Übungen zur Vorlesung Lineare Algebra II

Lösung zu Blatt 4 Ideale und Permutationen

Abgabe: 22.05.2020, an Ihren Tutor.

Aufgabe 4.1 (4 Punkte)

- (a) Welche der folgenden Teilmengen von $\mathbb{Q}[X]$ sind Ideale? Begründen Sie Ihre Antwort.
 - (a) $\{f \in \mathbb{Q}[x] \mid f(0) = 0\}.$
 - (b) $\{f \in \mathbb{Q}[x] \mid f = 0 \text{ oder } \deg(f) \le 4\}.$
 - (c) $\{f \in \mathbb{Q}[x] \mid D(f)(2) = 0\}.$
- (b) Seien K ein Körper und I_i ein Ideal von K[x] für alle $i \in \mathbb{N}$. Zeigen Sie, dass $\bigcap_{i \in \mathbb{N}} I_i$ ein Ideal von K[x] ist.
- (c) Seien K ein Körper und $a_1, a_2, \ldots, a_n \in K[x]$. Zeigen Sie, dass das von $\{a_1, \ldots, a_n\}$ erzeugte Ideal gleich dem Durchschnitt alle Ideale die $\{a_1, \ldots, a_n\}$ enthalten.

Lösung:

- (a) (a) ist ein Ideal, denn für alle f, g mit f(0) = g(0) = 0 gilt (f-g)(0) = f(0) g(0) = 0 also ist ein additive Untergruppe, und für alle $h \in \mathbb{Q}[x]$ gilt $hf(0) = h(0)f(0) = h(0) \cdot 0 = 0$.
 - (b) ist kein Ideal: zum Besipiel ist x^4 in der Menge, aber $x \cdot x^4$ ist nicht.
 - (c) ist kein Ideal: sei $f = \frac{x^2}{2} 2x$. Dann f'(x) = x 2 und f'(2) = 0 also f ist in der Menge. Aber $x \cdot f$ ist nicht: $(x \cdot f)'(2) = -2$.
- (b) Sei $I := \bigcap_{i \in \mathbb{N}} I_i$ und seien $f, g \in I$ und $h \in \mathbb{Q}[x]$. Da I_i ein Ideal für alle $i \in \mathbb{N}$ ist, gelten $f g \in I_i$ und $hf \in I_i$ und somit $f g \in I$ und $hf \in I$.
- (c) Sei I ein Ideal mit $A := \{a_1, \ldots, a_n\} \subseteq I$. Für alle $i = 1, \ldots, n$ ist $a_i \in I$ und da I Ideal ist, dann $a_iK[x] \subseteq I$. Es folgt dann $a_1K[x] + \ldots + a_nK[x] \subseteq I$ also $\langle a_1, \ldots, a_n \rangle \subseteq I$. Dies gilt für jedes Ideal I das A enthält, also $\langle a_1, \ldots, a_n \rangle \subseteq \bigcap_{A \subseteq I} I$.

Sei nun $J := \bigcap_{A \subseteq I} I$ der Durchschnitt aller Idealen die A enthalten. Dann $J \subset I$ für alle Ideale I mit $A \subseteq I$. Insbesondere, $J \subseteq \langle a_1, \dots, a_n \rangle$.

Bemerkung: Wir haben keine Eigenschaft von K[x] benutzt außer der, dass K[x] ein Ring ist. Also (c) gilt auch wenn wir K[x] mit einem beliebigen Ring ersetzen.

Aufgabe 4.2 (4 Punkte)

(a) Sei K ein Unterkörper von \mathbb{C} . Zeigen Sie, dass

$$\langle x^2 + 8x + 16, x + 1 \rangle = K[x].$$

(b) Mithilfe vom Satz 4.8, berechnen Sie die Nullstelle mit den entsprechenden Vielfachheiten des folgenden Polynoms

$$f(x) = -24 + 20x + 2x^2 - 5x^3 + x^4 \in \mathbb{Q}[x].$$

(c) Zeigen Sie, dass für jede Primzahl p und jedes $a \in \mathbb{F}_p$, das Polynom $x^p - a \in \mathbb{F}_p[x]$ eine vielfache Nullstelle besitzt.

