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Introduction

A spectrahedron is a set defined by a linear matrix inequality, i.e. a set of the form

{(x1, . . . , xn) ∈Rn : A0 + x1A1 + . . .+ xn An is positive semi-definite}

for real symmetric matrices A0, . . . , An. A spectrahedron is always a convex and basic-
closed semi-algebraic set. Interest in this class of semi-algebraic sets arose in opti-
misation when algorithms computing arbitrarily close approximations to a solution of
an optimisation problem over such sets in polynomial time were found. There are also
efficient optimisation algorithms for optimisation problems over the projection of a spec-
trahedron (cf. [VB96] for more information and further references) which need not be a
spectrahedron anymore.
Although much work has been done on these matters in optimisation and much is
known about spectrahedra, not much is yet known about the question of how to de-
cide if a given set is a spectrahedron, and even less about the question of how to decide
if a given set is the projection of a spectrahedron. The last is the leading question of
this work. Much work on it has been done by Helton and Nie in the papers [HN09]
and [HN10]. The goal of this work is to present the results of these papers in detail.
Before we come back to the contents of these papers and this work, we will briefly talk
about spectrahedra:
The first study of the above question for spectrahedra has been done in [HV07] where
it was shown that every spectrahedron is the slice of a hyperbolicity cone and, more
important and much more difficult, the converse for dimension 2 by using the theory of
determinantal representations (cf. [NPS10] for details on the translation of the original
statement to the one given here). In fact, it is a reasonable and still unanswered ques-
tion whether the converse holds in every dimension, i.e. if every slice of a hyperbolicity
cone is a spectrahedron (it is closely related to the generalisation of the Lax-conjecture
to higher dimensions, cf. [LPR05]; a strong version of the Lax-conjecture has recently
been proved to be false by Brändén in [Brä10]).
The fact that a spectrahedron is always a slice of a hyperbolicity cone seems to be a very
restrictive condition. But more necessary conditions are known, e.g. on the faces: The
faces of spectrahedra have been studied in section 2.1 of [RG95] and the main result on
this gives a parametrisation of the faces of a spectrahedron in terms of the linear matrix
inequality defining it. A nice geometric consequence of this parametrisation is that all
faces of a spectrahedron are exposed, i.e. cut out by a hyperplane (cf. [RG95], Corollary
1). This condition can often be easily verified in concrete examples. Unfortunately (or
fortunately), it fails in general for projections of spectrahedra.
The only known general properties of projections of spectrahedra are the facts that they
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Introduction

are convex (which is a direct consequence of the convexity of spectrahedra) and semi-
algebraic (which follows from quantifier elimination, cf. [BCR98], Theorem 2.2.1). The
convexity can be used to get another necessary condition (cf. Theorem A.2.3) and al-
though it is not special to projections of spectrahedra, it does compare to the sufficient
conditions that we will establish in various theorems throughout this work (cf. for ex-
ample Theorem 3.3.2), namely it boils down to non-negative versus positive curvature.
The question, whether a set is a (projection of a) spectrahedron has already been stud-
ied for various more or less concrete classes of sets : Sanyal, Sottile and Sturmfels have
studied a class of sets called orbitopes (an orbitope is the convex hull of an orbit un-
der the action of a compact and real algebraic group on a finite-dimensional real vector
space) and found many examples of orbitopes that are (projections of) spectrahedra,
cf. [SSS09]. Henrion has provided another class of examples, namely convex hulls of ra-
tional varieties (under severe restrictions on the dimension and further assumptions),
cf. [Hen09] - his results have been generalised (in the case of rational curves) in [GN10].
In this work, we will focus on general basic-closed semi-algebraic sets and impose as-
sumptions on the defining polynomials in order to make a constructive method, which
has been proposed by Lasserre in [Las09], work. We will call this construction Lasserre-
relaxation. (A similar construction called theta body has been proposed by Gouveia, Par-
rilo and Thomas in [GPT08] - it gives a representation of the closure of the convex hull of
a real variety as the projection of a spectrahedron if and only if the Lasserre-relaxation
also does.) The question whether or not the Lasserre-relaxation gives a representa-
tion as the projection of a spectrahedron for the convex hull of a given basic-closed
semi-algebraic set can be related to a question of real algebra. Namely to the question
whether or not all linear polynomials that are non-negative on the given semi-algebraic
set have a representation in the preordering (or, more generally, the quadratic module)
generated by the defining polynomials (cf. [PD01]) with degree bounds on the sums of
squares involved in this representation. Some work on this method has previously been
done, e.g. it has been proved in [NPS10] that it can only work in the case that all faces of
the convex hull are again exposed. Therefore we cannot hope that this method produces
a representation as the projection of a spectrahedron for every set which is the projec-
tion of a spectrahedron, because there are many examples of projections of spectrahedra
with non-exposed faces, cf. [NPS10], Example 3.7.
Still, Helton and Nie have been the first to use this construction in [HN09] and [HN10]
to prove quite general sufficient conditions for compact, convex and basic-closed semi-
algebraic sets to be the projection of a spectrahedron. In fact, they have come to the
conjecture that every convex and semi-algebraic set is the projection of a spectrahe-
dron. We will now give a short overview of the contents and the organisation of this
work:
We will start with a brief summary of the properties of spectrahedra and their projec-
tions and also prove them along the way except for the Theorem of Helton and Vinnikov,
which is cited below (Theorem 1.1.7). After that, we will show that the convex hull of a
finite union of (projections of) spectrahedra is the projection of a spectrahedron (cf. The-
orem 1.2.7) - the proof is constructive in the sense that given spectrahedra that project
down to the sets occurring in the union, we find a spectrahedron that projects down to
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the convex hull. This result is a generalisation of [HN09], Theorem 2.2 and it can also
be found in [NS09]. We will use a variant of this method to show that the interior of the
projection of a spectrahedron is the projection of a spectrahedron. A direct application
of the result about convex hulls (Theorem 1.2.7) will be the local-global principle for
projections of spectrahedra in the last part of chapter 1 (Theorem 1.3.5).
In chapter 2, we consider a basic-closed semi-algebraic set

C =S (g1, . . . , gr)= {x ∈Rn : g1(x)≥ 0, . . . , gr(x)≥ 0}

and we introduce the concepts of a (finitely generated) quadratic module and preorder-
ing. We consider their truncations to finite dimensional subspaces of the polynomial
ring as cones and present some general facts about their duals as cones, i.e. the set of
all linear functionals on the R-vector space that are non-negative on the (primal) cone.
In the second part of this chapter, we will specialise these abstract results in order to
get the Lasserre-relaxation. Our main result is Theorem 2.2.4, which can also be found
in [NPS10] (Proposition 3.1) and in a special case as Theorem 2 in [Las09]. It char-
acterises the Lasserre-relaxation geometrically in terms of the linear polynomials that
lie in the truncation of the quadratic module QM(g1, . . . , gr) generated by the defining
polynomials of the basic-closed semi-algebraic set C.
Chapter 3 is devoted to the results of the works [HN09] and [HN10]. Again, we will
consider a basic-closed semi-algebraic set C = S (g1, . . . , gr). Our approach to the re-
sults will be different from the original work of Helton and Nie. First, we will proof
a basic version of our results, where we will show that the Lasserre-relaxation for a
compact, convex and basic-closed semi-algebraic set gives a spectrahedron that projects
down to the set if, roughly speaking, the defining polynomials of the set are concave (on
the set) and have negative definite Hessian in the points on the boundary where they
vanish, cf. Theorem 3.1.6. But in this Theorem, we will have the freedom to substitute
the original defining polynomials of the set by others which define the set only locally.
Then, in the two following sections, we will exploit this freedom in order to weaken the
hypothesis to a condition only on the boundary (and we will also need technical assump-
tions on the hypersurfaces defined by the polynomials g i). The most general result is
Theorem 3.3.2.
The main ingredient of the proof of the basic Theorem 3.1.6 is an analogue of Putinar’s
Positivstellensatz (cf. [PD01], Theorem 5.3.8) for matrices ( [HN10], Theorem 29), which
we will not prove in this work. The degree bounds on the sums of squares in the Ma-
trix Positivstellensatz are essential for the following proofs because they relate to the
truncations of the quadratic modules. Weakening the assumptions in the following two
sections is based on reduction to the basic result 3.1.6 by more or less technical methods
where the worst problems arise in the second. The technical difficulties in the first part
are mainly elementary whereas in the second, key ingredients are properties of posi-
tively curved (analytic) hypersurfaces in Rn and their relation to convex sets (mainly
presented in appendix C) as well as a smoothing procedure by an integral transforma-
tion.
In the appendices A and C, we have put together some facts, which will be used in this
work, but are hard to find in the literature. Appendix B contains the proof of a Lemma
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in chapter 2 (Lemma 2.1.17), which we will not give there because it uses very different
methods and is not essential to the section.
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1. Spectrahedra and Their
Projections

1.1. Elementary Properties and the Theorem of Helton
and Vinnikov

Definition 1.1.1. (a) A subset C ⊂ Rn is a spectrahedron if there are real symmetric
matrices A0, . . . , An ∈Symd×d(R) such that

C = {(x1, . . . , xn) ∈Rn : A0 + x1A1 + . . .+ xn An ≥ 0}

(The notation A ≥ 0 for a real symmetric matrix A ∈Symd×d(R) signifies that the matrix
A is positive semi-definite.)
We will use the notation A for the linear matrix polynomial A0 + X1A1 + . . .+ Xn An ∈
Symd×d(R)[X1, . . . , Xn] and A(1) = X1A1+ . . .+Xn An for the homogeneous part of degree
one.
For the spectrahedron defined by the linear matrix polynomial A , we will write S (A )=
{x ∈Rn : A (x)≥ 0}.
(b) A linear matrix polynomial A = A0+X1A1+ . . .+Xn An is said to be monic if A0 = Id
is the identity matrix.

