University of Konstanz Department of Mathematics and Statistics Prof. Dr. M. Kohlmann Yevgen Shumeyko

Stochastic II

7. Tutorial

Exercise 1

Let $(\Omega, \mathfrak{F}, P)$ be a probability space and $(X_n)_{n \in \mathbb{N}}$ a sequence of independent rvs. Suppose the filtration \mathfrak{F}_n is given by

$$\mathfrak{F}_n := \sigma(X_k : \ 0 \le k \le n).$$

- (a) Let $S_n := \sum_{k=0}^n X_k$ for $n \in \mathbb{N}$ and prove that given $E[X_n] = 0$ for all $n \in \mathbb{N}$, $(S_n)_{n \in \mathbb{N}}$ is a \mathfrak{F}_n -martingale.
- (b) Let u > d > 0 (up and down) and X_n be Bernoulli-distributed rvs with

$$P(X_n = u) = p, \ P(X_n = d) = 1 - p$$

and assume $S_n := \prod_{k=0}^n X_k$. Prove: $(S_n)_{n \in \mathbb{N}}$ is a martingale if and only if pu + (1-p)d = 1.

(c) Consider the same situation as in (b) for a finite family of rvs $(X_n)_{0 \le n \le N}$ and choose the probability space $\Omega := \{u, d\}^{N+1}$ equipped with the measure P given by

$$P(\omega) = P((\omega_0, ..., \omega_N)) := p^{(\text{number of u's in }\omega)} \cdot (1-p)^{(\text{number of d's in }\omega)}$$

for a $p \in (0, 1)$.

Let $X_i(\omega) = \omega_i$, i = 0, ..., N and assume moreover that d < 1 < u holds. Setting $p_* = \frac{1-d}{u-d}$, we are able to define a new probability measure P^* by

$$P^*(\omega) = P^*((\omega_0, ..., \omega_N)) := p_*^{(\text{number of u's in }\omega)} \cdot (1 - p_*)^{(\text{number of d's in }\omega)}$$

Show that P and P^* are probability measures on Ω and that X_i are a family of independent rvs under both measures. Moreover prove, that $(S_n)_{n \in \mathbb{N}}$ is martingale under P^* .

Exercise 2

Let $(B_t)_{t\geq 0}$ be a brownian motion. Consider the simple, quadratic integrable processes

$$f = f_1 \mathbb{1}_{\{t=0\}} + \sum_{j=1}^n f_j \mathbb{1}_{\{t_{j-1}, t_j\}}$$
$$g = g_1 \mathbb{1}_{\{t=0\}} + \sum_{j=1}^n g_j \mathbb{1}_{\{t_{j-1}, t_j\}}$$

and let f_j , g_j be $\mathfrak{F}_{t_{j-1}}$ measurable (without loss of generality, you can assume that both processes have the same sampling points t_j). Prove that

$$m_t := \left(\int_0^t f \ dB\right) \left(\int_0^t g \ dB\right) - \int_0^t f \cdot g \ ds$$

is a martingale, i.e. that

$$<\int_0^{\cdot} f \ dB, \int_0^{\cdot} g \ dB > = \int_0^{\cdot} f \cdot g \ ds$$

Exercise 3

Assume $(B_t)_{t \in [0,T]}$ is a standard brownian motion. Verify the following statements using similar arguments as for the proof of

$$\int B_t dB_t = \frac{1}{2}B_t^2 - \frac{1}{2}t,$$

which can be found in the lecture notes.

(a)
$$\int_{0}^{t} s dB_{s} = tB_{t} - \int_{0}^{t} B_{s} ds$$

(b) $\int_{0}^{t} B_{s}^{2} dB_{s} = \frac{1}{3}B_{t}^{3} - \int_{0}^{t} B_{s} ds$
(c) $E\left[\left(\int_{0}^{t} B_{s} dB_{s}\right)^{2}\right] = \int_{0}^{t} E(B_{s}^{2}) ds$

Hand in We 08.12.10 up to 16.00 in postbox 20 at F4.