Lösung:

(a) Wir müssen einfach zeigen, dass $\operatorname{ggT}(f := x^2 + 8x + 16, g := x + 1) = 1$. Ein gemeinsamer Faktor von f und g muss $\operatorname{Grad} \leq \min\{\deg f, \deg g\} = \deg g = 1$ haben. Die einzige Möglichkeit ist also dass g|f. Das würde implizieren, dass die einzige Nullstelle von g, x = -1 auch eine Nullstelle von f ist (vgl. Vorlesung 4). Aber f(-1) = 9, also $g \nmid f$.

Alternativ kann man ggT(f,g) mit dem Divisionsalgoritmus berechnen.

- (b) Falls f ganze Nullstelle hat, sie müssen Teiler von 24 sein. Die Primfaktoren von 24 sind 2,3 (Natürlich, im Prinzip könnten auch 4, 6, 8, 12 Nullstellen sein) also wir prüfen ± 2 und ± 3 . Wir sehen, dass 3, 2, -2 alle Nullstelle sind. Wir Berechnen dann die Ableitung $f'(x) = 20 + 4x 15x^2 + 4x^3$. Wir haben schon 3 verschiedene Nullstellen gefunden, also wir wissen schon, dass höchstens eine eine höhere Vielfachheit als 1 haben darf. Rechen ergibt f'(2) = 0. Also 2 hat Vielfachheit ≥ 2 . Damit haben wir schon $4 = \deg f$ Nullstellen gefunden, also 2 ist genau die Vielfachheit der Nulstelle 2. Also 3 und -2 haben Vielfachheit 1.
- (c) Fermat kleiner Satz liefert $a^p = a$ in \mathbb{F}_p . Also $x^p a = x^p a^p$. Nun, die binomische Formel gibt

$$(x-a)^p = \sum_{k=0}^p \binom{p}{k} x^{p-k} a^k$$

Nun $\binom{p}{k} = \frac{p!}{k!(p-k)!}$. Also für k=0 und k=p ist $\binom{p}{k}=1$; für alle andere Werte von k ist der Zähler von $\binom{p}{k}$ ein Vielfach von p und der Nenner ist nicht, also $\binom{p}{k}=0$. Es folgt $(x-a)^p=x^p-a^p=x^p-a$. Also a ist die einzige Nullstelle und sie hat Vielfachheit p.

Aufgabe 4.3 (4 Punkte) Sei $n \in \mathbb{N}$.

(a) Schreiben Sie

$$\sigma := \left(\begin{array}{cccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 4 & 1 & 2 & 5 & 3 & 8 & 9 & 7 \end{array}\right) \in S_n$$

als Produkt von disjunkten Zyklen und als Produkt von Transpositionen. Berechnen Sie $sign(\sigma)$.

(b) Zeigen Sie, dass $\sigma, \tau \in S_n$ kommutieren, wenn σ und τ disjunkt sind.

(c) Seien $\tau, \alpha_1, \ldots, \alpha_m \in S_n$ mit $\alpha_1, \ldots, \alpha_m$ paarweise disjunkt. Zeigen Sie, dass $\alpha_1 \cdots \alpha_m$ und τ genau dann disjunkt sind, wenn für alle $0 < i \le m$ α_i und τ disjunkt sind.

Lösung:

- (a) $\sigma = (163)(24)(789) = (13)(16)(24)(79)(78), sign(\sigma) = -1.$
- (b) Wir nennen Träger von σ die Menge $supp(\sigma) = \{x : \sigma(x) \neq x\}$. Seien $supp(\sigma) = \{a_1, \ldots, a_k\}, supp(\tau) = \{b_1, \ldots, b_l\}$. Es gilt $\sigma\tau(a_i) = \sigma(a_i)$ weil $a_i \notin supp(\tau)$.