Remark 1.1.2 (alternative definition of a spectrahedron). The above definition of a
spectrahedron in Rn is equivalent to saying that a spectrahedron is the preimage of the
cone S+ ⊂Symd×d(R) of positive semi-definite real symmetric matrices for an affine lin-
ear map Rn → Symd×d(R). Indeed, a linear matrix polynomial can be identified with an
affine linear map Rn →Symd×d(R).
Since the vector space Symd×d(R) is isomorphic to the vector space Bilsym(V ) of symmet-
ric bilinear forms on a d-dimensional R-vector space V (by choice of a basis of V ), we see:
Let V be a finite dimensional R-vector space. A spectrahedron is linearly isomorphic to
the Cartesian product of a slice of the cone of symmetric, positive semi-definite bilinear
forms on V and Rm for a certain m ∈N0.

Remark 1.1.3. (i) Every spectrahedron is convex: This is clear from the alternative
definition. Using the original definition, we fix a representation C =S (A ) with a linear
matrix polynomial A ∈ Symd×d(R)[X1, . . . , Xn] and take x, y ∈ C and λ ∈ [0,1]. Then
we have A (x+λ(y− x)) = A (x)−λA (x)+λA (y) ≥ 0 which means x+λ(y− x) ∈ C (NB:
A (αx)=αA (x) is, of course, false in general).
(ii) Every spectrahedron is a basic closed semi-algebraic set, i.e. it is the solution set
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1. Spectrahedra and Their Projections

of finitely many simultaneous polynomial inequalities (cf. [BCR98], Definition 2.7.1): A
symmetric real matrix A ∈Symd×d(R) is positive semi-definite if and only if the signs of
the coefficients of its characteristic polynomial PA(t)= det(A− tId)= s0+s1t+. . .+sd td ∈
R[t] are alternating: The characteristic polynomial PA(t) has no negative zero if and
only if the polynomial PA(−t) has no positive zero. As we know that all zeros of PA(t)
are real (A is symmetric), this is the case if and only if all the coefficients of PA(−t) are
non-negative.
So a spectrahedron is given as a semi-algebraic set by

C =S (A )= {x ∈Rn : s0(x)≥ 0,−s1(x)≥ 0, . . . , (−1)dsd(x)≥ 0}

with the coefficients si ∈R[X1, . . . , Xn] of

det(A − tId)= s0 + s1t+ . . .+ sd td

(iii) A set C ⊂Rn is the projection of a spectrahedron if and only if there is an N ∈N and
real symmetric matrices A0, . . . , An,B1, . . . ,BN ∈Symd×d(R) such that

C = {(x1, . . . , xn) ∈Rn : ∃ y1, . . . , yN ∈RN : A0+x1A1+ . . .+xn An+ y1B1+ . . .+ yNBN ≥ 0}

Also in this case, we will write A for the linear matrix polynomial in the above equation
and A(1) (as in the preceding) for the homogeneous part of degree one. For the projection
of a spectrahedron we will write C = πX (S (A (X ,Y ))) if C is given as in the above
equation.

Examples 1.1.4. (i) Every polyhedron is a spectrahedron. Namely, if P = {x ∈Rn : `1(x)≥
0, . . . ,`r(x)≥ 0}, then we can also write P as a spectrahedron

P =

x ∈Rn :

 `1(x) 0
. . .

0 `r(x)

≥ 0


(ii) The unit disc Dn ⊂Rn is a spectrahedron. A representation is given by

Dn =

(x1, . . . , xn) ∈Rn :


1 x1

. . . ...
1 xn

x1 . . . xn 1

≥ 0


This can be seen by calculating the determinant of the defining matrix polynomial which
happens to be 1−∑n

i=1 X2
i , i.e. the equation of the disc. In the case n = 2, there is a

representation of smaller size

D2 =
{

(x, y) ∈R2 : I2 + x
(

1 0
0 −1

)
+ y

(
0 1
1 0

)}
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1.1. Elementary Properties and the Theorem of Helton and Vinnikov

The deepest result on spectrahedra, known so far, is a theorem by Helton and Vin-
nikov. We will cite it after defining some notions necessary to state it.

Definition 1.1.5. (a) A closed set C ⊂ Rn is an algebraic interior if there is a polyno-
mial p ∈ R[X1, . . . , Xn] such that C is the closure of a connected component of the set
{x ∈Rn : p(x)> 0}.
(b) Let C be an algebraic interior. A polynomial p of minimal degree such that C is a
connected component of {x ∈ Rn : p(x) > 0} is said to be a minimal defining polynomial
for C. As is shown in [HV07], Lemma 2.1, it is (up to multiplication by a real positive
constant) uniquely determined. We define the degree of C to be the degree of such a
minimal defining polynomial.
(c) An algebraic interior of degree d with minimal defining polynomial p ∈R[X1, . . . , Xn]
is called rigidly convex if every line through an interior point of C intersects the real,
algebraic and projective hypersurface {x ∈ Pn(R) : p∗(x) = 0} (where p∗ is the homogeni-
sation of p) in d points (when counting multiplicities). This is true if and only if the
polynomial in one variable t given by p(tx+ x0), where x0 is an interior point of C, has
only real zeros for all x ∈Rn (this is shown in the proof of [HV07], Theorem 3.1).

Remark 1.1.6. It is known that every rigidly convex set is convex (cf. [HV07], Section
5.3, Topological Property (3)). Further, every rigidly convex set is basic closed semi-
algebraic and the defining polynomials can be explicitly constructed from the minimal
defining polynomial of the rigidly convex set as an algebraic interior by taking the so-
called Renegar-derivatives (cf. [NPS10], Remark 2.6). In this paper, the authors also
prove that all faces of a rigidly convex set are exposed (cf. [NPS10], Corollary 2.5).

Theorem 1.1.7 ( [HV07], Theorem 3.1). Let C ⊂ Rn be a spectrahedron. Then C is a
rigidly convex, algebraic interior.
If n = 2, then the converse is also true: Every rigidly convex, algebraic interior C ⊂ R2

is a spectrahedron. More precisely, if d is the degree of the algebraic interior C ⊂ R2,
then there is a linear matrix polynomial A ∈ Symd×d(R)[X1, . . . , Xn] such that C = {x ∈
R2 : A (x)≥ 0}.

Remark 1.1.8. (i) The minimal defining polynomial of C is a factor of the determinant
of the linear matrix polynomial A defining C. With the help of the multilinearity of the
determinant and the fact that all eigenvalues of a symmetric matrix are real, it is not
very difficult to see that all zeros of fx(t) := det(A (tx+x0)) (where x0 is an interior point
of C) in t are real for all x ∈Rn. This property remains true for every factor of fx. This is
the idea of proof for the general direction of the above theorem. (cf. the proof of [HV07],
Theorem 2.2)
(ii) The converse in the special case of dimension 2 is much more difficult to see and
uses the theory of determinantal representations. It is a crucial step in the proof of
the Lax-Conjecture (cf. [LPR05]). The question of the converse in higher dimensions is
reasonable because all known necessary conditions on spectrahedra are met by rigidly
convex sets (cf. Remark 1.1.6), but it remains open. A strong version of the general-
isation of the Lax-conjecture to higher dimensions is false, as was recently shown by
Brändén ( [Brä10]).
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1. Spectrahedra and Their Projections

Now we will turn our attention to the connection between the topological interior of a
spectrahedron and a defining linear matrix polynomial.

