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1. Topological groups

Definition 1.1. A topological group is a group G with a topology with respect
to which the maps

G×G→ G, (g, h) 7→ gh G→ G, g 7→ g−1

are continuous (on G×G we take the product topology).

Examples 1.2. (1) Every group can be made into a topological group by
equipping it with the discrete topology.

(2) The real numbers with addition (R,+).
(3) More generally (Rn,+).
(4) The General Linear Group GLn(R) with the induced topology, when seen

as a subspace of Rn×n. Recall that multiplication and inversion of matrices
are polynomial maps on the coefficients. Hence continuous.

(5) (Q,+) when we put on Q the topology induced by R.

Definition 1.3. A morphism of topological groups is a group homomorphism
which is continuous. An isomorphism is a group isomorphism which is also a
homeomorphism.

2. Projective systems and projective limits

Definition 2.1 (Directed partially ordered set). A set I with a binary relation ≤
is called a directed partially ordered set or a directed poset if
(a) for all i ∈ I we have i ≤ i;
(b) for all i, j ∈ I, if i ≤ j and j ≤ k then i ≤ k;
(c) for all i, j ∈ I, if i ≤ j and j ≤ i then i = j;
(d) for all i, j ∈ I there exists a k ∈ I with i, j ≤ k.

Example 2.2. The set (N+, |) of positive natural numbers together with the binary
relation “is divisible by” is a directed poset.

Definition 2.3 (Projective system). A projective system of topological spaces
(resp. groups) is a triple (Xi, ϕij, I) where
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• (I,≤) is a directed poset.
• {Xi, i ∈ I} is a collection of topological spaces (resp. groups) indexed by
I.
• ϕij : Xi → Xj is a continuous map (resp. homomorphism) defined whenever
i ≥ j and such that, whenever k ≥ j ≥ i we have ϕik = ϕjk ◦ϕij. Moreover,
for all i ∈ I, we have ϕii = IdXi

Example 2.4 (Constant projective system). Fix a topologigal space X and a
directed poset I. For all i ∈ I let Xi = X. Then the system {X, IdX} is a
projective system called the constant projective system on X.

Definition 2.5 (Compatible maps). Let Y be a topological space (group) and
(Xi, ϕij, I) a projective system of topological spaces (groups). For all i ∈ I let
ψi : Y → Xi be a continuous map (group homomorphism). We say that the ψi’s
are compatible if for all i ≥ j the following diagram commutes.

Y
ψi

~~

ψj

  
Xi

ϕij // Xj

2.1. Projective limits.

Definition 2.6 (Projective limit). Let (Xi, ϕij, I) be a projective system of topolo-
gial spaces (groups). A projective limit of {Xi} is a topological space (group) X
together with a family {ϕi : X → Xi|i ∈ I} of continuous maps (homomorphisms)
such that the following universal property holds:
for every topological space (group) Y and family of compatible maps (homomor-
phisms) {ψi : Y → Xi} there exists a unique continuous map (homomorphism)
ψ : Y → X, such that, for every i ∈ I the following diagram commutes.

Y

ψi   

ψ // X

ϕi~~
Xi

We say that ψ is induced by the compatible maps (homomorphisms) ψi.

Recall that if {Xi} is a collection of topological spaces (groups) indexed by a set
I then their (Cartesian or direct) product is the topological space (group)

∏
i∈I Xi

endowed with the product topology. In the case of groups the operation is defined
coordinate-wise.

Proposition 2.7 ([RZ10, Proposition 1.1.1]). Let {Xi, ϕ, I} be a projective system
of topological spaces (groups) over a directed poset I. Then
(a) There exists a projective limit of the projective system {Xi};
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(b) This limit is unique up to unique isomorphism. This means the following: if
(X,ϕi) and (Y, ψi) are two limits of the projective system {Xi}, then there
exists a unique homeomorphism (topological isomorphism) ϕ : X → Y such
that, for all i ∈ I, we have ψiϕ = ϕi

Proof. (a) Let X be the subspace (subgroup) of
∏

i∈I Xi defined as follows

X = {(xi)i∈I s.t. i ≥ j ⇒ ϕij(xi) = xj}

and for all i ∈ I let ϕi : X → Xi be the restriction of the canonical projection∏
i∈I → Xi, that is

∀j ∈ I, ∀(xi)i∈I ∈ X, ϕj((xi)i∈I) = xj.

