Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Michele Serra Simon Müller SS 2017

Algebraische Zahlentheorie - Übungsblatt 6

Abgabe. Donnerstag, 8. Juni 2017, 10:00 Uhr, Briefkasten No. 19.

Ringe sind immer kommutativ mit Eins.

Definition. Sei R ein Ring, P ein Primideal und $P_0 \subsetneq P_1 \subsetneq \ldots \subsetneq P_n = P$ eine maximal aufsteigende Kette von Primidealen von R. Dann heißt n die $H\ddot{o}he$ von P, geschrieben $\operatorname{ht}(P)$.

Aufgabe 1 (5 Punkte). (a) Zeigen Sie, dass ein noetherscher Integritätsbereich R genau dann faktoriell ist, wenn jedes Primideal von R der Höhe 1 ein Hauptideal ist.

Hinweis. Für die Rückrichtung können Sie ohne Beweis das folgende Resultat verwenden:

Krullscher Hauptidealsatz. Sei R ein noetherscher Integritätsbereich, $x \in R \setminus \{0\}$ und P ein minimales Primideal das x enthält. Dann gilt $\operatorname{ht}(P) \leq 1$.

- (b) Es folgt aus (a), dass Hauptidealbereiche noethersche faktorielle Integritätsbereiche sind. Zeigen Sie, dass es noethersche faktorielle Integritätsbereiche gibt, die keine Hauptidealbereiche sind.
- **Aufgabe 2** (3 Punkte). (a) Sei R der Ring der stetigen Abbildungen $f: [0,1] \to \mathbb{R}$. Zeigen Sie, dass R nicht noethersch ist.
- (b) Geben Sie ein Beispiel für einen nicht noetherschen faktoriellen Integritätsbereich an.
- **Aufgabe 3** (4 Punkte). (a) Betrachten Sie den Beweis vom Hilberts Basissatz (8. Vorlesung). Zeigen Sie anhand eines Beispiels, dass, in Abhängigkeit von der Wahl der f_i 's, die Elemente g_i notwendig sind um I zu erzeugen.
- (b) Können wir eine Bedingung an die Wahl der f_i stellen, so dass die f_i genügen um I zu erzeugen?

Aufgabe 4 (4 Punkte). Sei M ein noetherscher R-Modul und $\varphi \colon M \to M$ ein Endomorphismus von M. Zeigen Sie, dass es ein $n \in \mathbb{N}$ mit $\ker(\varphi^n) \cap \operatorname{im}(\varphi^n) = 0$ gibt. Sei nun φ surjektiv. Zeigen Sie, dass φ ein Isomorphismus ist.

Hinweis. $\ker(\varphi) \subseteq \ker(\varphi^2) \subseteq \ker(\varphi^3) \subseteq \dots$