Lemma 1.1.9 (cf. the proof of [HV07], Theorem 2.2). Let C =S (A ) be a spectrahedron.
The set of points, where the linear matrix inequality strictly holds, is a subset of the
topological interior of C.
If the linear matrix polynomial describing C is monic, then the converse will also be true:

int(C)= {x ∈Rn : A (x)> 0}

PROOF. The inclusion {x ∈Rn : A (x)> 0}⊂ int(C) is easy to see because the eigenvalues
of A (x) are continuous functions of x.
So let the matrix polynomial describing C be monic. Then we have 0 ∈ C. Now let
x ∈ int(C) be an interior point of C. There is a constant ε > 0 such that (1+ ε)x ∈ C.
Let γ : [0,1] → Rn, t 7→ t(1+ ε)x, be a parametrisation of the line segment between 0
and the point (1+ ε)x. As C is convex, we have γ([0,1]) ⊂ C and therefore we have
Id + t ((1+ε)x1A1 + . . .+ (1+ε)xn An) = A (γ(t)) > 0 for all t ∈ [0,1) which we see by di-
agonalising the matrix ((1+ε)x1A1 + . . .+ (1+ε)xn An); so in particular we have A (x) >
0.

It is not a restriction to consider only monic linear matrix polynomials in the above
lemma, because every spectrahedron with non-empty interior can be translated in such
a way that it can be defined by a monic linear matrix polynomial:

Proposition 1.1.10 ( [HV07], Lemma 2.3). Let C = S (A ) be a spectrahedron and as-
sume that 0 is an interior point of C. Then there are real symmetric matrices A′

1, . . . , A′
n ∈

Symd′×d′(R) such that

C = {x ∈Rn : Id′ + x1A′
1 + . . .+ xn A′

n ≥ 0}

PROOF. Write A = A0 + X1A1 + . . .+ Xn An. Since we have 0 ∈ int(C), the matrix A0 is
positive semi-definite and there are ε1, . . . ,εn > 0 such that the matrices A0+ε1A1, A0−
ε1A1, . . . , A0 +εn An, A0 −εn An are positive semi-definite. We write f i for the endomor-
phism on Rd defined by A i after choice of the canonical basis. The vector space Rd is the
orthogonal sum of ker( f0) and im( f0) because A0 is symmetric. The subspace U := im( f0)
is f0-invariant and the endomorphism f̃0 := f0|U : U → U is bijective. We know that
all eigenvalues of f̃0 are real and positive. Now we will show im( f i) ⊂ im( f0) for all
i = 1, . . . ,n: Fix i ∈ {1, . . . ,n} and take x ∈ ker( f0) = im( f0)⊥. We have xt(A0 ± εi A i)x ≥ 0
and using xt A0x = 0, we deduce that xt A ix = 0. Now we have xt(A0 + εi A i)x = 0 and
A0+εi A i ≥ 0. By factorising the matrix A0+εi A i in D tD for some matrix D ∈Md×d(R) we
get (A0+εi A i)x = 0. With A0x = 0 it follows that A ix = 0, which says x ∈ ker( f i)= im( f i)⊥.
Thus we have im( f i)⊂ im( f0) as desired.
The restrictions of the endomorphisms f i to U are self-adjoint endomorphisms of U
and thus a matrix Ã i ∈ Md′×d′(R) (where d′ denotes the dimension of U) represent-
ing f i is symmetric. We have C = S (Ã ) for the linear matrix polynomial Ã = Ã0 +
X1 Ã1 + . . .+ Xn Ãn because f0 + x1 f1 + . . .+ xn fn is positive semi-definite if and only if

4



1.1. Elementary Properties and the Theorem of Helton and Vinnikov

f̃0 + x1 f̃1 + . . .+ xn f̃n is positive semi-definite.
We now factorise Ã0 to Ã0 = BtB where B is an invertible matrix B ∈ GL(d′,R) and put
A′

i := B−t Ã iB−1. Then we have C = {(x1, . . . , xn) ∈Rn : Id′ + x1A′
1 + . . .+ xn A′

n ≥ 0}.

We will prove an analogous result (to Lemma 1.1.9) about the topological interior of
projections of spectrahedra. We will need the following lemma in the proof.

Proposition 1.1.11. Let V ,W be finite dimensional R-vector spaces, let π : V → W be a
linear map and let C ⊂ V be a convex set. Denote the relative interior of a convex set C,
i.e. the interior in its affine hull, by relint(C). Then the image of the relative interior is
the relative interior of the image:

π(relint(C))= relint(π(C))

PROOF. Let U be the affine hull of C. After an affine transformation, we can assume
that U is a subspace, i.e. contains 0 ∈V and thus we can look at the linear map π|U : U →
π(U). We see that we can assume without loss of generality that C has non-empty
interior in V and the map π is surjective.
The set π(int(C)) ⊂ π(C) is open because π is an open map (after adequate change of
coordinates, π is a projection on the first factor Rk ×Rl → Rk). This gives the inclusion
π(int(C))⊂ int(π(C)).
Now let y ∈π(C) be a point of the image of C and let x ∈ C be a point such that π(x)= y.
Assume that x+ v ∉ int(C) for all v ∈ ker(π). By [Bou81], Chapter II, §5, Théorème
1, there is an affine hyperplane H supporting C such that x ∈ H ∩C and ker(π) ⊂ H.
Therefore, as π is surjective, π(H) is an affine hyperplane supporting π(C) such that
y=π(x) ∈π(H∩C)⊂π(H)∩π(C), i.e. y ∉ int(π(C)).

Corollary 1.1.12. Let C = πX (S (A (X ,Y ))) = {x ∈ Rn : ∃ y ∈ RN : A (x, y) ≥ 0} be the pro-
jection of a spectrahedron which is defined by a monic linear matrix polynomial. Then
the topological interior of C is the set of all points in which the matrix inequality is
strictly satisfied, i.e.

int(C)= {x ∈Rn : ∃ y ∈RN : A (x, y)> 0}

PROOF. This follows from Lemma 1.1.9 by Proposition 1.1.11 because the projection
π : Rn+N →Rn, (x1, . . . , xn, y1, . . . , yN) 7→ (x1, . . . , xn) is a linear map.

As another elementary property of (projections of) spectrahedra, we will now study
their behaviour under set operations.

Lemma 1.1.13. (i) The intersection of two spectrahedra is a spectrahedron. The same is
true for projections of spectrahedra.
(ii) The Minkowski-sum (i.e. the sum taken element-wise) of two spectrahedra is the pro-
jection of a spectrahedron. Again, we also have that the Minkowski-sum of two projec-
tions of spectrahedra is again a projection of a spectrahedron.
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1. Spectrahedra and Their Projections

PROOF. Let C =S (A ) and C′ =S (A ′) be two spectrahedra. (i) Then we have C∩C′ =
S (A �A ′) where we write A �A ′ for the matrix polynomial A0 � A′

0 + X1A1 � A′
1 +

. . .+Xn An�A′
n (we write A = A0+X1A1+. . .+Xn An and analogously A ′ = A′

0+X1A′
1+

. . .+ Xn A′
n) made of block matrices

A� A′ =
(

A 0
0 A′

)
In the case where C = {x ∈Rn : ∃ u ∈RN : A (x,u)≥ 0} and C′ = {x ∈Rn : ∃u′ ∈RN ′

: A ′(x,u′)≥
0} are projections of spectrahedra, we assume N = N ′ (by filling in zero matrices in the
shorter matrix inequality).
If we write A = A0 + X1A1 + . . .+ Xn An +Y1B1 + . . .+YNBN (again, analogously for
A ′), then the intersection C∩C′ is represented as {x ∈Rn : ∃(u,u′) ∈RN ×RN : A (x,u)�
A (x,u′)≥ 0} where

A �A ′ = A0� A′
0 + (X1A1)� (X1A′

1)+ . . .+ (Xn An)� (Xn A′
n)

+ (Y1B1)�0+ . . .+ (YNBN)�0+0� (Y ′
1B′

1)+0� (Y ′
NB′

N)

Of course (X i A i)� (X i A′
i)= X i(A i � A′

i).
As for part (ii), we look at C ×Rn = {(x, y) ∈ Rn ×Rn : A (x) ≥ 0} which is clearly a spec-
trahedron in R2n and analogously Rn × C′. Then we know by part (i) that C × C′ =
(C ×Rn)∩ (Rn ×C′) is a spectrahedron in R2n. And so C +C′ = π(C ×C′) for the projec-
tion π : Rn ×Rn → Rn, (x, y) 7→ x+ y. The argument for projections of spectrahedra is
analogous.

Examples 1.1.14. (i) We take C = [0,1]× {0}⊂R2 and C′ =D2 = {(x, y) ∈R2 : 1− x2 − y2 ≥

Figure 1.1.: The figure shows the set C+C′ =D2∪[0,1]∪(D2+(1,0)) enclosed by the thick black
lines and the sets C, D2 and D2 + (1,0).

