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Standard SDP duality

A semidefinite program (P) and its standard dual (D) is given by
A0, . . . ,An ∈ SRm×m and c1, . . . , cn ∈ R as follows:

(P) minimize c1x1 + · · ·+ cnxn
subject to x ∈ Rn

A0 + x1A1 + · · ·+ xnAn � 0

(D) maximize − tr(A0S)
subject to S ∈ SRm×m

S � 0
tr(A1S) = c1, . . . , tr(AnS) = cn
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Weak duality: If x is feasible in (P) and (S , a) is feasible in (D), then
`(x) ≥ a.

Indeed, `(x) − a = tr(L(x)S) ≥ 0 since the trace of the
product of two positive semidefinite matrices is nonnegative.

Strong duality: Denote by P∗,D∗ ∈ {−∞}∪R∪{∞} the optimal values
of (P) and (D) respectively. Suppose that the feasible set of (P) has non-
empty interior.Then P∗ = D∗ (zero gap). Moreover, if P∗ = D∗ ∈ R,
then (D) attains the common optimal value (dual attainment).
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Sums of squares matrices

Definition: Let S ∈ R[X ]m×m be a pencil. We call S an sos-matrix if it
satisfies the following equivalent conditions:

(i) S = P∗P for some s ∈ N0 and some P ∈ R[X ]s×m,
(ii) S =

∑r
i=1 Q∗

i Qi for some r ∈ N0 and Qi ∈ R[X ]m×m,
(iii) S =

∑t
i=1 wiw∗

i for some t ∈ N0 and wi ∈ R[X ]m.

Remark: The convex cone of sos-matrices of degree at most 2d is
semidefinitely representable. This is a generalization due to Kojima and
Hol & Scherer of the well known Gram matrix method for
R[X ] = R[X ]1×1. In other words, being an sos-matrix of degree at
most 2d can be expressed as a constraint of a semidefinite program by
means of additional variables. The size of the semidefinite description
(of this constraint) depends polynomially on d for fixed n.
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Sums of squares certificates of low-dimensionality

Theorem: For any pencil L ∈ R[X ]m×m, the following are equivalent:
(i) SL := {x ∈ Rn | L(x) � 0} has empty interior.

(ii) SL is contained in a hyperplane of Rn.
(iii) There exists a linear polynomial ` ∈ R[X ] \ {0} and a

quadratic sos-matrix S ∈ R[X ]m×m such that

`2 + tr(LS) = 0

(certifying SL ⊆ {x ∈ Rn | `(x) = 0}).
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Sums of squares certificates of non-negativity

Theorem: For any pencil L ∈ R[X ]m×m and all linear polynomials
f ∈ R[X ], the following are equivalent:

(i) f ≥ 0 on SL

(ii) There exist linear polynomials `1, . . . , `n ∈ R[X ],
quadratic sos-matrices S1, . . . , Sn ∈ R[X ]m×m,
a positive semidefinite matrix S ∈ Rm×m,
and a nonnegative constant c ∈ R such that

`2i + tr(LSi ) ∈ (`1, . . . , `i−1) for i ∈ {1, . . . , n}
f − c − tr(LS) ∈ (`1, . . . , `n)
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An exact duality theory for SDP based on sums of squares
For each d ∈ N0, let md :=

(d+n
n

)
denote the number of monomials of

degree at most d in n variables and −→xd ∈ R[X ]md the column vector

−→xd :=
[
1 X1 X2 . . . Xn X 2

1 X1X2 . . . . . . X d
n
]∗

.

Theorem: Set m := m1 and k := m2. Let L ∈ R[X ]m×m be a pencil
and f ∈ R[X ] be linear. Then f ≥ 0 on SL if and only if there exist

I quadratic sos-matrices S1, . . . , Sn ∈ R[X ]m×m, S ∈ Rm×m
�0 ,

I matrices U1, . . . ,Un ∈ SRm×m,W1, . . . ,Wn ∈ Rk×m and
I a real number a ≥ 0

such that

−→x1
∗Ui
−→x1 +−→x2

∗Wi−1
−→x1 + tr(LSi ) = 0 (i ∈ {1, . . . , n}),

Ui �W ∗
i Wi (i ∈ {1, . . . , n}),

`+−→x2
∗Wn
−→x1 = a + tr(LS)

where W0 := 0 ∈ Rk×m.
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An exact duality theory for SDP based on sums of squares
This provides a duality theory for semidefinite programming where
strong duality (zero gap & dual attainment) always holds and the size
of the dual is polynomial in the size of the primal. Based on other
ideas, such a duality theory has also been given by Matt Ramana:

M. Ramana: An exact duality theory for semidefinite programming and
its complexity implications
Math. Programming 77 (1997), no. 2, Ser. B, 129–162
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
47.8540&rep=rep1&type=pdf
http://dx.doi.org/10.1007/BF02614433

Ramana & Tunçel & Wolkowicz: Strong duality for semidefinite
programming
SIAM J. Optim. 7 (1997), Issue 3, 641–662 (1997)
http://www.math.uwaterloo.ca/~ltuncel/publications/
strong-duality.pdf
http://dx.doi.org/10.1137/S1052623495288350

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8540&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8540&rep=rep1&type=pdf
http://dx.doi.org/10.1007/BF02614433
http://www.math.uwaterloo.ca/~ltuncel/publications/strong-duality.pdf
http://www.math.uwaterloo.ca/~ltuncel/publications/strong-duality.pdf
http://dx.doi.org/10.1137/S1052623495288350


The semidefinite feasibility problem

It is not known whether the semidefinite feasibility problem lies in P or
at least in NP (in the bit model of computation).

By Ramana’s result
this is equivalent to the semidefinite infeasibility problem lying in P or
NP, respectively. Here we have reproved this result of Ramana.

Here is a nice result that does however not seem to imply anything
about this question:

Theorem: For each pencil L ∈ R[X ]m×m, the following are equivalent:
(i) There is no x ∈ Rn such that L(x) � 0.
(ii) There are an sos-polynomial s ∈ R[X ] and

an sos-matrix S ∈ R[X ]m×m

both of degree at most min{m − 1, n} such that

−1 = s + tr(LS).
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Theorem: For each pencil L ∈ R[X ]m×m, the following are equivalent:
(i) There is no x ∈ Rn such that L(x) � 0.

(ii) There are an sos-polynomial s ∈ R[X ] and
an sos-matrix S ∈ R[X ]m×m

both of degree at most min{m − 1, n} such that

−1 = s + tr(LS).
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