University of Konstanz Department of Mathematics and Statistics Prof. Dr. M. Kohlmann Yevgen Shumeyko

Stochastics II

9. Tutorial

Exercise 1

Let $(\Omega, \mathfrak{F}, \mathfrak{F}_{\mathfrak{n}_n \in \mathbb{N}}, P)$ be a probability space with a given filtration and let $(X_n)_{n \in \mathbb{N}}$ be a martingale on this probability space. Prove the equivalence of the following statements:

- (a) $(X_n)_{n \in \mathbb{N}}$ is a regular martingale.
- (b) The family $(X_n)_{n \in \mathbb{N}}$ is uniformly integrable.
- (c) There exists a \mathfrak{F} -measurable, integrable rvs X with $X_n \xrightarrow{L^1} X, n \to \infty$.
- (d) There exists a \mathfrak{F} -measurable, integrable rvs X with $X_n \xrightarrow{L^1} X$, $n \to \infty$ and $E[X|\mathfrak{F}_n] = X_n$.

Exercise 2

Let $(\Omega, \mathfrak{F}, P)$ be a probability space and $(X_n)_{n \in \mathbb{N}}$ be a sequence of iid rvs with $P(X_n = 1) = P(X_n = -1) = \frac{1}{2}$. We equip the probability space with the filtration generated by X_n , i.e. $\mathfrak{F}_n = \sigma(X_j : 1 \leq j \leq n)$. Consider now, the process

$$V_n := \sum_{j=1}^n 2^{j-1} X_j \text{ for } n \ge 1,$$

that describes the wealth of a gambler after n rounds of fair coin tossing game. The gambler starts with a wealth of 0 and is allowed to borrow an arbitrary large amount of money. Note, V_n is a martingale (Why?). Moreover, define a stopping time $\tau := \min\{n \ge 1 : X_n = 1\}$.

- (a) Describe the strategy of a gambler with the wealth process $(V_n)_{n \in \mathbb{N}}$. Describe the one of a gambler with $(V_{\tau \wedge n})_{n \in \mathbb{N}}$.
- (b) Compute $E[V_{\tau \wedge n}] = E[\sum_{j=1}^{n-1} \mathbb{1}_{\{\tau=j\}}V_j + \mathbb{1}_{\{\tau\geq n\}}V_n]$ with $n \geq 1$. *Hint: Use the fact, that* V_j *is constant on the set* $\{\tau = j\}$ *and* V_n *is constant on* $\{\tau \geq n\}$. *Many thanks to Max Brixner !*
- (c) Compute $E(V_{\tau})$ and compare with (b).

Exercise 3

Let $w = (w_1, \ldots, w_d)$ be a d-dimensional Brownian motion and suppose that A and C_i , $i = 1, \ldots, d$ are adapted, essential bounded $\mathbb{R}^{n \times n}$ processes in [0, T]. Moreover, let $|\cdot|$ be the euclidian norm in \mathbb{R}^n and x a solution of the stochastic differential equation (SDE)

$$dx(s) = A(s)x(s)ds + \sum_{i=1}^{d} C_i(s)x(s)dw_i(s),$$

$$x(0) = x_0.$$

Prove

$$d|x(s)|^{2} = \left(2x^{T}(s)A(s)x(s) + \sum_{i=1}^{d} (|C_{i}(s)x(s)|^{2})\right)ds + 2\sum_{i=1}^{d} x^{T}(s)C_{i}(s)x(s)dw_{i}(s)d$$

Hand in Mo 10.01.11 up to 15.00 in postbox 20 at F4.

The Stochastics team wishes you all a Merry Christmas and a successful happy New Year