0} ⊂ R2, which are spectrahedra. Then their Minkowski-sum C +C′ = [0,1]× [−1,1]∪
D2 ∪ (D2 + (1,0)) is not a spectrahedron, because it is known not to be a basic closed
semi-algebraic set. (cf. [BCR98], Example 10.4.5(a)).
(ii) Clearly, the class of spectrahedra cannot be closed under the operation of union of
sets, because the class of convex sets is not. But even if the union of two spectrahedra
is again convex, it need not be a spectrahedron again:
Take C = [−1,0]× [−1,1] ⊂ R2 and again C′ = D2. Their union C∪C′ is not a spectrahe-
dron by [RG95], Corollary 1, because the faces {(0,1)} and {(0,−1)} are not exposed. We
will see in the following section that it is the projection of a spectrahedron.
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1.2. Convex Hulls of the Union of Spectrahedra

Figure 1.2.: The set C ∪C′ = [−1,0]× [−1,1]∪D2 and its non-exposed faces, marked by black
dots.

1.2. Convex Hulls of the Union of Spectrahedra

In this section, we will prove constructively that the convex hull of a finite union of
projections of spectrahedra is again the projection of a spectrahedron. We will also use
this technique to show that the interior of a projection of a spectrahedron is again the
projection of a spectrahedron. We start with an elementary lemma:

Proposition 1.2.1. Let C1, . . . ,Cm ⊂ Rn be non-empty, convex sets. Denote by ∆m−1 =
{(λ1, . . . ,λm) ∈Rm

≥0 : λ1 + . . .+λm = 1} the standard simplex. Then we have

conv

(
m⋃

i=1
Ci

)
= ⋃

(λ1,...,λm)∈∆m−1

(λ1C1 + . . .+λmCm)

This is a special case of [Roc70], Theorem 3.3 (there, arbitrary, not necessarily finite,
families of convex sets are discussed). As the proof is very elementary and easy, we will
give it here.

PROOF. Take x =∑m
i=1

∑l i
j=1λi jxi j where λi j ≥ 0,

∑m
i=1

∑l i
j=1λi j = 1 and xi j ∈ Ci for all j =

1, . . . , l i. For all i = 1, . . . ,m set λi =∑l i
j=1λi j. Then we have because of the convexity of Ci

that the point 1
λi

∑l i
j=1λi jxi j =: xi is in Ci if λi 6= 0. If λi = 0, then take any point xi ∈ Ci.

Thus we get x =λ1x1+ . . .+λmxm and (λ1, . . . ,λm) ∈∆m−1 which gives one inclusion. The
other one is obvious.

This Lemma motivates the following definition (as will become clear later, cf. Lemma
1.2.4 and Remark 1.2.5).

Definition 1.2.2. (a) Let C = πX (S (A0 +A(1)(X ,Y ))) be the projection of a spectrahe-
dron. Define for λ ∈R the linear matrix polynomial

A�(λ, X ,Y , Z)= (
λA0 +A(1)(X ,Y )

)
�

(
λ X1
X1 Z

)
� . . .�

(
λ Xn

Xn Z

)
and thereby the projection of a spectrahedron

Ĉ = {(x,λ) ∈Rn+1 : ∃ (y, z) ∈RN+1 A�(λ, x, y, z)≥ 0}=:π(X ,λ)(S (A�(λ, X ,Y , Z)))

7



1. Spectrahedra and Their Projections

(b) Let C1, . . . ,Cm ⊂Rn be projections of spectrahedra. We set

∆m
m−1 = {(x1,λ1, . . . , xm,λm) ∈Rnm+m : (λ1, . . . ,λm) ∈∆m−1}

Writing π : (Rn×R)× . . .×(Rn×R)→Rn, ((x1,λ1), . . . , (xm,λm)) 7→∑m
i=1 xi, we define the set

C (C1, . . . ,Cm)=π
(
(Ĉ1 × . . .× Ĉm)∩∆m

m−1

)
Remark 1.2.3. (i) The set C (C1, . . . ,Cm) in the above definition is by construction the
projection of a spectrahedron (cf. Lemma 1.1.13(i)).
(ii) Write

C̃ = {(x,λ) ∈Rn+1 : ∃ y ∈RN λA0 +A(1)(x, y)≥ 0}

If we set C (A 1, . . . ,A m) = π((C̃1 × . . .× C̃m)∩∆m
m−1), then this definition will agree with

the definition of C in [HN09], Theorem 2.2. The definition given there is the following

C = {x ∈Rn : ∀ k ∈ {1, . . . ,m} ∃ xk ∈Rn ∃yk ∈RNk ∃λ ∈∆m−1 such that

λk Ak
0 +

n∑
i=1

xk
i Ak

i +
Nk∑
j=1

yk
j Bk

j ≥ 0 and x =
m∑

k=1
xk}

The above construction of C (C1, . . . ,Cm) is a generalisation of this and allows us to prove
a stronger version of [HN09], Theorem 2.2 (cf. Theorem 1.2.7).

As already promised, the following lemma will cast some more light on Definition
1.2.2.

Lemma 1.2.4. Let ; 6= C = πX (S (A (X ,Y ))) be the projection of a spectrahedron. Put
C0 =πX (S (A(1)(X ,Y ))).
(i) For all λ> 0 the equation λC =πX (S (λA0 +A(1)(X ,Y ))) holds.
(ii) We have C0 ⊂ cl(

⋃
0<λ≤1λC).

(iii) If C is bounded, then we have C0 = {0}.
(iv) For all λ≥ 0 we have

λC = {x ∈Rn : ∃ (y, z) ∈RN+1 A�(λ, x, y, z)≥ 0}=πX (S (A�(λ, X ,Y , Z)))

In the case λ< 0, the set S (A�(λ, X ,Y , Z))⊂Rn+N+2 is empty.

PROOF. (i) Let λ > 0, x ∈ Rn and y ∈ RN be such that λA0 +A(1)(x, y) ≥ 0. We have
λ

(
A0 +A(1)( 1

λ
x, 1

λ
y)

)≥ 0, which implies 1
λ

x ∈ C, i.e. x ∈ λC. Conversely, let x ∈ λC. Then
there is a x′ ∈ C such that x = λx′. Therefore there exists a y′ ∈ RN such that A0 +
A(1)(x′, y′)≥ 0. We deduce

0≤λ(
A0 +A(1)(x′, y′)

)=λA0 +A(1)(x,λy′)

(ii) Let x ∈ C0 and let y be in RN such that A(1)(x, y) ≥ 0. Since C 6= ;, there is a x′ ∈ C
and a y′ ∈RN such that A0 +A(1)(x′, y′)≥ 0. For all λ ∈ (0,1] we have

0≤λ(
A0 +A(1)(x′, y′)

)+A(1)(x, y)=λA0 +A(1)(x+λx′, y+λy′)
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1.2. Convex Hulls of the Union of Spectrahedra

Using part (i) we get x+λx′ ∈ λC. The claim now follows from the fact that x+λx′

converges to x for λ→ 0.
(iii) If C is bounded, then so is cl(

⋃
0<λ≤1λC) and therefore C0 is bounded (using part

(ii)). But obviously C0 is a closed, convex cone and so it must be equal to {0}.
(iv) Recall

A�(λ, X ,Y , Z)= (λA0 +A(1)(X ,Y ))�
(
λ X1
X1 Z

)
� . . .�

(
λ Xn

Xn Z

)
In the case of λ > 0, the proof of this part is analogous to the proof of part (i), because
the additional condition

∃ z ∈R such that
(
λ xi
xi z

)
≥ 0

is true for all i ∈ {1, . . . ,n} if one chooses a sufficiently large z ∈R≥0 (we need λz− x2
i ≥ 0).

In the case of λ= 0, this condition holds if and only if xi = 0, which implies the first part
of the claim. In the case λ< 0, the above condition cannot hold for any z ∈R.

Remark 1.2.5. (i) We see from the above Lemma that the equality C (C1, . . . ,Cm) =
C (A 1, . . . ,A m) holds if all the sets C1, . . . ,Cm are bounded. Namely, it follows directly
from claims (i), (iii) and (iv) that even the equality of spectrahedra

(Ĉ1×. . .×Ĉm)∩∆m
m−1 =

⋃
λ∈∆m−1

(λ1C1×{λ1})×. . .×(λmCm×{λm})= (C̃1×. . .×C̃m)∩∆m
m−1

holds. This equality is stronger than the stated equality of sets (both sets are by defini-
tion the image of this spectrahedron under the projection π : (Rn×R)×. . .×(Rn×R)→Rn,
((x1,λ1), . . . , (xm,λm)) 7→∑m

i=1 xi).
(ii) Since the equality

(Ĉ1 × . . .× Ĉm)∩∆m
m−1 =

⋃
λ∈∆m−1

(λ1C1 × {λ1})× . . .× (λmCm × {λm})

holds without any further assumptions on the projections of spectrahedra C1, . . . ,Cm, we
see that this set does not depend on the chosen representations for the sets C1, . . . ,Cm.
In particular, the set C (C1, . . . ,Cm) does not depend on the chosen representations.
(iii) If one of the sets C1, . . . ,Cm is unbounded, the set C (A 1, . . . ,A m) may depend on
the chosen representations A 1, . . . ,A m for the sets C1, . . . ,Cm, as the following example
shows.

