University of Konstanz Department of Mathematics and Statistics Prof. Dr. M. Kohlmann Yevgen Shumeyko

Stochastics II

4. Tutorial

Exercise 1

Let $(\Omega, \mathfrak{F}, P)$ be a probability space and suppose that the family $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ is adapted to \mathfrak{F}_t , i.e. X_t is \mathfrak{F}_t -measurable for $t \geq 0$. Moreover, assume that the increments of the family $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ are independent from the past, i.e. for all $s, t \in [0, \infty)$ with s < t the difference $X_t - X_s$ is independent from \mathfrak{F}_s .

- (a) Show that if all X_t are integrable then the family $Y_t := X_t E[X_t]$ is a martingale.
- (b) Show that if all X_t are square integrable then the family $Y_t := X_t^2 E[X_t^2]$ is a martingale. Hint: $E[X_t^2|\mathfrak{F}_s] = E[(X_s + X_t - X_s)^2|\mathfrak{F}_s]$
- (c) Show that if $\alpha \in \mathbb{R}$ and $E[e^{\alpha X_t}] < \infty$ for all t, then the family $Y_t := \frac{e^{\alpha X_t}}{E[\alpha X_t]}$ is a martingale.

Hint: $e^{\alpha X_t} = e^{\alpha X_s} e^{\alpha (X_t - X_s)}$, where the last expression is a product of independent rvs.

Exercise 2

Let $(B_t)_{t\geq 0}$ be a one dimensional Brownian motion with $B_0 = 0$.

- (a) Show the Markov property of $(B_t)_{t\geq 0}$.
- (b) Show that $(-B_t)_{t>0}$ and $(B_t^{\lambda} := \frac{1}{\lambda} B_{\lambda^2 t})_{t>0}$ with $\lambda > 0$ are Brownian motions.
- (c) Let $s \ge 0$ and $B_t^{(s)} := B_{t-s} B_s$ for $t \ge 0$. Show that $(B_t^{(s)})_{t\ge 0}$ is a Brownian motion.

Exercise 3

Show that any sequence of independent random variables taking values in the countable set S is a Markov chain. Under what condition is the chain time homogen?

Exercise 4

Let $\{X_n : n \ge 1\}$ be independent identically distributed integer valued random variables. Which of the following constitute is a Markov chain

(a) $S_n = \sum_{r=1}^n X_r$ with $S_0 = 0$ (b) $Y_n = X_n + X_{n-1}$ with $X_0 = 0$ (c) $Z_n = \sum_{r=0}^n S_r$.

Hand in We 17.11.10 up to 16.00 in postbox 20 at F4.