University of Konstanz Department of Mathematics and Statistics Prof. Dr. M. Kohlmann Yevgen Shumeyko

Stochastics II

10. Tutorial

Exercise 1

(i) Solve the following SDE for the spot rate of interest

$$dr_t = a(b - r_t)dt + \sigma dB_t$$

Hint: First, set $\sigma = 0$ and solve the deterministic differential equation $d(r_t - b) = a(b - r_t)dt$. Generalize the solution such that it solves the full equation.

- (ii) What is the probability distribution of the solution r_t ? What is the limit of this distribution as $t \to \infty$?
- (iii) Given the parameters a = 150% p.a., b = 3% and $\sigma = 6\%$ on a annual basis, what is the probability that the rate of interest will be less than 4% per annum in six month time given that its current value is 2.5%?

Exercise 2

Find the SDEs satisfied by the processes:

- (a) $X_t = e^t \sin B_t$,
- (b) $X_t = \sin t B_t$,
- (c) $X_t = a \cos B_t$, $Y_t = b \sin B_t$, where $ab \neq 0$.

Exercise 3

Let B_t be a standard Brownian motion. Find a solution process $X_t := f(t, B_t)$ for each of the following SDEs

(a) $dX_t = B_t dt + t dB_t$, Hint: Note $\frac{\partial^2 f(t,B_t)}{(\partial x)^2} = f_{xx}(t,B_t) = 0$.

$$\begin{array}{ll} (b) & (1+t) \ dX_t = -X_t \ dt + dB_t, \\ \\ Hint: \ Note \ \frac{\partial^2 f(t,B_t)}{(\partial x)^2} = f_{xx}(t,B_t) = 0. \\ (c) \ dX_t = -\frac{1}{2}X_t dt + \sqrt{1 - X_t^2} dB_t. \\ \\ \\ Hint: \ Note \ X_t := f(B_t), \ i.e. \ \frac{\partial f(t,B_t)}{\partial t} = f_t(t,B_t) = 0. \end{array}$$

Hand in We 19.01.11 up to 15.00 in postbox 20 at F4.