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...theset S:={zeR"|g1(x) >0,...,9m(x) >0}
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Optimization

We consider the problem of minimizing f on S. So we want to

compute numerically the infimum
ff=inf{f(x) |z € 5} € RU{+o0}
and, if possible, a minimizer, i.e., an element of the set

S i={z* eS| f(z") < f(x) for all x € S}.
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Semidefinite Programming

minimize f(x)

subject to x € R"

(1) .. gim(z) )

is psd

\ o Gmm(T) )

where all polynomials f and g;; are linear, i.e.,

their degree is < 1.



Positive semidefinite matrices and families of vectors

Proposition. A real symmetric k& x k matrix is psd if and only if

there are vectors vy, ..., v; € RF such that

((vl,m) <vl,vk>\

K(vk,m} <vk,vk>)
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program (D) which is again a semidefinite program.
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dual to (P). Then it is clear that

D* < P* < f*.
It turns out that (D) can be interpreted as:

(D) maximize [

subject to f — p is sos
Proposition. For every p € R[.X],

p>0on R = pis asum of two squares in R|X].

Corollary.
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minimize E a;; 'y’

i+j<4

subject to x,y € R

1 X Y X? XY Y~?
1(1:1:y:1;2:cyy

X x 2 xy P 2%y ay?
Note that Y Y Ty y2 gj2y wy2 y3 1S de
X2 22 23 22y 2t 2By 2%’

XY vy zy zy? 3y 2%y? ayd
Y2 \y2 ny y3 az2y2 azy3 y4)

where a;; € R (1 + 7 < 4).
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(P) minimize

1<i+j<4

subject to y;; e R (1 <i+4j5 <4)

where a;; € R (1 + 7 < 4).

Z aijYij + Goo

1 X Y X?

( L y10 Yo1 Y20
Yo Y20 Y11 Y30
Yo1r Y11 Yo2 Y21
Y20 Y30 Y21 Y40
Y11 Y21 Y12 Y31

\yoz Y12 Yoz Y22

10

XY Y?
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Set f:=3;,,<40i; X" and denote by (D) the semidefinite
program dual to (P). Then it is clear that

D* < P* < f*,
It turns out that (D) can be interpreted as:
(D) maximize [
subject to f — u is sos
Theorem (Hilbert). For every p € R| X, Y] of degree < 4,

p>0onR? = pis asum of three squares in R[X,Y].

David Hilbert: Ueber die Darstellung definiter Formen als Summe

von Formenquadraten
Math. Ann. XXXII 342-350 (1888)

http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN235181684_0032
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The Motzkin polynomial

Unfortunately, not every polynomial p € R[ X7, ..., X, ] with

p > 0 on R" is a sum of squares of polynomials.

The first explicit example was found in 1967 by Motzkin:
pi=X*Y? 4+ X?Y* -3X%Y? +1

In fact, there is even no N € N such that p + N is a sum of

squares in R[ XY, Z].

Described method always yields certified lower bounds, but

they might by —oo:

But there are a lot of remedies...
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Case where S is compact.

For simplicity, we suppose m = 1 and write g := g1 (technical

difficulties which are however not very serious otherwise), i.e.
S={reR"|g(x) >0}
Now we get a sequence (Py)2r>q of relaxations such that

D, < P; < f* and lim D; = lim P; = f~.

k— o0 k— oo

Jean Lasserre: Global optimization with polynomials and the

problem of moments

STAM J. Optim. 11, No. 3, 796-817 (2001)
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minimize E aoxyt-- - Thn

o] <d

subject to x € S

1 X XF
(1 m o))
Xq T1
Note that
XEop\ek 2k

\

where k € N, 2k > d, a, € R (Ja| < k).
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(Pr) minimize E oYo + Qo
1<|al<d

subject to  y, € R (la] < k)

1 X, ... XF
1 ( ( 1 Y10...0 - - - \ \
X1 Y10...0

1S psc

“localization

\ matrix” )

where k € N, 2k > d, a, € R (Ja| < k).
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Case where S is compact.

Theorem (Schmiidgen, Putinar, ...) If f > 0 on S, then f = s+ gt
for sums of squares s,t in R[X1,..., X,].

Corollary (Lasserre). (D;)ren and (P )ren are increasing
sequences that converge to f* and satisty D} < Py < f*. How fast?”

