Stochastic II

3. Tutorial

Exercise 1

For two distribution functions F and G, let

$$
d(F, G):=\inf \{\delta>0: F(x-\delta)-\delta \leq G(x) \leq F(x+\delta)+\delta \forall x \in \mathbb{R}\}
$$

(a) Show d is a metric on the space of distribution functions.
(b) Show that convergence in distribution is equivalent to convergence with respect to the metric d, defined in (a).

Exercise 2

Given a sequence of i.i.d. discrete random variables X_{1}, \ldots, X_{n} with $P\left(X_{i}=1\right)=$ $P\left(X_{i}=-1\right)=0.5$, a simple random walk is defined by the discrete process $\left(S_{n}\right)_{n \in \mathbb{N}}$, with $S_{n}=\sum_{i=1}^{n} X_{i}$ and $S_{0}=0$.
(a) Show that both S_{n} and $S_{n}^{2}-n$ are martingales.
(b) Assume that a gambler is playing a coin-flipping game. He starts with $S_{0}=k$ $€$ and earns an additional $1 €$ in case of a head, while he looses $1 €$ in case of a tail. The game ends, if either the gambler is going bankrupt or after his capital adds up to $N €$. Compute the probability of a ultimate ruin of the gambler and the expected duration of the game, using the results derived in (a).

Exercise 3

(a) Let X, X_{1}, X_{2}, \ldots be random variables and there exists $r>0$ such that $\left\{\left|X_{n}\right|^{r}, n \geq 1\right\}$ is uniformly integrable. Prove that if $X_{n} \xrightarrow{d} X$ for $n \rightarrow \infty$, then

$$
E\left[\left|X_{n}\right|^{r}\right]-E\left[|X|^{r}\right] \text { for } n \rightarrow \infty
$$

(b) Let X, X_{1}, X_{2}, \ldots be random variables with finite moments of arbitrary order and

$$
E\left[\left|X_{n}\right|^{k}\right] \rightarrow E\left[|X|^{k}\right] \quad \text { for } \quad n \rightarrow \infty .
$$

Show that if the moments of X uniquely determines the distribution of X, which is for instance the case for the normal distribution, we have

$$
X_{n} \xrightarrow{d} X
$$

for $n \rightarrow \infty$.

Exercise 4

Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of independent and identically distributed random variables with $E\left(X_{n}\right)=0$ and $E\left(X_{n}^{2}\right)=1$. Prove that

$$
P\left(\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{n}}=\infty\right)=1
$$

where $S_{n}=\sum_{i=1}^{n} X_{i}$.

Hand in We 10.11.10 up to $\mathbf{1 6 . 0 0}$ in postbox 20 at F4.