This is a continuous map (homomorphism). Now we prove that (X,ϕi) is a
projective limit of the system {Xi, ϕij, I}. To do this, let (Y, ψi) be a topo-
logical space (group) together with a family of compatible maps (homomor-
phisms). We need to show that there exists a unique continuous map (group
homomorphism) ψ : Y → X such that, for all i ∈ I the diagram

Y

ψi   

ψ // X

ϕi~~
Xi

commutes. Let y ∈ Y . Then ψ(y) is a tuple (xi)i∈I and we must have
ϕi(ψ(y)) = xi = ψi(y). Therefore, if ψ exists, it is unique and must be defined
by ψ(y) = (ψi(y))i∈I . Such a map is clearly continuous, because each of its
components (the ψi‘s) is. We only need to check that it is well defined, that
is, that its image is contained in X. For this, we need that for all i ≥ j in I,
the identity ψj = ϕijψi hold. And this is true because, by assumption, the ψi‘s
are compatible maps. This completes the proof of the existence of a projective
limit.

(b) The proof of uniqueness is very simple and general. In fact, any object defined
by a universal property is unique up to isomorphism, provided it exists. Uni-
versal properties are a very powerful way of defining mathematical objects,
and I suggest that you think about this and get acquainted with them in
their general fashion, e.g, by looking at https://en.wikipedia.org/wiki/
Universal_property and, if you get teased, at the references thereby. But
let us get back to business, and let‘s prove the uniqueness: this is a proto-
type proof of uniqueness using the universal property. Suppose (X,ϕi) and
(Y, ψi) are two projective limits. By the universal property of X there exists
a unique continuous map (homomorphism) ψ : Y → X such that, for all i ∈ I,
ϕiψ = ψi. Similarly, this time by the universal property of Y , there exists a
unique continuous map (homomorphism) ϕ : X → Y such that, for all i ∈ I,

https://en.wikipedia.org/wiki/Universal_property
https://en.wikipedia.org/wiki/Universal_property
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ψiϕ = ϕi. Now consider the following diagrams, for any i ∈ I:

X
IdX //

ϕi   

X

ϕi~~

X
ψϕ //

ϕi   

X

ϕi~~
Xi Xi

The first one is certainly commutative. But the second one is too, indeed, if
we compose the top arrow with the right one, we get

ϕiψϕ = (ϕiψ)ϕ = ψiϕ = ϕi.

But, by the universal property of X, for each i ∈ I there exists a unique
map X → X making each of the above diagrams commutative. Therefore,
ψϕ = IdX . The same exact reasoning applies to Y , thereby showing that
ϕψ = IdY . Hence ϕ and ψ are mutually inverse homeomorphisms (topological
isomorphisms). This completes the proof.

�

In light of the previous proposition, we will talk about the projective limit of a
projective system {Xi, ϕij, I} and denote it by one of the following

lim←−i∈I Xi, lim←−iXi, lim←−I Xi, lim←−Xi

Before the following Lemma, we introduce some notation that might be useful in
the sequel. By the symbols ⊆o, ⊆c, ≤o, ≤c we mean “open subset, closed subset,
open subgroup, closed subgroup” respectively.

Lemma 2.8 ([RZ10, Lemma 1.1.2]). If {Xi, ϕij, I} is a projective system of Haus-
dorff topological spaces (groups), then lim←−Xi is a closed subspace (subgroup) of of∏

I Xi.

Proof. We want to show that
∏
Xi \ lim←−Xi is open. To this end, let x = (xi)i∈I ∈∏

Xi \ lim←−Xi and let us show that there exists an open neighbourhood W of x
disjoint from lim←−Xi. Recall that

lim←−iXi = {(xi)i∈I s.t. i ≥ j ⇒ ϕij(xi) = xj} .

Since x /∈ lim←−Xi there exist r ≥ s ∈ I such that ϕrs(xr) 6= xs. Now, ϕrs(xr), xs ∈
Xs and Xs is Hausdorff by assumption, so there exist U, V ⊆o Xs with ϕrs(xr) ∈
U, xs ∈ V and U ∩ V = ∅.

