Stochastics II

9. Tutorial

Exercise 1

Let $\left(\Omega, \mathfrak{F}, \mathfrak{F}_{\mathfrak{n}_{n \in \mathbb{N}}}, P\right)$ be a probability space with a given filtration and let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a martingale on this probability space. Prove the equivalence of the following statements:
(a) $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a regular martingale.
(b) The family $\left(X_{n}\right)_{n \in \mathbb{N}}$ is uniformly integrable.
(c) There exists a \mathfrak{F}-measurable, integrable rvs X with $X_{n} \xrightarrow{L^{1}} X, n \rightarrow \infty$.
(d) There exists a \mathfrak{F}-measurable, integrable rvs X with $X_{n} \xrightarrow{L^{1}} X, n \rightarrow \infty$ and $E\left[X \mid \mathfrak{F}_{\mathfrak{n}}\right]=X_{n}$.

Exercise 2

Let $(\Omega, \mathfrak{F}, P)$ be a probability space and $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of iid rvs with $P\left(X_{n}=1\right)=P\left(X_{n}=-1\right)=\frac{1}{2}$. We equip the probability space with the filtration generated by X_{n}, i.e. $\mathfrak{F}_{n}=\sigma\left(X_{j}: 1 \leq j \leq n\right)$. Consider now, the process

$$
V_{n}:=\sum_{j=1}^{n} 2^{j-1} X_{j} \quad \text { for } \quad n \geq 1
$$

that describes the wealth of a gambler after n rounds of fair coin tossing game. The gambler starts with a wealth of 0 and is allowed to borrow an arbitrary large amount of money. Note, V_{n} is a martingale (Why?). Moreover, define a stopping time $\tau:=\min \left\{n \geq 1: X_{n}=1\right\}$.
(a) Describe the strategy of a gambler with the wealth process $\left(V_{n}\right)_{n \in \mathbb{N}}$. Describe the one of a gambler with $\left(V_{\tau \wedge n}\right)_{n \in \mathbb{N}}$.
(b) Compute $E\left[V_{\tau \wedge n}\right]=E\left[\sum_{j=1}^{n-1} \mathbb{1}_{\{\tau=j\}} V_{j}+\mathbb{1}_{\{\tau \geq n\}} V_{n}\right]$ with $n \geq 1$.

Hint: Use the fact, that V_{j} is constant on the set $\{\tau=j\}$ and V_{n} is constant on $\{\tau \geq n\}$. Many thanks to Max Brixner !
(c) Compute $E\left(V_{\tau}\right)$ and compare with (b).

Exercise 3

Let $w=\left(w_{1}, \ldots, w_{d}\right)$ be a d-dimensional Brownian motion and suppose that A and $C_{i}, i=1, \ldots, d$ are adapted, essential bounded $\mathbb{R}^{n \times n}$ processes in $[0, T]$. Moreover, let $|\cdot|$ be the euclidian norm in \mathbb{R}^{n} and x a solution of the stochastic differential equation (SDE)

$$
\begin{aligned}
d x(s) & =A(s) x(s) d s+\sum_{i=1}^{d} C_{i}(s) x(s) d w_{i}(s) \\
x(0) & =x_{0}
\end{aligned}
$$

Prove
$d|x(s)|^{2}=\left(2 x^{T}(s) A(s) x(s)+\sum_{i=1}^{d}\left(\left|C_{i}(s) x(s)\right|^{2}\right)\right) d s+2 \sum_{i=1}^{d} x^{T}(s) C_{i}(s) x(s) d w_{i}(s)$.
Hint: Note $d|x(s)|^{2}=d \sum x_{j}^{2}(s)$.

Hand in Mo 10.01.11 up to $\mathbf{1 5 . 0 0}$ in postbox 20 at F4.

The Stochastics team wishes you all a Merry Christmas and a successful happy New Year