Jetzt zeigen wir, dass auch $\tau(\sigma(a_i)) = \sigma(a_i)$ gilt. Wir müssen also zeigen, dass $\sigma(a_i) \notin supp(\tau)$. Angenommen $\sigma(a_i) \in supp(\tau)$. Da $supp(\tau) \cap supp(\sigma) = \emptyset$, es folgt $\sigma(a_i) \notin supp(\sigma)$. Also $\sigma(\sigma(a_i)) = \sigma(a_i)$. Wir wenden σ^{-1} an und bekommen $\sigma(a_i) = a_i$, also $a_i \notin supp(\sigma)$. Widerspruch. Also $\tau(\sigma(a_i)) = \sigma(a_i) = \sigma(\tau(a_i))$.

Wir tauschen die Rollen von τ und σ um, und finden $\sigma\tau(b_i) = \tau(b_i) = \tau\sigma(b_i)$.

Nun, für $c \notin supp(\sigma) \cup supp(\tau)$ gilt trivialerweise $\sigma \tau(c) = c = \tau \sigma(c)$.

(c) Seien α, β disjunkt. Dann $supp(\alpha\beta) = supp(\alpha) \cup supp(\beta)$. In der Tat, $\alpha\beta(x) \neq x \iff \alpha(x) \neq x$ oder $\beta(x) \neq x$, weil α und β disjunkt sind. Daher $supp(\alpha\beta) = \{x : \alpha\beta(x) \neq x\}$. Es folgt also, dass für endlich viele paarweise disjunkte $\alpha_1, \ldots, \alpha_m$ gilt $supp(\alpha_1, \ldots, \alpha_n) = \bigcup_{i=1}^n supp(\alpha_i)$. Jetzt folgt direkt

$$supp(\tau) \cap \bigcup_{i=1}^{n} supp(\alpha_i) = \bigcup_{i=1}^{n} [supp(\alpha_i) \cap supp(\tau)] = \emptyset \iff \forall i \, supp(\alpha_i) \cap supp(\tau) = \emptyset.$$

Zusatzaufgabe für Interessierte

Diese Aufgabe ist freiwillig. Sie wird nicht korrigiert aber eine Musterlösung wird veröffentlicht.

Sei $n \in \mathbb{N}$ und sei $\mathbb{Z}^n = \underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{n \text{ Mal}}$. Seien $\sigma, \tau \in S_n$ und $f, g \colon \mathbb{Z}^n \to \mathbb{Z}$. Zeigen Sie:

- (i) $\sigma(\tau f) = (\sigma \tau) f$;
- (ii) $\sigma(fg) = (\sigma f)(\sigma g)$.

Lösung: Sei $x = (x_1, \ldots, x_n) \in \mathbb{Z}^n$ beliebig.

(a)

$$[\sigma(\tau f)](x) = \sigma(f(x_{\tau(1)}, \dots, x_{\tau(n)}))$$

$$= f(x_{\sigma(\tau(1))}, \dots, x_{\sigma(\tau(n))})$$

$$= f(x_{\sigma\tau(1)}, \dots, x_{\sigma\tau(n)})$$

$$= [(\sigma\tau)f](x)$$

(b) Diese Teilaufgabe wurde nicht genau formuliert: es wurde nicht definiert was das Produkt fg bedeutet. Wenn wir dies als die Abbildung

 $fg: \mathbb{Z}^n \to \mathbb{Z}, \ (x_1, \dots, x_n) \mapsto f(x_1, \dots, x_n) \cdot g(x_1, \dots, x_n)$ interpretieren, dann gilt

$$\sigma(fg)(x_1, \dots, x_n) = fg(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

$$= f(x_{\sigma(1)}, \dots, x_{\sigma(n)})g(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

$$= \sigma f(x_1, \dots, x_n)\sigma g(x_1, \dots, x_n).$$