22 Script zur Vorlesung: Lineare Algebra II(SoSe2020)

Prof. Dr. Salma Kuhlmann

In Abschnitt 16b werden wir ergänzend noch den Zusammenhang zum LA I Kapitel 3 Abschnitt 6 bemerken. In Abschnitt 17 betrachten wir Hermite'sche Operatoren und in Abschitt 18 schief Hermite'sche Operatoren. Wir beenden das Skript mit der Zerlegung eines Operators.

§ 16b Beziehung zum Bidual

• Sei V ein endlich dimensionaler K- vektorraum. In LA I Proposition 24.4 haben wir für $y_0 \in V$ eine lineare Abbildung $L_{y_0}: V^* \longrightarrow K$ (d.h. $L_{y_0} \in V^{**}$) folgend definiert: $L_{y_0}(y^*) := y^*(y_0)$ für alle $y^* \in V^*$. (*)

In LA I Satz 24.5 haben wir dann bewiesen dass die Abbildung

ein Isomorphismus ist.

• Sei (-|-|) ein inneres Produkt auf V. In Skript 21, Satz 21.9 haben wir betrachtet:

wobei $y_0^*(x) \coloneqq (x \mid y_0)$ für alle $x \in V$ und $y_0^{**}(y^*) = (y^* \mid y_0^*)$ für alle $y^* \in V^*$.

• Wir können nun die Abbildung betrachten:

$$V \xrightarrow{\delta} V^* \xrightarrow{\gamma} V^{**}, \quad \gamma \circ \delta : y_0 \longmapsto y_0^{**}.$$

Bemerkung 22.0. Es gilt: $\lambda = \gamma \circ \delta$, d.h. $L_{y_0} = y_0^{**}$, für alle $y_0 \in V$.

Beweis:

Es genügt, zu zeigen, dass
$$y_0^{**}$$
 die Gleichung (*) erfüllt. Wir berechnen $y_0^{**}(y^*) = (y^* \mid y_0^*) = (y_0 \mid y) = y^*(y_0)$.

§ 17 Hermite'sche Operatoren

Unser Ansatz ist weiterhin: V endl. dim. inneres Produkt Raum.

Erinnerung:

In Folgerung 21.10 (IV) wurde für $T \in \mathcal{L}(V, V)$, die Abbildung $T^* \in \mathcal{L}(V, V)$ hierdurch für $x, y \in V$ definiert:

$$(Tx \mid y) = (x \mid T^*y),$$

oder

$$(x \mid Ty) = (T^*x \mid y).$$

Definition 22.1.

- (i) $T \in \mathcal{L}(V, V)$ ist Hermite'sch (oder selbstadjungiert), falls $T = T^*$, i.e. $(Tx \mid y) = (x \mid Ty)$ für alle $x, y \in V$.
- (ii) $K = \mathbb{R}$; $T = T^*$; T heißt auch reell symmetrisch.
- (iii) $K = \mathbb{C}; T = T^*$ heißt auch komplex Hermite'sch.

Satz 22.2.

Sei $T \in \mathcal{L}(V, V)$ Hermite'sch. Es gelten $(Tx \mid x) \in \mathbb{R}$ für alle $x \in V$ und alle Eigenwerte von T sind reell.

Beweis:

Sei nun
$$Tx = cx$$
 mit $x \neq 0$, dann ist
$$\underbrace{(Tx \mid x)}_{\in \mathbb{R}} = (cx \mid x) = c \underbrace{\|x\|^2}_{\in \mathbb{R}}. \text{ Also } c \in \mathbb{R}.$$

• Matrizendarstellungen von Hermite'schen Operatoren:

Sei \mathcal{X} eine orthonormale Basis. Also ist $\mathcal{Y} = \mathcal{X}$ (\mathcal{X} ist Selbstdual, ÜA). Also impliziert $T = T^*$, dass A Hermite'sch ist, wobei

$$A\coloneqq [T]_{\mathcal{X}}=[T^*]_{\mathcal{Y}}=[T^*]_{\mathcal{X}}=\overline{A^t}\coloneqq A^*.$$

Das heißt $a_{ij} = \overline{a_{ji}}$ (A ist komplex Hermite'sch), und im reellen Fall $a_{ij} = a_{ji}$, i.e. $A = A^t$ (A ist symmetrisch).

Bemerkung 22.3.

Weitere Eigenschaften von Hermite'schen Operatoren (ÜA):

(i) Umgekehrt sei A Hermite'sch und \mathcal{X} eine orthonormale Basis für V mit $\mathcal{X} = \{x_1, \dots, x_n\}$.

Definiere
$$T(\sum_{i=1}^{n} \varepsilon_i x_i) := A \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$
. Dann ist T Hermite'sch.

(ii) T_1, T_2 sind Hermite'sch $\Rightarrow T_1 + T_2$ ist Hermite'sch.

- (iii) $T \neq 0$ ist Hermite'sch, $\alpha \in K$, $\alpha \neq 0$, dann ist αT Hermite'sch genau dann, wenn $\alpha \in \mathbb{R}$.
- (iv) T ist invertierbar und Hermite'sch genau dann, wenn T^{-1} Hermite'sch ist.

Satz 22.4.

Seien T_1, T_2 Hermite'sch. Es gilt: T_1T_2 ist Hermite'sch genau dann, wenn $T_1T_2 = T_2T_1$.

Beweis:

$$(T_1T_2)^* = T_1T_2 \Leftrightarrow T_2^*T_1^* = T_1T_2 \Leftrightarrow T_2T_1 = T_1T_2$$

Satz 22.5.

- (i) Sei T_1 Hermite'sch, dann ist $T_2^*T_1T_2$ Hermite'sch.
- (ii) Umgekehrt ist $T_2^*T_1T_2$ Hermite'sch und T_2 invertierbar, dann ist T_1 Hermite'sch.

Beweis:

- (i) $(T_2^*T_1T_2)^* = T_2^*T_1^*T_2^{**} = T_2^*T_1T_2$
- (ii) $T_2^*T_1T_2 = (T_2^*T_1T_2)^* = T_2^*T_1^*T_2$, multipliziert links mit $(T_2^*)^{-1}$ und rechts mit T_2^{-1} ergibt $T_1 = T_1^*$.

§ 18 Cartesische Zerlegung eines Operators

Definition 22.6.

 $T \in \mathcal{L}(V, V)$ ist schief Hermite'sch, falls $T^* = -T$. (Wenn $K = \mathbb{C}$, heißt es "komplex schief Hermite'sch" und wenn $K = \mathbb{R}$, heißt es "schief symmetrisch".)

Bemerkung 22.7:

• Sei $T \in \mathcal{L}(V, V)$, schreibe $T = T_1 + T_2$, wobei

$$T_1 \coloneqq \frac{T + T^*}{2}$$
 und $T_2 \coloneqq \frac{T - T^*}{2}$

wobei:

$$T_1^* = T_1$$
 und $T_2^* = -T_2$.

Also ist T_1 Hermite'sch und T_2 ist schief Hermite'sch.

• Wenn $K=\mathbb{C}$, T_2 ist schief Hermite'sch $\Leftrightarrow T_2=iT_3$ mit T_3 komplex Hermite'sch. Also $T=T_1+iT_3$.