Example 1.2.6. We set C1 = {(0,1)} and C2 = {(x1,0): x1 ∈ R} in R2. For the set C1 we
choose the following representation as the projection of a spectrahedron

C1 = {(x1, x2) ∈R2 : A 1(x1, x2)= diag(x1,−x1, x2 −1,−x2 +1)≥ 0}

and for C2 we choose two different representations

C2 = {(x1, x2) ∈R2 : A 2(x1, x2)= diag(x2,−x2)≥ 0}

C2 =

(x1, x2) ∈R2 : ∃ y ∈RB2(x1, x2, y)=


1 x1 0 0
x1 y 0 0
0 0 x2 0
0 0 0 −x2

≥ 0


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1. Spectrahedra and Their Projections

By Lemma 1.2.4(i) we see that the sets C (A 1,A 2) and C (A 1,B2) depend only on what
the sets πX (S (A 2

(1)(X ,Y ))) and πX (S (B2
(1)(X ,Y )) are (cf. Remark 1.2.5(i) and/or further

below in this remark). And indeed we get different results for these two representations:
Namely, the set C (A 1,A 2) = {(x1, x2) ∈ R2 : x1 ∈ R, x2 ∈ [0,1]} is a closed strip, and

Figure 1.3.: The set C1 is the thick point and the set C2 the thick line. The dashed black line is
contained in C (A 1,A 2) and not contained in C (A 1,B2).

C (A 1,B2) = {(x1, x2) ∈ R2 : x1 ∈ R, x2 ∈ [0,1)}∪ {(0,1)} is the convex hull of the union of
the two sets.
The reason for this difference lies in the fact that πX (S (A 2

(1)(X ,Y ))) = R× {0}, because
the matrix polynomial A 2 = A 2

(1) does not have a constant term. On the other hand,
πX (S (B2

(1)(X ,Y ))= {(0,0)} because the upper left 2×2 matrix gives the condition −x2
1 ≥ 0

(i.e. x1 = 0) if we omit the constant term in the matrix polynomial B2.
The set C (A 1, . . . ,A m) always depends on the set C0

i , i.e. on the behaviour of λA i as λ
approaches zero. This is where the definition of C (C1, . . . ,Cm) (in part (b) of definition
1.2.2) improves the definition C (A 1, . . . ,A m).

We have finished with the technical preliminaries and now come to the main result
of this section. We will now constructively prove that the convex hull of a union of
(projections of) spectrahedra is the projection of a spectrahedron:

Theorem 1.2.7 (cf. [HN09], Theorem 2.2). Let C1, . . . ,Cm ⊂Rn be non-empty projections
of spectrahedra. Then we have

conv

(
m⋃

i=1
Ci

)
=C (C1, . . . ,Cm)

In particular, the convex hull of the union of the sets Ci is again the projection of a
spectrahedron.

PROOF. Proposition 1.2.1 states

conv

(
m⋃

i=1
Ci

)
= ⋃

(λ1,...,λm)∈∆m−1

(λ1C1 + . . .+λmCm)

By Lemma 1.2.4(iv), we know that

λCi =πX (S (A�(λ, X ,Y , Z)))

for all λ ≥ 0. Therefore the claim follows directly from the definition of C (C1, . . . ,Cm)
(cf. Definition 1.2.2).
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1.2. Convex Hulls of the Union of Spectrahedra

Remark 1.2.8. (i) The set C (C1, . . . ,Cm) has an explicit representation as the projection
of a spectrahedron, which can be easily computed (given representations for C1, . . . ,Cm).
Namely, given two projections of spectrahedra Ci = πX (S (A i(X ,Y ))) for i = 1,2, we
write A i

� for the matrix polynomials in Sym(d+2n)×(d+2n)(R)[λ, X1, . . . ,YN , Z], which de-
scribe the sets Ĉi, as in Definition 1.2.2(a). Then the Cartesian product Ĉ1 × Ĉ2 is
π(X ,X ′)(S (B(λ,λ′, X , X ′,Y ,Y ′, Z, Z′))), where

B =A 1(λ, X ,Y , Z)�0+0�A 2(λ′, X ′,Y ′, Z′)

which is a matrix polynomial B ∈Sym2(d+2n)×2(d+2n)(R)[λ,λ′, X1, . . . , X ′
n,Y1, . . . ,Y ′

N , Z, Z′].
Next, we need a representation as the projection of a spectrahedron for ∆2

1 ⊂R2n+2, i.e.

∆2
1 = {(x1,λ1, x2,λ2) ∈R2n+2 : D (λ1,λ2) := diag(λ1,λ2,λ1 +λ2 −1,1−λ1 −λ2)≥ 0}

Then, we know from Lemma 1.1.13(a) that the intersection of Ĉ1 × Ĉ2 and ∆2
1 is repre-

sented in the following way

(Ĉ1 × Ĉ2)∩∆2
1 =π(X ,X ′)(S (B�D (λ,λ′, X , X ′,Y ,Y ′, Z, Z′,Λ)))

and B�D ∈Sym2(d+2n+2)×2(d+2n+2)(R)[λ,λ′, X1, . . . ,Y ′
N , Z, Z′,Λ1,Λ2] (here, we have 2(n+

N+3) indeterminates). Finally, the convex hull of C1∪C2 is the projection of (C1×C2)∩
∆2

1 by the projection Rn ×R×Rn ×R→Rn, (x1,λ1, x2,λ2)→ x1 + x2 (cf. Theorem 1.2.7).
(ii) By using the construction of Ĉ, we can give a representation as the projection of a
spectrahedron of the convex cone over the convex set C if C is itself the projection of a
spectrahedron. We simply have to note that the set

πX (S (A�(λ, X ,Y , Z)))= {x ∈Rn : ∃ (λ, y, z) ∈RN+2 A�(λ, x, y, z)≥ 0}

is the convex cone over C by part (iv) of Lemma 1.2.4.
Using this result, we can show that the convex hull of the union of two sets C1 and
C2 which are projections of spectrahedra is the projection of a spectrahedron: To do
so, we embed these two sets in Rn+1 via the map Rn → Rn+1, x 7→ (x,1). The images of
C1 and C2 under this map are clearly projections of spectrahedra again. Now we take
the convex cones K1 over C1 and K2 over C2. By Lemma 1.1.13 we know that K1 +K2
is the projection of a spectrahedron. Now we have (K1 +K2)∩ {(x,1) ∈ Rn+1 : x ∈ Rn} =
conv(C1 ∪C2)× {1} which shows that the convex hull of the union of C1 and C2 is the
projection of a spectrahedron.

We now turn to a technical proposition which we will need to prove that the interior
of (the projection of) a spectrahedron is the projection of a spectrahedron.

Proposition 1.2.9. Let C1, . . . ,Cm ⊂R be non-empty, convex sets.
We have

conv

(
m⋃

i=1
Ci

)
= ⋃
λ∈∆m−1

(λ1C1 + . . .+λmCm)⊂ cl

 ⋃
λ∈

◦
∆m−1

(λ1C1 + . . .+λmCm)


In particular, the closure of the set on the left-hand side of the above equation is equal to
the right-hand side.
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1. Spectrahedra and Their Projections

PROOF. The first equality is Proposition 1.2.1. To the second: Take x =∑m
i=1λixi where

(λ1, . . . ,λm) ∈∆m−1 \
◦
∆m−1 and xi ∈ Ci. Put I = {i ∈ {1, . . . ,m} : λi = 0} 6= {1, . . . ,m} and take

j ∉ I. We define for m ∈N

ym =
(
λ j − #I

m

)
x j +∑

i∈I

1
m

xi + ∑
i∉I,i 6= j

λixi

For sufficiently large m ∈N we have λ j − #I
m > 0, i.e. ym ∈⋃

λ∈
◦
∆m−1

(λ1C1+ . . .+λmCm). By

construction we have ym → x for m →∞. The second part of the claim is trivial.

As a byproduct, we easily get more information, which can also be found in [HN09],
Theorem 2.2, on the projection of a spectrahedron C (A 1, . . . ,A m) as defined in Remark
1.2.3. Although it depends on the chosen representations of C1, . . . ,Cm as projections of
spectrahedra, it always contains the convex hull of the union of the Ci and cannot be
bigger than its closure:

Corollary 1.2.10 (cf. [HN09], Theorem 2.2). Let C1, . . . ,Cm ⊂ Rn be non-empty projec-
tions of spectrahedra. Then the set C (A 1, . . . ,A m) is contained in the closure of the
convex hull of the union of the Ci for all choices of representations Ci =πX (S (A i(X ,Y )))
of the Ci:

conv(
m⋃

i=1
Ci)⊂C (A 1, . . . ,A m)⊂ cl

(
conv

(
m⋃

i=1
Ci

))

In particular, the closures are the same.

