Lemma 9.3.16(b),
st( f ) has at most one minimizer on U := S ∩ B, namely x, i.e., U ∩ F ⊆ {x}.

(b) First observe that S′ := TransferR,R(S) ⊆ On
R since the transfer from R to R is an

isomorphism of Boolean algebras [→ 1.9.5]: Choosing N ∈ N with S ⊆ [−N, N]nR, we
have S′ ⊆ TransferR,R([−N, N]nR) = [−N, N]nR ⊆ On

R.
Now we fix u ∈ F and we show that f has a unique minimizer on

A := {x ∈ S′ | st(x) = u}.

Choose ε ∈ R>0 such that each gi is strictly quasiconcave or positive on the ball

B := {v ∈ Rn | ‖v− u‖ ≤ ε}.

Since u ∈ convbd S ⊆ S◦, Lemma 9.3.17(a) says that f has a unique minimizer x on
TransferR,R(S∩ B). Because of A ⊆ TransferR,R(S∩ B), it is thus enough to show x ∈ A.
Note that u ∈ F ∩ B ⊆ S ∩ B ⊆ TransferR,R(S ∩ B) and thus f (x) ≤ f (u). This implies
st( f (st(x))) = st( f (x)) ≤ st( f (u)) which yields together with st(x) ∈ S that st(x) ∈ F
(and st( f (st(x))) = st( f (u))). Again by Lemma 9.3.17(a), st( f ) has a unique minimizer
on S∩ B . But u and st(x) are both a minimizer of st( f ) on S∩ B (note that st(x) ∈ S∩ B).
Hence u = st(x) and thus x ∈ A as desired.

(c) Fix u ∈ F. Choose again ε ∈ R>0 such that each gi is strictly quasiconcave or
positive on the ball B := {v ∈ Rn | ‖v − u‖ ≤ ε} and such that B ∩ F = {u}. Since
xu ∈ TransferR,R(B◦) obviously minimizes f on TransferR,R(S ∩ B), we get the neces-
sary Lagrange multipliers by Lemma 9.3.17(b).
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Exercise 9.4.2. For all k ∈N and x ∈ [0, 1]R, we have x(1− x)k ≤ 1
k .

Theorem 9.4.3. Let g1, . . . , gm ∈ R[X] such that M(g1, . . . , gm) is Archimedean and suppose
that

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

has nonempty interior near its convex boundary. Suppose that gi is strictly quasiconcave on
(convbd S) ∩ Z(gi) for each i ∈ {1, . . . , m}. Let R be a real closed extension field of R and
` ∈ OR[X]1 such that ` ≥ 0 on TransferR,R(S). Then ` lies in the quadratic module generated
by g1, . . . , gm in OR[X].

Proof. We will apply Theorem 9.1.14. Since S is compact, we can rescale the gi and
suppose WLOG that

gi ≤ 1 on S

for i ∈ {1, . . . , m}. Let M denote the quadratic module generated by g1, . . . , gm in OR[X].
Since M(g1, . . . , gm) is Archimedean, also M is Archimedean by 8.1.13(b) and 9.1.2(b).
Moreover, S could now alternatively be defined from M as in Theorem 9.1.14. Write

` = f − c

with a linear form f ∈ OR[X] and c ∈ OR. By a rescaling argument, we can suppose
that at least one of the coefficients of ` lies in O×R [→ 5.4.7]. If st(`(x)) > 0 for all x ∈ S,
then Theorem 9.1.14 applied to ` with k = 0 yields ` ∈ M and we are done. Hence we
can from now on suppose that there is some u ∈ S with st(`(u)) = 0. For such an u,
we have st(c) = st( f (u)) so that at least one coefficient of f must lie O×R . By another
rescaling, we now can suppose WLOG that ‖∇ f ‖2 = 1. Now we are in the situation of
Lemma 9.4.1 and we define

F, (xu)u∈F and (λui)(u,i)∈F×{1,...,m}

accordingly. Note that
F = {u ∈ S | st(`(u)) = 0} 6= ∅

since st(`(x)) ≥ 0 for all x ∈ S. We have f (xu)− c = `(xu) ≥ 0 and

st( f (xu)− c) = st(`(u)) = 0

for all u ∈ F. Hence f (xu)− c ∈ mR ∩ R≥0 for all u ∈ F. We thus have

`− ( f (xu)− c)︸ ︷︷ ︸
=:λu0∈mR∩R≥0

−
m

∑
i=1

λui︸︷︷︸
∈OR∩R≥0

gi ∈ I2
xu

for all u ∈ F by 9.4.1(c) and 9.1.13. Evaluating this in xu (and using gi(xu) ≥ 0) yields

gi(xu) 6= 0 =⇒ λui = 0 and thus(∗)
λuigi ≡I2

xu
λuigi(1− gi)

k(∗∗)
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for all u ∈ F, i ∈ {1, . . . , m} and k ∈ N. By the Chinese remainder theorem, we
find polynomials s0, . . . , sm ∈ OR[X] such that si ≡I3

xu

√
λui ∈ OR for all u ∈ F and

i ∈ {0, . . . , m} because the ideals I3
xu

(u ∈ F) are pairwise coprime [→ 9.1.7] (use that
st(xu) = u 6= v = st(xv) for all u, v ∈ F with u 6= v). By an easy scaling argument, we
can even guarantee that the coefficients of s0 lie in mR since