By continuity of ϕrs : Xr → Xs there exists an open subset U ′ of Xr containing
xr such that ϕrs(U ′) ⊆ U . Now, for all i ∈ I define a topological space Wi as
follows:

Wr = U ′, Ws = V, i 6= r, s⇒ Wi = Xi

and set
W :=

∏
i∈I

Wi.
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Now
• W is open in

∏
Xi.

• x = (xi)i∈I ∈ W. Clear: x ∈ U ′ × V ×
∏

i 6=r,sWi = W .
• W ∩ lim←−Xi = ∅. Indeed, if y = (yi)i∈I ∈ W , then yr ∈ U ′ so ϕrs(yr) ∈ U
and as U ∩ Vs = ∅ we have ϕrs(yr) /∈ Vs.

�

Definition 2.9 (Totally disconnected space). A topological space X is totally
disconnected if for all x ∈ X the connected component of x is {x}. For example,
a space with the discrete topology.

Recall Tychonoff’s theorem:

Theorem 2.10 (Tychonoff). Let {Xi} be a family of compact topological spaces.
Than

∏
Xi is compact. �

The following is an immediate corollary

Proposition 2.11 ([RZ10, Proposition 1.1.3]). Let {Xi, ϕij, I} be a projective
system of compact, Hausdorff, totally disconnected topological spaces (groups).
Then lim←−Xi is also a compact Hausdorff totally disconnected topological space
(group). �

2.2. Morphisms of projective systems. Let {Xi, ϕij, I} and {X ′i, ϕ′ij, I} be
two projective systems of topological spaces (groups) over the same directed poset
I. A morphism of projective systems

Θ: {Xi, ϕij, I} −→ {X ′i, ϕ′ij, I}
consists of a collection of continuous maps (homomorphisms) ϑi : Xi → X ′i, for
each i ∈ I such that, whenever i ≥ j, the following diagram is commutative:

Xi

ϑi
��

ϕij // Xj

ϑj
��

X ′i
ϕ′
ij // X ′j

The ϑi’s are called the components of Θ.
Morphisms of projective systems can be composed in a natural way.
Now let {Xi, ϕij, I} and {X ′i, ϕ′ij, I} be two projective systems, let (X,ϕi) and
(X ′, ϕ′i) be their limits, respectively, and let Θ: {Xi, ϕij, I} −→ {X ′i, ϕ′ij, I} be a
morphism of projective systems. Then the maps (homomorphisms)

ϑiϕi : X −→ X ′i

are compatible maps, and induce a continuous map (homomorphism)

lim←−Θ = lim←−i∈I ϑi : lim←−iXi −→ lim←−iX
′
i
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by using the fact that X ′ is a projective limit, so for all i ∈ I there is a unique
continuous map (homomorphism) making the following diagram commute.

X
lim←−Θ

//

ϑiϕi   

X ′

ϕ′
i
��
X ′i

2.3. Profinite spaces and groups. We will be interested in topological spaces
(groups)

X = lim←−iI Xi

that are projective limits of (surjective) systems of finite spaces (groups)Xi equipped
with the discrete topology. Such spaces (groups) are called profinite.

Lemma 2.12 ([RZ10, Lemma 1.1.11]). Let X be a compact Hausdorff topological
space and let x ∈ X. Then the connected component Cx of x is the intersection of
all the clopen (i.e., closed and open) neighbourhoods of x.

The following theorem provides a characterisation of profinite spaces.

Theorem 2.13 ([RZ10, Theorem 1.1.12]). Let X be a topological space. Then the
following are equivalent.
(a) X is profinite:
(b) X is compact Hausdorff and totally disconnected:
(c) X is compact Hausdorff and admits a basis of clopen subsets for its topology.

Proof. (a)⇒(b). LetX = lim←−Xi where eachXi is a finite space. Then by Prop 2.11
X is compact Hausdorff and totally disconnected.
(b)⇒(c). Assume X is a compact Hausdorff totally disconnected space. We need
to show that for all x ∈ X and for all open neighbourhood W of x, W contains
a clopen neighbourhood of X. Let {Ut, t ∈ T} be the family of all clopen neigh-
bourhoods of x. By Lemma 2.12

{x} =
⋂
t

Ut.

