Übungsblatt 6 zur Kommutativen Algebra

Aufgabe 1. Zeige, dass ein noetherscher Integritätsring *R* genau dann faktoriell ist, wenn in ihm jedes Primideal der Höhe 1 ein Hauptideal ist.

Aufgabe 2. Sei R ein kommutativer lokaler noetherscher Ring, a_1, \ldots, a_n ein Parametersystem von R und K ein Unterkörper von R. Zeige, dass a_1, \ldots, a_n algebraisch unabhängig sind über K, das heißt $f(a_1, \ldots, a_n) \neq 0$ für alle $f \in R[X_1, \ldots, X_n] \setminus \{0\}$.

Hinweis: Zeige zunächst mit Hilfe des kleinsten Elements einer Primidealkette der Länge n, dass man sich auf den Fall zurückziehen kann, dass R ein Integritätsring ist. Zeige sodann, dass man sich auf den Fall $n \ge 1$ und $f(0, a_2, \ldots, a_n) \ne 0$ zurückziehen kann. Betrachte nun den Ring $R/(a_1)$ und benutze 2.5.4(e).

Aufgabe 3. Sei K ein Körper und K[X,Y] der Polynomring in zwei Variablen X und Y über K. Betrachte das Ideal I:=(XY) in K[X,Y] und schreibe $x:=\overline{X}\in K[X,Y]/I$ beziehungsweise $y:=\overline{Y}\in K[X,Y]/I$ für die Kongruenzklassen von x und y modulo I.

- (a) Zeige, dass $\mathfrak{m} := (x, y)$ ein maximales Ideal von K[X, Y]/I ist.
- (b) Begründe, warum $R := (K[X,Y]/I)_{\mathfrak{m}}$ ein lokaler Ring der Krulldimension 1 ist.
- (c) Zeige, dass $\frac{x+y}{1}$ ein Parametersystem von R ist.
- (d) Zeige, dass $\frac{x}{1}$ kein Parametersystem von R ist.
- (e) Zeige, dass $\mathfrak{m}_{\mathfrak{m}}$ kein Hauptideal von R ist.

Abgabe bis Freitag, den 5. Juni, um 11:44 Uhr in die digitalen Briefkästen.