√
λu0 ∈ mR. Then we have

(∗ ∗ ∗) s2
i ≡I3

xu
λui

which means in other words

s2
i (xu) = λui, (∇(s2

i ))(xu) = 0 and (Hess(s2
i ))(xu) = 0

for all i ∈ {0, . . . , m} and k ∈ N. It suffices to show that there is k ∈ N such that the
polynomial

`− s2
0 −

m

∑
i=1

s2
i (1− gi)

2kgi
(∗∗∗)
∈
(∗∗)

⋂
u∈F

I2
xu

lies in M since this implies immediately ` ∈ M. By Theorem 9.1.14, this task reduces to
find k ∈N such that fk > 0 on S \ F and (Hess( fk))(u) � 0 for all u ∈ F where

fk := st(`)−
m

∑
i=1

st(s2
i )(1− gi)

2kgi ∈ R[X]

is the standard part of this polynomial. Note for later use that fk and ∇ fk vanish on F
for all k ∈N. In order to find such a k, we calculate

(Hess fk)(u)
(∗∗∗)
= −

m

∑
i=1

st(λui)Hess((1− gi)
2kgi)(u)

9.3.10
=
(∗)

m

∑
i=1

st(λui)(4k(∇gi)(∇gi)
T −Hess gi)(u)

for u ∈ F and k ∈ N. By Lemma 9.3.11 we can choose k ∈ N such that gi(1− gi)
2k is

strictly concave on {x ∈ F | gi(x) = 0} for i ∈ {1, . . . , m}. Since st(λ1) + . . . + st(λm) >
0 [→ 9.4.1(c)], we get together with (∗) and 9.3.10 that for all sufficiently large k, we
have (Hess fk)(u) � 0 for all u ∈ F. In particular, we can choose k0 ∈ N such that
Hess( fk0)(u) � 0 for all u ∈ F. Since fk0 and ∇ fk0 vanish on F, we have by elementary
analysis that there is an open subset U of Rn containing F such that fk0 ≥ 0 on U. Then
S \U is compact so that we can choose N ∈N with st(`) ≥ 1

N and st(s2
i ) ≤ N on S \U.

Then fk ≥ 1
N −m N

2k on S \U by Exercise 9.4.2 since 0 ≤ gi ≤ 1 on S for all i ∈ {1, . . . , m}.
For all sufficiently large k ∈ N with k ≥ k0, we now have fk > 0 on S \U and because
of fk ≥ fk0 > 0 on S ∩U (use again that 0 ≤ gi ≤ 1 on S) even fk > 0 on S.

Corollary 9.4.4. Let g1, . . . , gm ∈ R[X] such that M(g1, . . . , gm) is Archimedean and suppose
that

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
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has nonempty interior near its convex boundary. Suppose that gi is strictly quasiconcave on
(convbd S) ∩ Z(gi) for each i ∈ {1, . . . , m}. Let R be a real closed extension field of R and
` ∈ R[X]1 such that ` ≥ 0 on TransferR,R(S). Then ` lies in the quadratic module generated
by g1, . . . , gm in R[X].

Corollary 9.4.5. Let g1, . . . , gm ∈ R[X] such that M(g1, . . . , gm) is Archimedean and suppose
that

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

has nonempty interior near its convex boundary. Suppose that gi is strictly quasiconcave on
(convbd S) ∩ Z(gi) for each i ∈ {1, . . . , m}. Then there exists

d ∈N

such that for all ` ∈ R[X]1 with ` ≥ 0 on S, we have

` ∈ Md(g1, . . . , gm).

Proof. (cf. the proofs of Theorems 5.4.5 and 9.2.3) For each d ∈ N, consider the class Sd
of all pairs (R, a0, a1, . . . , an) where R is a real closed extension field of R and a0, a1, . . . , an ∈
R such that whenever

∀x ∈ TransferR,R(S) : a1x1 + . . . + anxn + a0 ≥ 0

holds, the polynomial a1X1 + . . . + anXn + a0 is a sum of d elements from R[X] where
each term in the sum is of degree at most d and is of the form p2gi with p ∈ R[X] and
i ∈ {0, . . . , m} where g0 := 1 ∈ R[X] [→ 9.2.8(a)]. By real quantifier elimination 1.8.17,
it is easy to see that this is an (n + 1)-ary R-semialgebraic class. Set E := {Sd | d ∈ N}
and observe that ∀d1, d2 ∈ N : ∃d3 ∈ N : Sd1 ∪ Sd2 ⊆ Sd3 (take d3 := max{d1, d2}). By
9.4.4, we have

⋃
E = Rn+1. Now 5.4.2 yields SetR(Sd) = Rn+1 for some d ∈N.
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