Now, X \W is closed and disjoint from
⋂
t Ut, therefore, since X is compact, there

exists a finite subset T ′ ⊆ T such that

(X \W ) ∩
⋂
t∈T ′

Ut = ∅.

Hence
⋂
t∈T ′ Ut is the clopen neighbourhood of x contained in W we were looking

for.
(c)⇒(a). Assume X is compact, Hausdorff and admits a base of clopen subsets for
its topology. Let R be the set of equivalence relations R on X with the property
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that [x]R is a clopen subset of X for all x ∈ X. Then, for any R ∈ R, the quotient
X/R is finite and discrete.

(1) Finite because, since X is compact and {[x]R, x ∈ X} is an open cover then
there exist x1, . . . , xn such that X = ∪[xi]R.

(2) Discrete because every [x]R is open in X and therefore, the preimage of
any subset U ⊆ X/R is a union of open subsets of X and hence open, so
U is open in the quotient topology.

Moreover, R is a directed poset.
(1) It is ordered under R ≥ R′ if [x]R ⊆ [x]R′ for all x.
(2) Is directed because given R1 and R2 we can find a relation R1 ∩R2 defined

as the one corresponding to the partition

{[x]R1 ∩ [y]R2|x, y ∈ X}
So, if we define, for all R ≥ R′ ∈ R a map

ϕRR′ : X/R→ X/R′, [x]R 7→ [x]R′

we get a projective system of finite discrete topological spaces over R
{X/R, ϕRR′ , R}

of which we can take the projective limit. We claim that

X ' lim←−R∈RX/R.

Let ψ : X → lim←−R∈RX/R be the continuous map induced by the canonical pro-
jections ψR : X → X/R (we are using the universal property of the projective
limit). This is continuous and surjective (see [Corollary 1.1.6][RZ10]). Since X
is compact, to prove that it is a homeomorphism it is enough to show that it is
injective.

Let x 6= y ∈ X. As X is Hausdorff and admits a basis consisting of clopen
subsetes, there exists a clopen neighbourhood U of x that does not contain y. Let
R′ be the equivalence relation on X having only the two equivalent classes U and
X \ U . It is clear that R′ ∈ R and we have ψR′(x) 6= ψR′(y). Hence ψ(x) 6= ψ(y)
and ψ is injective. �

Exercise 2.14. Show that the product of a family of topological spaces Xi can
be expressed as a projective limit.

3. Profinite groups

3.1. Classes of finite groups. We’ll consider now classes C of finite groups. For
example

(1) Finite groups;
(2) Finite cyclic groups;
(3) Finite abelian groups;
(4) Finite p-groups.
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they can satisfy some properties, like
i. subgroup closed;
ii. closed under taking quotients: G ∈ C and H / G then G/H ∈ C;
iii. closed under forming finite direct products;
iv. if G is a finite group with normal subgroups H,K such that G/H,G/K ∈ C

then G/(H ∩K) ∈ C.
Finite groups respect all, finite cyclic groups respect only the first two, finite
abelian groups respect all, p-groups respect all.

Definition 3.1. If {Gi} is a surjective projective system of groups belonging to
one of the class C their projective limit is called a pro-C-group.

(1) profinite groups
(2) pro-cyclic groups
(3) pro-abelian groups
(4) pro-p-groups

Definition 3.2 (Fundamental system of open neighbourhoods). If X is a topo-
logical spaces and x ∈ X a fundamental system of open neighbourhoods of x is a
family of open subsets Ui ⊆o X such that, if V is any open subset containing x
there exists some i such that Ui ⊆ V .

From now we move our attention to groups. We want to exhibit a special
fundamental system of neighbourhoods of 1 of a profinite group.

Lemma 3.3 ([RZ10, Lemma 2.1.1]). Let

G = lim←−i∈I Gi

be the projective limit of a system {Gi, ϕij, I} of finite groups. So a profinite group.
Let

ϕi : G→ Gi

be the projection homomorphisms. Then

{Si|Si = kerϕi}
is a fundamental system of neighbourhoods of 1 in G.

