Stochastic II

7. Tutorial

Exercise 1

Let $(\Omega, \mathfrak{F}, P)$ be a probability space and $\left(X_{n}\right)_{n \in \mathbb{N}}$ a sequence of independent rvs. Suppose the filtration \mathfrak{F}_{n} is given by

$$
\mathfrak{F}_{n}:=\sigma\left(X_{k}: 0 \leq k \leq n\right) .
$$

(a) Let $S_{n}:=\sum_{k=0}^{n} X_{k}$ for $n \in \mathbb{N}$ and prove that given $E\left[X_{n}\right]=0$ for all $n \in \mathbb{N}$, $\left(S_{n}\right)_{n \in \mathbb{N}}$ is a \mathfrak{F}_{n}-martingale.
(b) Let $u>d>0$ (up and down) and X_{n} be Bernoulli-distributed rvs with

$$
P\left(X_{n}=u\right)=p, P\left(X_{n}=d\right)=1-p
$$

and assume $S_{n}:=\prod_{k=0}^{n} X_{k}$.
Prove: $\left(S_{n}\right)_{n \in \mathbb{N}}$ is a martingale if and only if $p u+(1-p) d=1$.
(c) Consider the same situation as in (b) for a finite family of $\operatorname{rvs}\left(X_{n}\right)_{0 \leq n \leq N}$ and choose the probability space $\Omega:=\{u, d\}^{N+1}$ equipped with the measure P given by
$P(\omega)=P\left(\left(\omega_{0}, \ldots, \omega_{N}\right)\right):=p^{(\text {number of u's in } \omega)} \cdot(1-p)^{(\text {number of d's in } \omega)}$
for a $p \in(0,1)$.
Let $X_{i}(\omega)=\omega_{i}, i=0, \ldots, N$ and assume moreover that $d<1<u$ holds. Setting $p_{*}=\frac{1-d}{u-d}$, we are able to define a new probability measure P^{*} by
$P^{*}(\omega)=P^{*}\left(\left(\omega_{0}, \ldots, \omega_{N}\right)\right):=p_{*}^{(\text {number of u's in } \omega)} \cdot\left(1-p_{*}\right)^{(\text {number of d's in } \omega)}$
Show that P and P^{*} are probability measures on Ω and that X_{i} are a family of independent rvs under both measures. Moreover prove, that $\left(S_{n}\right)_{n \in \mathbb{N}}$ is martingale under P^{*}.

Exercise 2

Let $\left(B_{t}\right)_{t \geq 0}$ be a brownian motion. Consider the simple, quadratic integrable processes

$$
\begin{aligned}
& f=f_{1} \mathbb{1}_{\{t=0\}}+\sum_{j=1}^{n} f_{j} \mathbb{1}_{\left(t_{j-1}, t_{j}\right]} \\
& g=g_{1} \mathbb{1}_{\{t=0\}}+\sum_{j=1}^{n} g_{j} \mathbb{1}_{\left(t_{j-1}, t_{j}\right]}
\end{aligned}
$$

and let f_{j}, g_{j} be $\mathfrak{F}_{t_{j-1}}$ measurable (without loss of generality, you can assume that both processes have the same sampling points t_{j}). Prove that

$$
m_{t}:=\left(\int_{0}^{t} f d B\right)\left(\int_{0}^{t} g d B\right)-\int_{0}^{t} f \cdot g d s
$$

is a martingale, i.e. that

$$
<\int_{0} f d B, \int_{0} g d B>=\int_{0} f \cdot g d s
$$

Exercise 3

Assume $\left(B_{t}\right)_{t \in[0, T]}$ is a standard brownian motion. Verify the following statements using similar arguments as for the proof of

$$
\int B_{t} d B_{t}=\frac{1}{2} B_{t}^{2}-\frac{1}{2} t
$$

which can be found in the lecture notes.
(a) $\int_{0}^{t} s d B_{s}=t B_{t}-\int_{0}^{t} B_{s} d s$
(b) $\int_{0}^{t} B_{s}^{2} d B_{s}=\frac{1}{3} B_{t}^{3}-\int_{0}^{t} B_{s} d s$
(c) $E\left[\left(\int_{0}^{t} B_{s} d B_{s}\right)^{2}\right]=\int_{0}^{t} E\left(B_{s}^{2}\right) d s$