PROOF. Using Lemma 1.2.4(i) and (ii) we get the inclusion

C̃ := (C̃1 × . . .× C̃m)∩ ∆̃m−1 ⊂ cl

 ⋃
λ∈∆◦

m−1

(λ1C1 × {λ1})× . . .× (λmCm × {λm})

=: K

From continuity of the projection π : Rnm+m →R, (x1,λ1, . . . , xmλm) 7→∑m
i=1 xi, we deduce

C (A 1, . . . ,A m)=π(C̃)⊂π(K)⊂ cl

 ⋃
λ∈∆◦

m−1

π (λ1C1 × {λ1}× . . .×λmCm × {λm})


Now Proposition 1.2.9 tells us that the right-hand side of the above equation is nothing
but the closure of the convex hull of the union of the sets Ci. Now to the first inclusion:
From Lemma 1.2.4(i), we get⋃

λ∈∆m−1

(λ1C1 × {λ1})× . . .× (λmCm × {λm})⊂ (C̃1 × . . .× C̃m)∩∆m
m−1

(cf. Remark 1.2.5(i)), which implies the first inclusion.
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Example 1.2.11. The set C (A 1, . . . ,A m) need not be either the convex hull or its clo-
sure, as the following example shows: Let C1 = {(0,0)} with any representation as a spec-
trahedron C1 =S (A 1) and let C2 = {(x1, x2) ∈R2 : x1 ≥ 0, x1x2−1≥ 0}=πX (S (A 2(X ,Y )))
where

A 2 =


X1

X1 1
1 X2

1 X1
X1 Y


In this example, C (A 1,A 2) is the union of the open quadrant {(x1, x2) ∈ R2 : x1 > 0, x2 >
0} and the non-negative x2-axis {(0, x2) ∈ R2 : x2 ≥ 0} because C0

2 = πX (S (A 2
(1)(X ,Y ))) =

{0}×R≥0 (cf. Example 1.2.6), which is neither open nor closed.
Of course, this can also be seen by taking the convex hull of projections of spectrahedra,

Figure 1.4.: The set C2 is the area shaded in light grey and the set C (A 1,A 2) consists of the
grey shaded areas as well as the thick black lines.

because C2 is the projection of a spectrahedron, the non-negative x2-axis, too, and the
convex hull of these sets is exactly the one described above.

We continue on our way to prove that the topological interior of the projection of a
spectrahedron is the projection of a spectrahedron (again in a constructive way). We
need some more technical preparations which will allow us to reduce to the case of a
polyhedron where we can give an explicit linear matrix polynomial defining its interior.

Proposition 1.2.12. Let C1, . . . ,Cm be non-empty, convex sets and assume that the inte-
rior of the set C j is non-empty for some j ∈ {1, . . . ,m}.
(i) The set⋃

λ∈
◦
∆m−1

(λ1C1 + . . .+λmCm)

is open.
(ii) The interior of the convex hull of the union of the sets Ci equals the set of part (i):⋃

λ∈
◦
∆m−1

(λ1C1 + . . .+λmCm)= int

(
conv

(
m⋃

i=1
Ci

))
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PROOF. (i) If int(C j) is non-empty, then the set λ jC j+ y is open for all λ j > 0 and y ∈Rn.

Thus the set λ1C1 + . . .+λmCm is open for all λ ∈
◦
∆m−1 which implies that the union of

these sets is open. (ii) This follows from Proposition and 1.2.9 by claim (i).

Definition 1.2.13 (cf. Definition 1.2.2). Let Ci = πX (S (A i(X ,Y ))), i = 1, . . . ,m, be pro-
jections of spectrahedra. Write

C̃ = {(x,λ) ∈Rn+1 : ∃ y ∈RN λA0 +A(1)(x, y)≥ 0}

We set
◦
∆

m

m−1 = {(x1,λ1, . . . , xm,λm) ∈Rnm+m : (λ1, . . . ,λm) ∈
◦
∆m−1}

where
◦
∆m−1 is the interior of ∆m−1 in its affine hull, i.e.

◦
∆m−1 = {(λ1, . . . ,λm) ∈∆m−1 : λ1 >

0, . . . ,λm > 0}.
Writing π : (Rn×R)× . . .×(Rn×R)→Rn, ((x1,λ1), . . . , (xm,λm)) 7→∑m

i=1 xi, we define the set

C0(C1, . . . ,Cm)=π((C̃1 × . . .× C̃m)∩
◦
∆

m

m−1)

Remark 1.2.14. The set C0(C1, . . . ,Cm) does not depend on the chosen linear matrix
polynomials defining the projections of spectrahedra C1, . . . ,Cm, because we have (again
by Lemma 1.2.4)

(C̃1 × . . .× C̃m)∩
◦
∆

m

m−1 =
⋃

λ∈
◦
∆m−1

(λ1C1 × {λ1})× . . .× (λmCm × {λm})

Lemma 1.2.15. Let C be the projection of a spectrahedron and let F ⊂ C be an exposed
face (i.e. by definition the intersection of a supporting hyperplane of C with C itself).
Then the set C \ F is again the projection of a spectrahedron.

PROOF. By the definition of an exposed face, there is a linear polynomial ` ∈R[X1, . . . , Xn]
such that `|C ≥ 0 and {x ∈Rn : `(x)= 0}∩C = F. Now we define{

x ∈Rn : ∃ (y, z) ∈RN+1 A (x, y)�
(
`(x) 1

1 z

)
≥ 0

}
This set is equal to C \ F because we find a z ∈R such that the condition(

`(x) 1
1 z

)
≥ 0

holds if and only if `(x)> 0.

Remark 1.2.16. (i) Let P = {x ∈ Rn : `1(x) ≥ 0, . . . ,`r(x) ≥ 0} be a polyhedron defined by
linear polynomials `1, . . . ,`r ∈ R[X1, . . . , Xn]. Then the interior of P in its affine hull is
{x ∈Rn : `1(x)> 0, . . . ,`r(x)> 0} which can be written as{

x ∈Rn : ∃ (z1, . . . , zr) ∈Rr
(
`1(x) 1

1 z1

)
� . . .�

(
`r(x) 1

1 zr

)
≥ 0

}
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1.3. A Local-Global Principle for Projections of Spectrahedra

The linear matrix inequality describing the spectrahedron given in the above equation
is of lower matrix dimensions than the one given in the proof of the above Lemma.

(ii) Since we get by part (i) a representation of
◦
∆m−1 as the projection of a spectrahedron,

we now know that C0(C1, . . . ,Cm) as defined in 1.2.2 for projections of spectrahedra
C1, . . . ,Cm is again the projection of a spectrahedron.

Now, the result is easy to prove:

Theorem 1.2.17. The interior of a set which is the projection of a spectrahedron is again
the projection of a spectrahedron.

PROOF. Let C be the projection of a spectrahedron. If the interior of C is empty, then
there is nothing to prove. If the interior of C is non-empty, then take x ∈ int(C). Remark
1.2.16(ii) tells us that C0(C, {x}) is the projection of a spectrahedron. By Proposition
1.2.12 (cf. Remark 1.2.14) this is the interior of the convex hull of the union of C and {x},
which is obviously the interior of C.

1.3. A Local-Global Principle for Projections of
Spectrahedra

We will prove a result which will imply that a compact convex set is the projection of a
spectrahedron if and only if it is locally on its boundary. To state it precisely, we need
some basics of convex geometry:

Definition 1.3.1. Let C be a convex set. A point a ∈ C is called an extreme point of C if
for all b, c ∈ C such that 1

2 (b+ c)= a we have b = a = c. We will write Ex(C) for the set of
all extreme points of C.

Lemma 1.3.2. Let D ⊂Rn be a set. A point a ∈Rn is an extreme point of the convex hull
of D if and only if a is in D and not in the convex hull of D \{a}.

PROOF. Take x ∈ conv(D)\D. Then we have x =∑m
i=1λidi where λi > 0,

∑m
i=1λi = 1, di ∈

D, di 6= d j for all i 6= j and m ≥ 2. Without loss of generality we can assume that λ2 ≥λ1.
We set b = 1

2λ1d1 + (λ2 + 1
2λ1)d2 +∑m

i=3λidi and c = 3
2λ1d1 + (λ2 − 1

2λ1)d2 +∑m
i=3λidi.

These two points lie in the convex hull of D and satisfy 1
2 (b+ c) = x. As we also have

b− c = λ1(d2 −d1) 6= 0, the point x cannot be an extreme point of the convex hull of D.
Thus every extreme point of conv(D) is an element of D.
An extreme point of conv(D) cannot be a convex combination of other elements of conv(D):
Let a be an extreme point of conv(D) and a = ∑m

i=1λidi where λi > 0, m ≥ 2. Then
we have a = 1

2 d1 + 1
2

1
1−λ1

(∑m
i=2λidi

)
, whence we deduce d1 = a and 1

1−λ1

∑m
i=2λidi = a.