Proof. Consider the family of neighborhoods of 1 in
∏
Gi of the form( ∏

i 6=i1,...,it

Gi

)
× {1}i1 × . . .× {1}it

for a finite collection of indices i1, . . . , it ∈ I. As we let the collection of i’s vary,
we obtain a fundamental system of neighbourhoods of 1 in

∏
Gi. As I is directed,

there is i0 such that i0 ≥ i1, . . . , it. Then

G ∩ [(
∏
i 6=i0

Gi)× {1}i0 ] = G ∩ [(
∏

i 6=i1,...,it

Gi)× {1}i1 × . . .× {1}it
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Indeed, an element on the left-hand-side is a tuple having 1 in the i0th position,
such that it satisfies the property of the projective limit. So for all the ij we have
ϕi0ij(1) = 1 because it is a group homomorphism.

therefore the family of neighbourhoods of 1 in G of the form

G ∩ [(
∏
i 6=i0

Gi)× {1}i0 ]

is a fundamental system. Finally, just observe that

G ∩ [(
∏
i 6=i0

Gi)× {1}i0 ] = kerϕi0 .

�

The following is a very important and easy property characterising open sub-
groups in compact groups.

Lemma 3.4. In a compact topological group G a subgroup H is open if and only
if it is closed of finite index.

Proof. Let H be closed of finite index. For a fixed g ∈ G the map G→ G, x 7→ xg
is a homeomorphism (check!). therefore, since H is closed, its right cosets are
closed. Since H has finite index, there are finitely many cosets, hence the union
of the cosets other than H is a finite union of closed, hence closed. So H, which is
the complement, is open.

Let H be open in G. As the map described above is a homeomorphism, then
the cosets of H are open. Hence H is closed. Moreover, the cosets are an open
cover of G, which is compact, hence there are finitely many cosets.

�

Definition 3.5. Let G be a group and H a subgroup. The core of H in G, denoted
HG, is the largest normal subgroup of G contained in H. Equivalently, it is the
intersection of all conjugates of H:

HG =
⋂
g∈G

g−1Hg

Note that it is enough to take the intersection over a set of representatives of the
right cosets of H.

Theorem 3.6 ([RZ10, Theorem 2.1.3]). Let C be a class of finite groups satisfying
properties (2) and (4). The following are equivalent for a topological group G.
(a) G is a pro-C-group;
(b) G is compact, Hausdorff, totally disconnected and for every open normal sub-

group U of G, G/U ∈ C;
(c) G is compact and the identity element 1 admits a fundamental system of neigh-

bourhoods U such that
⋂
U U = 1 and each U is open and normal in G with

G/U ∈ C;
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(d) The identity element 1 admits a fundamental system U of neighbourhoods U
such that each U is normal in G with G/U ∈ C and

G = lim←−U∈U G/U.

Proof. (a)⇒(b). Let
G = lim←−i∈I Gi,

for a surjective system {Gi, ϕij, I}. Let ϕi be the projection homomorphisms. By
Theorem 2.13 G is compact Hausdorff and totally disconnected. Let U be an open
normal subgroup of G. By Lemma 3.3 there is some Si = kerϕi ≤ U . Then

G/U ' (G/Si)/(U/Si)

and Si ∈ C because it is closed under taking subgroups and hence G/U ∈ C because
it is closed under taking quotients.
(b)⇒(c). Let V be the set of clopen neighbourhoods of 1 in G. By Theorem 2.13
this is a fundamental system. Moreover,⋂

V ∈V

V = 1.

Therefore, it is enough to prove that if V is a clopen neighbourhood of 1, it contains
an open normal subgroup of G.
Notation. If X is a subset of G and n ∈ N we denote by Xn the set of all

products of n elements of X, and by X−1 the set of all inverses of elements of X.
Fix a V ∈ V and set F := (G \ V ) ∩ V 2. Then F is closed, and therefore

compact. Now let x ∈ V . Then x ∈ G \ F , which is open. Since multiplication
in G is continuous there exist open neighbourhoods Vx of x and Sx of 1, both
contained in V such that VxSx ⊆ G \ F (because x · 1 ∈ G \ F ).

Now, V is compact, so there exist finitely many x1, . . . , xn such that Vx1 , . . . , Vxn
cover V . Consider the corresponding Sxi and take the intersection:

S :=
n⋂
i=1

Sxi

and letW = S∩S−1. NowW is a neighbourhood of 1 and w ∈ W ⇐⇒ w−1 ∈ W ;
W ⊆ V and VW ⊆ G \ F . In particular, VW ∩ F = ∅. Moreover, VW ⊆ V 2

hence VW ∩ (G \ V ) = ∅. Thus VW ⊆ V , and then
VW n ⊆ V ∀n ∈ N.

