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Sums of squares certificates of non-negativity

Theorem: For any pencil L € R[X]™*™ and all linear polynomials
f € R[X], the following are equivalent:
(i) f>0on S,
(ii) There exist linear polynomials /1,.... ¢, € R[X],
quadratic sos-matrices Si,...,S, € R[X]™*™,
a positive semidefinite matrix S € R™*™,
and a nonnegative constant ¢ € R such that

2 4 tr(LS)) € (b1,...,4i_q1) for i€ {1,...,n}
f—c—tr(LS) € (f1,....4n)
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An exact duality theory for SDP based on sums of squares

For each d € Ny, let my := (d‘:") denote the number of monomials of
degree at most d in n variables and x; € R[X]™ the column vector

o= Xe Xoo oo Xe X2OXiXe .. .o X9)T.

Theorem: Set m := my and k := my. Let L € R[X]™*™ be a pencil
and f € R[X] be linear. Then f > 0 on S; if and only if there exist

» quadratic sos-matrices Si,...,S, € R[X]™*", S e RIS,
» matrices Uy, ..., U, € SR™™ W, ..., W, € RK*™ and
» a real number 2> 0
such that
XU 4 35 Wimixi +tr(LS:) = 0 (ie{l,....n}),
Ui = WrW,; (ied{l,...,n}),

0+ %5 Woxi = a+ tr(LS)

where Wy := 0 € Rk*m.



An exact duality theory for SDP based on sums of squares

This provides a duality theory for semidefinite programming where
strong duality (zero gap & dual attainment) always holds and the size
of the dual is polynomial in the size of the primal. Based on other
ideas, such a duality theory has also been given by Matt Ramana:

M. Ramana: An exact duality theory for semidefinite programming and
its complexity implications

Math. Programming 77 (1997), no. 2, Ser. B, 129-162
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
47 .8540&rep=repl&type=pdf
http://dx.doi.org/10.1007/BF02614433

Ramana & Tuncel & Wolkowicz: Strong duality for semidefinite
programming

SIAM J. Optim. 7 (1997), Issue 3, 641-662 (1997)
http://www.math.uwaterloo.ca/~ltuncel/publications/
strong-duality.pdf
http://dx.doi.org/10.1137/351052623495288350


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8540&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8540&rep=rep1&type=pdf
http://dx.doi.org/10.1007/BF02614433
http://www.math.uwaterloo.ca/~ltuncel/publications/strong-duality.pdf
http://www.math.uwaterloo.ca/~ltuncel/publications/strong-duality.pdf
http://dx.doi.org/10.1137/S1052623495288350
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It is not known whether the semidefinite feasibility problem lies in P or
at least in NP (in the bit model of computation). By Ramana’s result

this is equivalent to the semidefinite infeasibility problem lying in P or

NP, respectively. Here we have reproved this result of Ramana.

Here is a nice result that does however not seem to imply anything

about this question:

Theorem: For each pencil L € R[X]7*™, the following are equivalent:
(i) There is no x € R” such that L(x) > 0.

(ii) There are an sos-polynomial s € R[X] and
an sos-matrix S € R[X]™*™
both of degree at most min{m — 1, n} such that

—1=s+1tr(LS).
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Klep & S.: An exact duality theory for semidefinite programming
based on sums of squares

Thank you!
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