By iteration of this argument, we finally arrive at di = a for all i = 1, . . . ,m and thus
a ∉ conv(D \{a}).
Conversely, take a ∈ D such that a ∉ conv(D\{a}). Take b, c ∈ conv(D) such that 1

2 (b+c)=
a. Then we have a ∈ conv({b, c}). Now it follows from a ∉ conv(D)\{a} that b = a = c which
means that a is an extreme point of conv(D).
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1. Spectrahedra and Their Projections

Theorem 1.3.3 (Theorem of Minkowski, cf. [Bar02], Theorem II.3.3). Let C ⊂ Rn be a
non-empty, compact and convex set. Then C is the convex hull of the set of its extreme
points:

C = conv(Ex(C))

As the proof is a short and simple proof by induction on the dimension of C, we include
it here:

PROOF. If the dimension of C is 0, then C is a point and therefore there is nothing to
show. We proceed by induction: Let the dimension of C ⊂ Rn be n (if the dimension of
C is d < n, then it is contained in an affine subspace of Rn (cf. [Bar02], Theorem II.2.4)
and this case is included in the induction hypothesis). If x ∈ ∂C, then x is contained in a
face F of C (cf. [Bar02], Corollary II.2.8) and therefore a convex combination of extreme
points of this face by induction hypothesis. This implies the result in this case because
Ex(F)⊂Ex(C).
Now take x ∈ int(C) and take any line L through x. Then L∩C = [y, z]= {λy+(1−λ)z : λ ∈
[0,1]} for some y, z ∈ ∂C. Since y and z are convex combinations of extreme points of C,
the same is true for x, which finishes the proof.

Remark 1.3.4. The set of all extreme points of a convex set C is the smallest set (with
respect to inclusion) such that C is the convex hull of this set. Note that it need not be
closed if n ≥ 3.

Theorem 1.3.5. Let C ⊂ Rn be a compact and convex set. Then C is the projection of a
spectrahedron if and only if every x ∈ cl(Ex(C)) possesses a neighbourhood Ux such that
the set Ux ∩C is the projection of a spectrahedron.

PROOF. If there is a neighbourhood Ux for all x ∈ cl(Ex(C)) such that Ux ∩C is the
projection of a spectrahedron, then we can find (as cl(Ex(C)) is compact) a finite number
of points x1, . . . , xr ∈ cl(Ex(C)) such that cl(Ex(C))⊂ (Ux1 ∪ . . .∪Uxn)∩C. Now we know by
Theorem 1.2.7 and Theorem 1.3.3 that C is the projection of a spectrahedron.
The converse is obvious because cl(B(x, r)) is a spectrahedron for all x ∈ R and all r ≥
0.

Remark 1.3.6. Theorem 1.3.5 is a generalisation of [HN09], Proposition 4.3.
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2. Truncated Quadratic Modules and
the Lasserre-Relaxation

2.1. Quadratic Modules and Convex Cones

Throughout this section, we fix polynomials g1, . . . , gr ∈ R[X1, . . . , Xn] and denote by
C = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} the basic closed semi-algebraic set defined by those
polynomials. Furthermore we set g0 = 1= g(0,...,0).

Firstly, we will introduce and talk about preorderings and quadratic modules.

Definition 2.1.1. (a) The set PO(g1, . . . , gr) = {
∑
α∈{0,1}r σαgα : σα ∈ ∑

R[X1, . . . , Xn]2} is
called the preordering generated by g1, . . . , gr. For k ∈N, we call the set

PO(g1, . . . , gr)k =
{ ∑
α∈{0,1}r

σαgα : σα ∈∑
R[X1, . . . , Xn]2, deg(σαgα)≤ k

}
⊂R[X1, . . . , Xn]k

the truncated preordering of degree k.
(b) The set QM(g1, . . . , gr)= {

∑
σi g i : σi ∈∑

R[X1, . . . , Xn]2} is called the quadratic module
generated by g1, . . . , gr. Analogously, we write

QM(g1, . . . , gr)k =
{

r∑
i=0

σi g i : σi ∈
∑
R[X1, . . . , Xn]2, deg(σi g i)≤ k

}
⊂R[X1, . . . , Xn]k

for k ∈N and call this set the truncated quadratic module of degree k.

Remark 2.1.2. (i) Every preordering is a quadratic module.
(ii) If we choose different defining polynomials p1, . . . , ps for the set C and we have
QM(g1, . . . , gr) = QM(p1, . . . , ps), then by writing p j = ∑

f 2
i j g i with polynomials f i j ∈

R[X1, . . . , Xn] we get QM(p1, . . . , ps)k ⊂ QM(g1, . . . , gr)k′ , where k′ = k+2max{deg( f i j)}+
max{deg(g i)−deg(p j) : i = 1, . . . , r and j = 1, . . . , s}.

In fact, every truncated quadratic module is a convex cone.

Definition 2.1.3. (a) A non-empty subset K of an R-vector space is a cone if for all x ∈ K
and α ∈R≥0 we have αx ∈ K .
(b) A cone K is called pointed if it does not contain a line, i.e. for all x ∈ K \ {0} we have
−x ∉ K .
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2. Truncated Quadratic Modules and the Lasserre-Relaxation

Remark 2.1.4. (i) A cone K is convex if and only if it is closed under addition, i.e. if
for all x, y ∈ K we have x+ y ∈ K : If the cone is closed under addition, then convexity is
obvious. Conversely, if K is convex and we take x, y ∈ K , then it is closed under addition
by the equality x+ y= 1

2 (2x)+ 1
2 (2y).

(ii) If we have a cone in Rn, then its topological closure will again be a cone.

Example 2.1.5. (i) Obviously, every union of lines is a cone and so is every union of sets
of the form {αx : α ∈R≥0} for x ∈V .
(ii) Every quadratic module, and in particular also every preordering, in R[X1, . . . , Xn] is
a convex cone.

We will now investigate how topological and algebraic properties of truncated quadratic
modules relate. It is convenient to have the following notion at hand.

Definition 2.1.6. Let V be an R-vector space and A ⊂V a convex subset. A point x ∈ A
is called an algebraic interior point if for all v ∈ V there is a scalar a > 0 such that
x+av ∈ A.

Remark 2.1.7. (i) If V is a topological R-vector space, then every interior point of A is
an algebraic interior point. (cf. [Köt69], page 177).
(ii) If V = Rn, then x ∈ A is an algebraic interior point of A if and only if x is in the
topological interior of A.

As a first, basic and abstract result, we have the following:

Lemma 2.1.8. Let V be an R-vector space, let K ⊂V be a cone.
(i) If K has an algebraic interior point, then V = K −K = {x− y : x, y ∈ K}.
(ii) If V is finite dimensional, K is convex and V = K−K , then K has an algebraic interior
point.

PROOF. (i) Let x0 ∈ K be an algebraic interior point of K and let {vi}i∈I be an R-basis
of V . Take y ∈ V and write y = ∑

i∈I aivi where ai = 0 for almost all i ∈ I. Put J = {i ∈
I : ai 6= 0}. Choose for every j ∈ J a real number ε j such that a jε j > 0 and x0 +ε jv j ∈ K .
Thus we have −a j

ε j
x0 ∈−K and therefore y=∑

j∈J

(
a j
ε j

(x0 +ε jv j)− a j
ε j

x0

)
∈ K −K .

(ii) If K has no algebraic interior point, then the interior of K is empty (by Remark
2.1.7(i)) and therefore K is contained in a hyperplane H ⊂ V by Theorem II.2.4 in
[Bar02]. Hence we have K −K ⊂ H (V .

Remark 2.1.9. We cannot drop any of the additional assumptions in part (ii) of the
preceding Lemma as the following examples show:
(i) Take V = ⊕i∈NR = {(x1, x2, . . .) : xi ∈ R, xi = 0 for almost all i ∈ N} and define the set
A = {(a1,a2, . . .) : a j > 0 for j = max{i ∈ N : ai 6= 0}}. It is a convex subset of the infinite
dimensional R-vector space V and we have A − A = V . But A does not contain any
algebraic interior point: Let a = (a1,a2, . . .) ∈ A and j = max{i ∈ N : ai 6= 0}. Put x =
(x1, x2, . . .) ∈ V , xi = 0 for all i 6= j+1 and x j+1 =−1. Then the point a+ tx does not lie in
A for any choice of t > 0. The set A is thus also an example for a convex set which does
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2.1. Quadratic Modules and Convex Cones

not contain any algebraic interior point and is not contained in any hyperplane in V .
(ii) Take V =Rn and let {e i}i=1,...,n be the standard basis. Put K = {(x1,0, . . . ,0) ∈Rn : x1 ≥
0}∪ {(0, x2, . . . , xn) : (x2, . . . , xn) ∈Rn−1}. The set K is a cone (as it is the union of sets of the
form {αx : α ∈R≥0} for some x ∈V ) and we have K−K =V , but the interior of K is empty.

