Übungen zur Vorlesung Lineare Algebra II

Blatt 5

Thema der Präsenzaufgabe

Orthogonalität

Aufgabe 14 (4 Punkte)

Sei V ein endlichdimensionaler \mathbb{R} -Vektorraum. Zwei Basen B, C von V heißen gleich orientiert, falls ihre Basiswechselmatrix M(id, B, C) positive Determinante hat. Zeigen Sie:

- (i) Gleiche Orientierung ist eine Äquivalenzrelation auf der Menge aller Basen von V und es gibt genau zwei Äquivalenzklassen. Diese heißen Orientierungen von V.
- (ii) Sei nun V euklidisch mit $\dim(V) = 3$. Die Orientierung der kanonischen Basis heißt positiv, die andere Orientierung heißt negativ.

Zeigen Sie, dass es eine eindeutige bilineare Abbildung $\times: V \times V \to V$, $(v, w) \mapsto v \times w$ gibt mit

- (a) für alle $v \in V$ gilt $v \times v = 0$;
- (b) für jede positiv-orientierte Orthonormalbasis (v_1, v_2, v_3) von V gilt $v_1 \times v_2 = v_3$.
- (iii) Ist \times symmetrisch?

Aufgabe 15 (4 Punkte)

Sei $V = \mathbb{R}[X]$ mit dem Skalarprodukt

$$\langle f, g \rangle := \int_{-a}^{a} f(t)g(t) dt$$

wobei $a \in \mathbb{R}$, a > 0 ist. Sei V_3 der Unterraum der Polynomen von Grad ≤ 3 . Seine Standardbasis ist $\{1, X, X^2, X^3\}$. Finden Sie eine Orthonormalbasis von V_3 .

(4 Punkte) Aufgabe 16*

Wir definieren der Folgenraum

$$\ell^{2}(\mathbb{N}, \mathbb{C}) = \left\{ (a_{0}, a_{1}, a_{2}, \dots) = (a_{n})_{n \in \mathbb{N}} : \sum_{n \in \mathbb{N}} |a_{n}|^{2} < 0, \ a_{n} \in \mathbb{C} \right\}.$$

Seine Elementen sind Folgen komplexer Zahlen indiziert durch die natürlichen Zahlen. Die Menge $\ell^2(\mathbb{N},\mathbb{C})$ ist mit der punktweisen Addition und Skalarmultiplikation ein C-Vektorraum (vgl. Beispiel 2.2.3 (v)). Auf $\ell^2(\mathbb{N}, \mathbb{C})$ definieren wir folgendes Skalarprodukt

$$\langle (a_n), (b_n) \rangle = \sum_{n \in \mathbb{N}} a_n \bar{b}_n.$$

- (i) Für alle $i \in \mathbb{N}$ sei $e_i = (\delta^i_j)_{j \in \mathbb{N}}$ und sei $S = \{e_0, e_1, e_2, \ldots\}$. Zeigen Sie, dass $S^{\perp \perp} \neq S$ gilt. (ii) Sei nun $f : \ell^2(\mathbb{N}, \mathbb{C}) \to \ell^2(\mathbb{N}, \mathbb{C})$ der *Rechtsshiftoperator*, definiert durch

$$f((a_0, a_1, a_2, \ldots)) = (0, a_0, a_1, \ldots).$$

Zeigen Sie, dass f orthogonal, injektiv aber nicht surjektiv ist.

Abgabe: Bis Freitag, den 17.5.2019, 9:45 Uhr, in die Briefkästen auf F4.

Webseite: http://math.uni-konstanz.de/~serra/2019-SS-LinAlg2 und ILIAS