Stochastics II

10. Tutorial

Exercise 1

(i) Solve the following SDE for the spot rate of interest

$$
d r_{t}=a\left(b-r_{t}\right) d t+\sigma d B_{t}
$$

Hint: First, set $\sigma=0$ and solve the deterministic differential equation $d\left(r_{t}-\right.$ $b)=a\left(b-r_{t}\right) d t$. Generalize the solution such that it solves the full equation.
(ii) What is the probability distribution of the solution r_{t} ? What is the limit of this distribution as $t \rightarrow \infty$?
(iii) Given the parameters $a=150 \%$ p.a., $b=3 \%$ and $\sigma=6 \%$ on a annual basis, what is the probability that the rate of interest will be less than 4% per annum in six month time given that its current value is 2.5% ?

Exercise 2

Find the SDEs satisfied by the processes:
(a) $X_{t}=e^{t} \sin B_{t}$,
(b) $X_{t}=\sin t B_{t}$,
(c) $X_{t}=a \cos B_{t}, Y_{t}=b \sin B_{t}$, where $a b \neq 0$.

Exercise 3

Let B_{t} be a standard Brownian motion. Find a solution process $X_{t}:=f\left(t, B_{t}\right)$ for each of the following SDEs
(a) $d X_{t}=B_{t} d t+t d B_{t}$, Hint: Note $\frac{\partial^{2} f\left(t, B_{t}\right)}{(\partial x)^{2}}=f_{x x}\left(t, B_{t}\right)=0$.
(b) $(1+t) d X_{t}=-X_{t} d t+d B_{t}$,

Hint: Note $\frac{\partial^{2} f\left(t, B_{t}\right)}{(\partial x)^{2}}=f_{x x}\left(t, B_{t}\right)=0$.
(c) $d X_{t}=-\frac{1}{2} X_{t} d t+\sqrt{1-X_{t}^{2}} d B_{t}$.

Hint: Note $X_{t}:=f\left(B_{t}\right)$, i.e. $\frac{\partial f\left(t, B_{t}\right)}{\partial t}=f_{t}\left(t, B_{t}\right)=0$.

Hand in We 19.01.11 up to $\mathbf{1 5 . 0 0}$ in postbox 20 at F4.

