University of Konstanz Department of Mathematics and Statistics Prof. Dr. M. Kohlmann Yevgen Shumeyko

Stochastic II

1. Tutorial

Exercise 1

(a) Compute the characteristic function of a Cauchy distributed random variable X with density function

$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2}.$$

- (b) Show that for iid rvs X_1, \ldots, X_n with density $f, \frac{1}{n} \sum_{i=1}^n X_i$ possess the same density f.
- (c) Does a law of large numbers hold for the sequence of random variables in b)? *Hint:* Find the characteristic function of $Y_1 - Y_2$ where Y_1 , Y_2 are independent and standard exponential distributed.

Exercise 2

- (a) Let X_1, \ldots, X_n be iid Cauchy distributed rvs and $a_k, k \ge 1$ a sequence of real numbers Prove that $\sum_{k=1}^n a_k X_k$ converges in distribution if and only if $\sum_{k=1}^\infty |a_k| < \infty$.
- (b) Let X be a random variable distributed as U(0,1) and $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables with

$$P(X_n = kn^{-1}) = n^{-1} \ \forall k = 1, \dots, n.$$

Show that $X_n \xrightarrow{d} X$.

Exercise 3

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of independent and identically distributed random variables with characteristic function $\phi_X(t)$ and $\bar{X} = n^{-1} \sum_{i=1}^n X_i$. Suppose that $\phi'_X(0)$ exists. Prove that

(a)
$$\phi'_X(0) = ia \implies \bar{X} \xrightarrow{P} a.$$

(b) $\bar{X} \xrightarrow{P} a \implies \phi_X(tn^{-1})^n \to \exp(iat) \implies \phi'_X(0) = ia.$
Hint : Taylor decomposition of characteristic function.

Exercise 4

- (a) Suppose $X_n \xrightarrow{L_1} X$. Show that $E[X_n] \to E[X]$. Is the converse true?
- (a) Suppose $X_n \xrightarrow{L_2} X$. Show that $\operatorname{var}(X_n) \to \operatorname{var}(X)$.
- (c) Given a sequence of random variables $(X_n)_{n \in \mathbb{N}}$ suppose $|X_n| \leq Z$ a.s. for all n, where $E(Z) < \infty$. Prove that

$$X_n \xrightarrow{P} X \implies X_n \xrightarrow{L_1} X,$$

(d) Let X_1 and X_2 be independent and poisson distributed random variables with $X_i \sim Poi(\lambda_i), i = 1, 2$. Compute the conditional expectation

$$E(X_1|X_1+X_2).$$

Hand in We 27.04.10 up to 16.00 in postbox 20 at F4.