University of Konstanz Department of Mathematics and Statistics Prof. Dr. M. Kohlmann Yevgen Shumeyko

Stochastic II

5. Tutorial

Exercise 1

A monkey types a text at random on a keyboard, so that each new letter is picked uniformly at random among the 26 letters of the roman alphabet. Let X_n be the nth letter of the monkey's masterpiece, and let T be the first time when the monkey has typed the exact word ABRACADABRA, i.e.

 $T = \inf\{n \ge 0 : (X_{n-10}, X_{n-9}, ..., X_n)\} = (A, B, R, A, C, A, D, A, B, R, A)$

- (a) Compute E[T] with the help of the optional sampling theorem. Hint: Construct the game.
- (b) Why E[T] is larger than the average first time the monkey has typed ABRA-CADABRO?

Exercise 2

Let $(\Omega, \mathfrak{F}, P)$ be a probability space with a filtration $(\mathfrak{F}_n)_{n \in \mathbb{N}}$ and let $(S_n)_{n \in \mathbb{N}}$ be a \mathfrak{F}_n -submartingale. Moreover, assume that for the family of rvs $(\pi_n)_{n \in \mathbb{N}}$ each π_n is \mathfrak{F}_{n-1} -measurable for $n \geq 1$ and let π_0 be \mathfrak{F}_0 -measurable. Consider the process

$$V_n := \pi_0 S_0 + \sum_{j=1}^n \pi_j (S_j - S_{j-1}), \ n \ge 0.$$

Prove the following statements:

- (a) Provided π_n is non-negative, $(V_n)_{n \in \mathbb{N}}$ is a submartingale.
- (b) If $(S_n)_{n \in \mathbb{N}}$ is a martingale, $(V_n)_{n \in \mathbb{N}}$ is a martingale, even without the additional assumption of $\pi_n > 0$.

Exercise 3

Suppose $(B_t)_{t\geq 0}$ is a one dimensional Brownian motion with $B_0 = 0$. Moreover let, for t > 0, $0 = t_0^n < t \cdots < t_{k_n}^n = t$ be a sequence of partitions of the interval [0, t] with

$$max\{t_j^n - t_{j-1}^n : 1 \le j \le k_n\} \to 0, \quad \text{for} \quad n \to \infty.$$

Prove

$$\sum_{j=1}^{k_n} (B_{t_j^n} - B_{t_{j-1}^n})^2 \xrightarrow{L^2} t \quad \text{for} \quad n \to \infty,$$

i.e. $E(|\sum_{j=1}^{k_n} (B_{t_j^n} - B_{t_{j-1}^n})^2 - t|^2) \to 0, \ n \to \infty.$

Hand in We 24.11.10 up to 16.00 in postbox 20 at F4.