Stochastic II

5. Tutorial

Exercise 1

A monkey types a text at random on a keyboard, so that each new letter is picked uniformly at random among the 26 letters of the roman alphabet. Let X_{n} be the nth letter of the monkey's masterpiece, and let T be the first time when the monkey has typed the exact word ABRACADABRA, i.e.

$$
T=\inf \left\{n \geq 0:\left(X_{n-10}, X_{n-9}, \ldots, X_{n}\right)\right\}=(A, B, R, A, C, A, D, A, B, R, A)
$$

(a) Compute $E[T]$ with the help of the optional sampling theorem.

Hint: Construct the game.
(b) Why $E[T]$ is larger than the average first time the monkey has typed ABRACADABRO?

Exercise 2

Let $(\Omega, \mathfrak{F}, P)$ be a probability space with a filtration $\left(\mathfrak{F}_{\mathfrak{n}}\right)_{n \in \mathbb{N}}$ and let $\left(S_{n}\right)_{n \in \mathbb{N}}$ be a $\mathfrak{F}_{\mathfrak{n}}$-submartingale. Moreover, assume that for the family of $\operatorname{rvs}\left(\pi_{n}\right)_{n \in \mathbb{N}}$ each π_{n} is $\mathfrak{F}_{\mathfrak{n}-1}$-measurable for $n \geq 1$ and let π_{0} be \mathfrak{F}_{0}-measurable. Consider the process

$$
V_{n}:=\pi_{0} S_{0}+\sum_{j=1}^{n} \pi_{j}\left(S_{j}-S_{j-1}\right), n \geq 0
$$

Prove the following statements:
(a) Provided π_{n} is non-negative, $\left(V_{n}\right)_{n \in \mathbb{N}}$ is a submartingale.
(b) If $\left(S_{n}\right)_{n \in \mathbb{N}}$ is a martingale, $\left(V_{n}\right)_{n \in \mathbb{N}}$ is a martingale, even without the additional assumption of $\pi_{n}>0$.

Exercise 3

Suppose $\left(B_{t}\right)_{t \geq 0}$ is a one dimensional Brownian motion with $B_{0}=0$. Moreover let, for $t>0,0=t_{0}^{n}<t \cdots<t_{k_{n}}^{n}=t$ be a sequence of partitions of the interval $[0, t]$ with

$$
\max \left\{t_{j}^{n}-t_{j-1}^{n}: 1 \leq j \leq k_{n}\right\} \rightarrow 0, \quad \text { for } \quad n \rightarrow \infty
$$

Prove

$$
\sum_{j=1}^{k_{n}}\left(B_{t_{j}^{n}}-B_{t_{j-1}^{n}}\right)^{2} \xrightarrow{L^{2}} t \quad \text { for } \quad n \rightarrow \infty
$$

i.e. $E\left(\left|\sum_{j=1}^{k_{n}}\left(B_{t_{j}^{n}}-B_{t_{j-1}^{n}}\right)^{2}-t\right|^{2}\right) \rightarrow 0, n \rightarrow \infty$.

