B4: Algebraische Zahlentheorie Sommersemester 2021 Frau Prof. Dr. Salma Kuhlmann

17. Vorlesung

17. Juni 2021

In diesem Skript werden wir den folgenden Anstaz studieren:

R ganz abgeschloßen Integer Ring , K = QuotR, L/K eine endliche separable Körpererweiterung .

Wir werden den ganzen Abschluß \overline{R}^L beschreiben und wie (in der Algebra II Vorlesung) vorangekündigt Satz 13.4 (Satz 17.1 hier) beweisen. Wir wollen schließlich in Korollar 17.4 diese Ergebnisse auf

$$R = \mathbb{Z}, L/\mathbb{Q}$$
 ein Zahlkörper, und $\overline{\mathbb{Z}}^L = \mathcal{O}_L$

anwenden. Danach werden wir die Diskriminante einführen, um Ganzheitbasen zu berechnen.

Ansatz und Bezeichnungen weiterhin wie im Skript 16.

Bemerkung 17.1 $(\ddot{U}A)$

Im Beweis von Bemerkung 16.2 können wir andere Basen betrachten (anstatt $\{\gamma^0, \ldots, \gamma^{n-1}\}$): Sei $\{v_1, \ldots, v_n\}$ eine beliebige Basis für L/K und wie zuvor $\{\sigma_1, \ldots, \sigma_n\}$ die n verschiedenen Einbettungen von L/K in Ω . Sei $\mathcal{V}_{ij} := \sigma_i(v_j)$ für alle i, j, und \mathbb{B} die Matrix von $B_{L/K}$ bezüglich $\{v_1, \ldots, v_n\}$. Dann ist $\mathbb{B} = \mathcal{V}^t \mathcal{V}$, also ist det $\mathbb{B} = (\det \mathcal{V})^2$.

Satz 17.1

Sei R ein ganz abgeschlossener Integritätsbereich, $K = \operatorname{Quot}(R)$, L/K eine endliche separable Erweiterung, n = [L:K] und $S = \overline{R}^L$. Dann gibt es $M \subseteq L$, $M' \subseteq L$ R-Untermoduln von L, beide frei von Dimension n, so daß $M \subseteq S \subseteq M'$.

Beweis. • Betrachte

$$B_{L/K}: L \times L \to K$$
, $B_{L/K}(x, y) = Sp_{L/K}(xy)$.

Bemerke daß die Einschränkung von $B_{L/K}$ auf $S \times S$ hat Werte in R (Korollar 15.2).

- Sei $\{\nu_1, \ldots, \nu_n\}$ eine Basis für L/K. O.E. $\{\nu_1, \ldots, \nu_n\} \subseteq S$ (weil $\forall \alpha \in L \ \exists r \in R \ \text{mit} \ r\alpha \in S$, s. Proposition 9.4).
- Sei $\{\mu_1,\ldots,\mu_n\}$ die $B_{L/K}$ -duale Basis $(B_{L/K}(\nu_i,\mu_j)=\delta_{ij})$ wie im Bemerkung 16.1. Setze

$$M := \bigoplus R\nu_i \text{ und } M' = \bigoplus R\mu_i.$$

M und M' sind frei und haben Dimension gleich n (da $\{\nu_1, \ldots, \nu_n\}$ und $\{\mu_1, \ldots, \mu_n\}$ a fortiori linear unabhängig über R sind). Es ist klar, dass $M \subseteq S$. Wir zeigen $S \subseteq M'$. Sei $\alpha \in S$, schreibe $\alpha = \sum c_i \mu_i$. Aber $c_i = B_{L/K}(\alpha, \nu_i) \in R$ (Bemerkung 16.1 und Korollar 15.2).

Korollar 17.2

Sei R ein ganz abgeschlossener Integritätsbereich, K = Quot(R), L/K eine endliche separable Erweiterung. Wenn R noethersch ist, dann ist \overline{R}^L ein endlich erzeugter R-Modul.

Beweis. Sei M' wie in Satz 17.1, M' ist ein endlich erzeugter Modul über einem noetherschen Ring, also ist M' ein noetherscher R-Modul (s. Korollar 8.3), und damit ist jeder Untermodul endlich erzeugt.

Korollar 17.3

Sei R ein Hauptidealbereich, L/K eine endliche separable Körpererweiterung und n = [L : K]. Dann ist \overline{R}^L ein freier R-Modul der Dimension n.

Beweis. Ein Untermodul (über einem HIR) von einem freiem Modul der Dimension = n ist frei der Dimension $\leq n$ (s. Satz 5.1). Sei M' wie in Satz 17.1. Es gelten:

$$S \subseteq M' \Rightarrow S$$
 frei der Dimension $\leq n$

und

$$M \subseteq S \Rightarrow \dim_R M = n \le \dim_R S \le n \Rightarrow \dim_R S = n$$
.

Korollar 17.4

 $R = \mathbb{Z}$. L ist ein Zahlkörper $\Rightarrow \mathcal{O}_L$ ist ein freier \mathbb{Z} -Modul der Dimension [L:K].

§Ganzheitsbasen

Definition 17.1

Sei R ein Hauptidealbereich, $K = \operatorname{Quot}(R)$, L/K separable Erweiterung, n = [L : K]. Dann ist $S = \overline{R}^L$ ist ein freier R-Modul der Dimension n. Eine Basis $\{\mu_1, \ldots, \mu_n\}$ von S über R heißt Ganzheitsbasis.

Wir wollen nun Ganzheitsbasen finden.