Theorem. There exists C' € N depending on f and g and ¢ € N
depending on g such that

C
vk
On the complexity of Schmiidgen’s Positivstellensatz
Journal of Complexity 20, No. 4, 529—543 (2004)

f7=Df <

for big k.

Optimization of polynomials on compact semialgebraic sets
STAM Journal on Optimization 15, No. 3, 805-825 (2005)
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Further properties of the method for compact S
e Feasible solutions of (Dy) are certified lower bounds of f*.
e Method converges from below to f*.

e Method converges to unique minimizers. Disadvantage:

Possibly from outside the set S.

e If there is a unique minimizer and it lies in the interior of S,
then the method produces a sequence of intervals containing f*

whose endpoints converge to f*.

Optimization of polynomials on compact semialgebraic sets
SIAM Journal on Optimization 15, No. 3, 805-825 (2005)
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Implementations

Henrion and Lasserre: GloptiPoly

http://www.laas.fr/“henrion/software/gloptipoly/

Prajna, Papachristodoulou, Parrilo: SOSTOOLS
http://control.ee.ethz.ch/ “parrilo/sostools/

Both use the free SeDuMi solver by Jos Sturm

But they need MATLAB and the MATLAB Symbolic Toolbox

17
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Example: The maximum cut problem

Given a graph, i.e., an n € N (number of nodes) and a set

EC{(,j)e{l,...,n}?|i<j}

(of edges), find the maximum cut value, i.e., the maximal possible
number of edges that connect nodes with different signs when each

node is assigned a sign + or —.

. 1
maximize Z 5(1 — ;%)
(4,5)ek

subject to v?=1forallic{l,...,n}
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MAXCUT

o 1
maximize Z 5(1 — Z,T)
(i,7)€EE

subject to z € {—1,1}"

X1 . X,
X1 ( 1 1Ty ... :clxn\
Note that - Tol1 1 ToXn |is psd
X, \a:n:zzl .......... 1 )
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First MAXCUT relaxation
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MAXCUT
maximize Z l(1 — Xix;)
— 2 ’

(4,5)€E

subject to z € {—1,1}"

I Xi1Xo X1X3...

1 / 1 L1229
X1X2 L2271 1
Note that
X1 X3
Xn—an \
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Second MAXCUT relaxation
o 1
maximize Z 5(1 — Vi)
(i,j)€EE

subject to  y;; € R (1<i<j<n)

1 / L e
X1X2 Y12 1
X1X3 :

Xn—an \
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The maximum cut problem is N P—complete

The first relaxation gives a polynomial time algorithm which

overestimates the maximum cut value at most by a factor of
~ 1.1382.

The first relaxation is the famous algorithm of Goemans and
Williamson. From no polynomial algorithm it is known that it
has a better approximation ratio. Existence of such an
algorithm with ratio < 1.0625 implies P = NP (Hastad).

Solving the second relaxation is a polynomial time algorithm
which yields the exact value for all planar graphs (consequence
of results of Seymour, Barahona, Mahjoub), and is conjectured

to improve over the GW-algorithm.

The n—th relaxation yields the exact maximum cut value.
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Exactness of the n-th MAXCUT relaxation

Proposition. Suppose p € R[ X7, ..., X, ] such that
p>0on{—1,1}".
Then f is a square modulo the ideal

I:=(X?—-1,...,X* -1 CR[Xy,...,.X,]
1 n

Proof by algebra. By chinese remainder theorem

R[X1,...,X,]/] @ RU-LIT >~ R2"

Proof by algebraic geometry. I is a zero-dimensional radical ideal.
Corollary. D} = Pr = f*
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Theorem (Lasserre). For every p € R[ X1, ..., X,], the following are

equivalent:
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http://front.math.ucdavis.edu/math.AG/0412398

The story goes on...

Theorem (Lasserre). For every p € R[ X1, ..., X,], the following are

equivalent:
(i) p>0on R"
(ii) For every € > 0, there exists N € N such that

n N )(mc
p—l—é‘zz kZ! is sos.

1=1 k=0

Jean Lasserre: A sum of squares approximation of nonnegative
polynomials
http://front.math.ucdavis.edu/math.AG/0412398
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The story goes on...

Theorem (Nie, Demmel, Sturmfels). If p > 0 on R", then p is sos

modulo its own gradient ideal

L (of o
- (2L,

Nie, Demmel, Sturmfels: Minimizing Polynomials via Sum of
Squares over the Gradient Ideal
http://front.math.ucdavis.edu/math.0C/0411342
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