Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Michele Serra Simon Müller SS 2017

Algebraische Zahlentheorie - Übungsblatt 2

Abgabe. Donnerstag, 11 Mai 2017, 10:00 Uhr, Briefkasten No. 19.

Aufgabe 1 (4 Punkte). Ein kommutativer Ring heißt noethersch, wenn es für jede Folge

$$I_1 \subset I_2 \subset I_3 \subset \dots$$

von Idealen ein $n \in \mathbb{N}$ gibt, mit $I_n = I_{n+1} = \dots$

- (a) Sei R ein noetherscher Integritätsbereich. Zeigen Sie, dass jede Nichteinheit $a \in R \setminus \{0\}$ als Produkt von irreduziblen Elementen aus R geschrieben werden kann.
- (b) Nehmen Sie jetzt an, dass jedes irreduzible Element aus R prim ist. Zeigen Sie, dass R faktoriell ist.

Aufgabe 2 (4 Punkte). (a) Zeigen Sie, dass 2, 3 und $1 + \sqrt{-5}$ irreduzibel in $\mathbb{Z}[\sqrt{-5}]$ sind.

- (b) Zeigen Sie, dass 2, 3 und $1+\sqrt{-5}$ nicht paarweise assoziiert in $\mathbb{Z}[\sqrt{-5}]$ sind.
- (c) Folgern Sie, dass $\mathbb{Z}[\sqrt{-5}]$ kein faktorieller Ring ist.

Hinweis: in (a) und (b), betrachten Sie die (multiplikative) Abbildung $N: \mathbb{Q}(\sqrt{-5}) \to \mathbb{Q}$, $N(a+b\sqrt{-5})=a^2+5b^2$.

Aufgabe 3 (4 Punkte). (a) Zeigen Sie, dass die Ideale $\langle 2, 1+\sqrt{-5}\rangle$, $\langle 2, 1-\sqrt{-5}\rangle$ und $\langle 3, 1+\sqrt{-5}\rangle$ prim in $\mathbb{Z}[\sqrt{-5}]$ sind.

Bemerkung: In der Vorlesung wurde gezeigt, dass $(3, 1 - \sqrt{-5})$ prim ist und dass

$$\langle 2, 1 + \sqrt{-5} \rangle \langle 2, 1 - \sqrt{-5} \rangle = \langle 2 \rangle$$

gilt.

(b) Zeigen Sie, dass die folgende Gleichungen gelten:

$$\langle 3, 1 + \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle = \langle 3 \rangle;$$

$$\langle 2, 1 + \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle = \langle 1 + \sqrt{-5} \rangle;$$

$$\langle 2, 1 - \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle = \langle 1 - \sqrt{-5} \rangle;$$

$$\langle 2, 1 + \sqrt{-5} \rangle \langle 2, 1 - \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle = \langle 6 \rangle.$$

Aufgabe 4 (4 Punkte). Sei $D \in \mathbb{Z}$ quadratfrei. Sei $K := \mathbb{Q}(\sqrt{D})$.

- (a) Sei D < 0. Berechnen Sie die Menge der Einheiten von \mathcal{O}_K .
- (b) Sei D=2. Seien $a,b\in\mathbb{Z}$ so dass $u:=a+b\sqrt{2}>1$ eine Einheit in \mathcal{O}_K ist. Zeigen Sie, dass $a\geq 1$ und $b\geq 1$.
- (c) Sei D=2. Zeigen Sie, dass $1+\sqrt{2}$ eine Einheit in \mathcal{O}_K ist. Zeigen Sie, dass, falls u>1 eine Einheit in \mathcal{O}_K ist, ein $k\in\mathbb{N}$ mit $u=(1+\sqrt{2})^k$ existiert.
- (d) Sei D=2. Folgern Sie, dass $\{\pm (1+\sqrt{2})^k \mid k\in\mathbb{Z}\}$

die Menge der Einheiten von \mathcal{O}_K ist.

Hinweis: Behandeln Sie die Fälle D = -1 und D = -3 in Teil (a) getrennt.