Kurzbezeichnung: Sei V ein n-dimensionaler K-Vektorraum, B eine bilinerare Form, $\mathcal{B} = \{v_1, \ldots, v_n\} \subseteq V$, wir bezeichnen hierunten mit $B(v_i, v_j)$ die $n \times n$ Matrix Darstellung von B bzgl \mathcal{B} .

Bemerkung 17.2

Sei V ein endlichdimensionaler K-Vektorraum, B eine nicht ausgeartete bilineare Form, $\mathcal{B} = \{v_1, \ldots, v_n\} \subseteq V$. Dann ist \mathcal{B} genau dann eine Basis für V über K, wenn $\det(B(v_i, v_j)) \neq 0$.

Beweis. " \Rightarrow " Siehe Bemerkung 16.1.

" \Leftarrow "Sei $\{w_1, \ldots, w_n\}$ eine Basis für V über K. Setze $v_i = \sum_j c_{ij} w_j$, $P := [c_{ij}]$, $P \in M_{n \times n}(K)$. Es ist

 $B(v_i,v_j)=P^t[B(w_i,w_j)]P$ und $\det P\neq 0 \Leftrightarrow \{v_1\dots,v_n\}$ linear unabhängig. Außerdem ist

$$\det[B(v_i, v_j)] = (\det P)^2 \underbrace{\det[B(w_i, w_j)]}_{\neq 0}$$

also $\det[B(v_i, v_j)] \neq 0 \Leftrightarrow \{v_1, \dots, v_n\}$ linear unabhängig.

Wir werden nun analog vorgehen wie in Bemerkung 17.2 um R-Basen von S zu bestimmen:

Ansatz wie oben.

Diskriminante der Ringerweiterung S/R:

Wir haben (wegen Korollar 15.2)

$$B_{L/K}: S \times S \to R$$
.

Für $\{\nu_1,\ldots,\nu_n\}\subseteq S$ definiere $D(\nu_1,\ldots,\nu_n):=\det(B_{L/K}(\nu_i,\nu_j))$. Es ist: $D(\nu_1,\ldots,\nu_n)\in R$.

Lemma 17.1

Seien $\{v_1,\ldots,v_n\}$ und $\{\mu_1,\ldots,\mu_n\}$ Basen für S als R-Modul. Dann ist

$$D(\nu_1,\ldots,\nu_n)=\pi^2D(\mu_1,\ldots,\mu_n)$$

für ein geeignetes $\pi \in \mathbb{R}^{\times}$.

Beweis. Wir argumentieren wie im Beweis von Bemerkung 17.2. Wir haben $D(\nu_1, \ldots, \nu_n) =$ $(\det P)^2 D(\mu_1, \dots, \mu_n)$, wobei $P \in M_{n \times n}(R)$ und P invertierbar (weil P Basiswechselmatrix ist), also folgt aus Cramer's Formel, daß $\pi := \det P \in \mathbb{R}^{\times}$.

Bevor wir die Diskriminante der Ringerweiterung S/R definieren können, müssen wir noch eine Äquivalenz
relation einführen. Wir definieren für $x,y\in R:x\sim y\Leftrightarrow x=\pi^2y$ für ein $\pi\in R^\times$. Lemma 17.1 besagt:

Für alle Basen $\{\nu_1, \ldots, \nu_n\}$ von S als R-Modul liegen $D(\nu_1, \ldots, \nu_n)$ in der gleichen Äquivalenzklasse.

Definition 17.2

 $D(S/R) := [D(\nu_1, \dots, \nu_n)]_{\sim}$ für eine (alle) Basis $\{\nu_1, \dots, \nu_n\} \subseteq S$ von S als R-Modul.

Bemerkung 17.3

 $R = \mathbb{Z} \Rightarrow \mathbb{Z}^{\times} = \{\pm 1\}$, also hier haben wir $D(\nu_1, \dots, \nu_n) \sim D(\mu_1, \dots, \mu_n) \Leftrightarrow D(\nu_1, \dots, \nu_n) = 0$ $D(\mu_1,\ldots,\mu_n)$

Satz 17.2

Sei $\{\gamma_1,\ldots,\gamma_n\}\subseteq S$. Dann ist $\{\gamma_1,\ldots,\gamma_n\}$ genau dann eine Basis von S über R, wenn $[D(\gamma_1,\ldots,\gamma_n)]_{\sim}=D(S/R).$

Beweis. \Rightarrow folgt aus Lemma 17.1.

" \Leftarrow " Sei $\mathcal{B} := \{\nu_1, \dots, \nu_n\}$ eine Basis von S als R-Modul, so daß

 $\det[B_{L/K}(\gamma_i, \gamma_j)] = D(\gamma_1, \dots, \gamma_n) = \pi^2 D(\nu_1, \dots, \nu_n) = \pi^2 \det[B_{L/K}(\nu_i, \nu_j)] \text{ mit } \pi \in \mathbb{R}^{\times}.$ Betrachte

 $C: S \to S$ $\nu_i \mapsto \gamma_i$ C definiert ein R-Modul Homomorphismus.

(*) Sei
$$P = [C]_{\mathcal{B}} \in M_{n \times n}(R)$$

(**) also
$$[B_{L/K}(\gamma_i, \gamma_j)] = P^t[B_{L/K}(\nu_i, \nu_j)]P$$

also

$$(***) \qquad (\det P)^2 = \pi^2$$

und somit ist det $P \in \mathbb{R}^{\times}$ (weil det $P = \pm \pi$), also ist P invertierbar (über R), also ist auch ein C invertierbarer R-Homomorphismus, d.h $\{\gamma_1, \ldots, \gamma_n\}$ ist eine Basis.