Since W is symmetric (w ∈ W ⇐⇒ w−1 ∈ W ), then

R :=
⋃
n∈N

W n

is an open subgroup of G contained in V . Therefore the core

RG =
⋂
g∈G

(g−1Rg)
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is open and normal in G. Finally, RG ⊆ V because

RG ≤ R ⊆ V R ⊆
⋃
n∈N

VW n ⊆ V.

So RG is the open normal subgroup contained in V we were looking for.
(c)⇒(d). Let U be as in (c). Then U is a directed poset, if we set that for U, V ∈ U ,
U � V ⇐⇒ U ≤ V . Then we can consider the projective system over U given by
{G/U, ϕUV } where ϕUV : G/U → G/V is the natural surjective morphism define
whenever V ≤ U . With respect to this system, the canonical epimorphisms

ψU : G→ G/U

are compatible. Hence they induce a continuous homomorphism

ψ : G −→ lim←−U∈U G/U.

This is an isomorphism of topological groups. Indeed, by [RZ10, Corollary 1.1.6],
since all the ψU ’s are surjective, then so is ψ. To show that ψ is a homeomorphism,
since G is compact, we just need to show injectivity. Now, if ψ(x) = 1 then x
belongs to every U ∈ U . And as

⋂
U = 1 we have x = 1.

(d)⇒(a). Is obvious. �

3.2. Completions. Consider a formation C of finite groups (C satisfies properties
(ii) and (iv)) and let G be a group (not necessarily in C). Let

N = {N /f G|G/N ∈ C}
be the set of normal subgroups N of finite index of G such that G/N ∈ C. Then
N can be naturally made into a directed poset by setting M � N ⇐⇒ N ≤ M .
If M,N ∈ N and N � M define ϕNM : G/N → G/M to be the canonical map.
In this way

{G/N, ϕNM , N}
is a projective system of groups in C. The pro-C-group

GĈ = lim←−
N∈N

G/N

is called the pro-C-completion of G.

Example 3.7. (1) Consider Z made into a partially ordered set by divisibility.
Then for n|m we have Z/mZ → Z/nZ, so {Z/nZ} is a projective system.
The profinite completion is

Ẑ = lim←−
n∈N

Z/nZ

called the ring of profinite integers.
Notice that the elements of Ẑ are (equivalence classes of) sequences (an) =
(a1, a2, . . .) of natural numbers such that, whenever n|m we have

am ≡ an mod n.
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In particular, Ẑ is a subring of the ring
∏

n Z/nZ. Operations are defined
coordinate-wise, and we have a natural embedding

Z ↪→ Ẑ, a 7→ (a, a, a, . . .).

For example, if Fq is a finite field, than Gal(F̄q ' Ẑ.
(2) Let p be a prime integer. Than {pn, n ∈ N} is a directed poset and
{Z/pnZ, n ∈ N} is a projective system of finite group. Its profinite com-
pletion is denoted by

Zp = lim←−
n∈N

Z/pnZ

and called the ring of p-adic integers.
Its elements can be identified with (equivalence classes of) sequences (an) =
(a1, a2, . . .) of natural numbers with

an ≡ am mod pm

whenever m ≤ n.

References

[RZ10] L. Ribes and P. Zalesskii. Profinite groups. Second. Vol. 40. Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern
Surveys in Mathematics. Springer-Verlag, Berlin, 2010, pp. xvi+464. isbn:
978-3-642-01641-7. doi: 10.1007/978- 3- 642- 01642- 4. url: http:
//dx.doi.org/10.1007/978-3-642-01642-4.

http://dx.doi.org/10.1007/978-3-642-01642-4
http://dx.doi.org/10.1007/978-3-642-01642-4
http://dx.doi.org/10.1007/978-3-642-01642-4

	1. Topological groups
	2. Projective systems and projective limits
	2.1. Projective limits
	2.2. Morphisms of projective systems
	2.3. Profinite spaces and groups

	3. Profinite groups
	3.1. Classes of finite groups
	3.2. Completions

	References
	References