This abstract setup specialises to the following, useful result on truncated quadratic
modules:

Lemma 2.1.10 (cf. [KMS05], p. 4287). Let k ∈ N be even. Then the interior of the cone
QM(1)k ⊂ R[X1, . . . , Xn] (the truncation of the cone of sums of squares) is non-empty.
In particular, the interior of any truncation of a quadratic module QM(g1, . . . , gr)k (or
PO(g1, . . . , gr)k) is non-empty.

PROOF. By Lemma 2.1.8 it suffices to show that QM(1)k −QM(1)k = R[X1, . . . , Xn]k.
From the equation

pq = 1
2

(
(p+ q)2 − p2 − q2)

we get that Xα ∈QM(1)k −QM(1)k for all α ∈Nr, |α| ≤ k, which completes the proof.

Remark 2.1.11. The above lemma is in general false for odd k ∈ N, because it might
occur that we have QM(g1, . . . , gr)k−1 =QM(g1, . . . , gr)k. This is for example the case for
the cone of sums of squares

∑
R[X1, . . . , Xn]2 =QM(1) and all odd k ∈N.

We will get more information by making the dual space part of our considerations in
the following way:

Definition 2.1.12. Let V be an R-vector space and let K ⊂ V be a cone. We define the
dual cone K∨ of K to be the set of all linear functionals on V that only take non-negative
values on K

K∨ = {L ∈V∨ : L|K ≥ 0}⊂V∨

Remark 2.1.13. Let D ⊂ Rn be a set. Then the closure of the convex hull of D is the
intersection of all closed half-spaces containing D, i.e.

cl(conv(D))=⋂
{`−1([0,∞)) : ` ∈R[X1, . . . , Xn]1,`|D ≥ 0}

This statement is an easy corollary to the separation theorem for convex sets (cf. for
example [Bar02], Theorem III.1.3): Take x ∈ Rn \ cl(conv(D)). Then there exists a real
number c ∈R and a linear functional ` : Rn →R such that `(x)< c and `|cl(conv(D))≥ c.
In the case of D being a cone we get

cl(conv(D))=⋂
{`−1([0,∞)) : ` : Rn →R linear,`|D ≥ 0}

We gather the relationships of the properties of a cone and its dual:
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2. Truncated Quadratic Modules and the Lasserre-Relaxation

Proposition 2.1.14. Let V be a finite-dimensional R-vector space and let K ⊂ V be a
cone.
(i) The dual cone K∨ of K is a closed, convex cone.
(ii) If the interior of K is non-empty, then the dual cone K∨ is pointed.
(iii) The interior of the dual cone K∨ consists of all functionals which are positive on
cl(K)\{0}, i.e. int(K∨)= {L ∈V∨ : ∀ x ∈ cl(K)\{0} : L(x)> 0}.
(iv) If the closure of K is pointed, then the interior of the dual cone K∨ is non-empty.
(v) The closure of the convex hull of K is canonically homeomorphic to the bidual cone of
K . In particular, the closure of a convex cone is pointed if and only if the interior of its
dual cone is non-empty.

PROOF. (i) is clear. (ii) If K∨ is not pointed, then there is a functional L ∈ K∨ \{0} such
that −L ∈ K∨, i.e. L|K ≥ 0 and −L|K ≥ 0. This means K ⊂ {x ∈ V : L(x) = 0} and therefore
the interior of K must be empty.
(iii) Take L0 ∈ int(K∨). Then there is for all L ∈V∨ a scalar a > 0 such that L0+aL ∈ K∨

(cf. Remark 2.1.7). Let x ∈ cl(K) \ {0} and take L ∈ V∨ such that L(x) < 0. Then we get
L0 + aL(x) ≥ 0 for some a > 0 and therefore we have L(x) > 0. Conversely, if we take
L0 ∈ V∨ such that L0(x) > 0 for all x ∈ cl(K) \ {0}, then we obviously have L0 ∈ K∨ and
L0 +L ∈ K∨ for all L ∈ K∨. So take L ∈ V∨ \ K∨ and set a0 = min{L0(x) : x ∈ cl(K),‖x‖ =
1} > 0 and a = min{L(x) : x ∈ cl(K),‖x‖ = 1} < 0. Choose ε> 0 such that a0 +εa > 0. Then
we have (L0 +εL)|K ≥ 0, because of the following inequality that is valid for all x ∈ K

(L0 +εL)
(

x
‖x‖

)
= L0

(
x

‖x‖
)
+εL

(
x

‖x‖
)
≥ a0 +εa > 0

This shows that the chosen L0 is an algebraic interior point of K∨.
(iv) Put K1 = {x ∈ cl(K) : ‖x‖ = 1}. Then K1 is compact and therefore A := conv(K1) is
convex and compact (cf. [Bar02], Theorem I.2.4). If we have 0 ∈ A, then 0 = ∑r

i=1λixi
where xi ∈ K1, λi > 0,

∑r
i=1λi = 1. We deduce 0 6= −λ1x1 =∑r

i=2λixi ∈ cl(K), which means
that the closure of K is not pointed. As this is an assumption, we know 0 ∉ A. By
applying [Bar02], Theorem III.1.3, we find a scalar a ∈ R and a linear polynomial ` ∈
R[X1, . . . , Xn]1 such that `|A > a and `(0) < a. By defining L : Rn → R, x 7→ `(x)−`(0) we
get a linear functional on Rn satisfying L|A > 0 which implies L|cl(K)\{0} > 0. By part (iii)
we know that this functional L lies in the interior of K∨.
(v) The canonical homeomorphism will, of course, be the canonical isomorphism which
identifies V and V∨∨, i.e. the map that associates to x ∈ V the evaluation evx ∈ V∨∨

of a functional at x. Now let x ∉ cl(conv(K)). Then there is a linear functional ` ∈ V∨

such that `|cl(conv(K)) ≥ 0 and `(x) < 0 (again by [Bar02], Theorem III.1.3 and the fact
that K is a cone), i.e. ` ∈ K∨. But we have evx(`) = `(x) < c ≤ 0 which means evx ∉
K∨∨. Conversely, take x ∈ cl(conv(K)). As we know that cl(conv(K)) =⋂

{`−1([0,∞)) : ` ∈
V∨,`|K ≥ 0} (cf. Remark 2.1.13), we have `(x) ≥ 0 for all ` ∈ K∨, i.e. evx ∈ K∨∨. The
second part of the claim follows by using parts (ii) and (iv).

After the discussion of this general setup, we focus again on truncated quadratic mod-
ules and their duals. They will be essential for the definition of the Lasserre-relaxation
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2.1. Quadratic Modules and Convex Cones

in the next section. For the remainder of this section, let Tk denote QM(g1, . . . , gr)k or
PO(g1, . . . , gr)k.

Definition 2.1.15. For all k ∈N we define

L̂k = T∨
k = {L : R[X1, . . . , Xn]k →R : L linear,L(Tk)⊂ [0,∞)}

Lk = {L : R[X1, . . . , Xn]k →R : L linear,L(Tk)⊂ [0,∞),L(1)= 1}

Remark 2.1.16. (i) The set L̂k is the dual cone of Tk; the set Lk is convex and closed.
(ii) The interior of the cone L̂k ⊂R[X1, . . . , Xn]∨k is non-empty if and only if the cone Tk is
pointed (cf. Proposition 2.1.14). This condition is more closely reviewed in the following
lemma.

Lemma 2.1.17. (i) If the interior of C is non-empty, then Tk is pointed for all k ∈N.
(ii) If we have Tk = PO(g1, . . . , gr)k, then the converse is also true: If PO(g1, . . . , gr)k is
pointed for all k ∈N, then the interior of C is non-empty.

PROOF. (i) If Tk is not pointed for some k ∈ N, then there is a polynomial p ∈ Tk \ {0}
such that −p ∈ Tk. We deduce C ⊂ Z(p) and therefore int(C)=;.
(ii) We give a proof in appendix B.

So far, we have only considered R[X1, . . . , Xn] as an R-vector space. Now we will take a
short look at the multiplicative structure and its consequences for elements of the dual
space.

Proposition 2.1.18. Let L ∈ R[X1, . . . , Xn]∨k be a functional such that L(p2) ≥ 0 for all
p ∈ R[X1, . . . , Xn] of degree deg(p) ≤ k

2 . Then we have for all p, q ∈ R[X1, . . . , Xn] with
deg(p),deg(q)≤ k

2 the following inequality

L(pq)2 ≤ L(p2)L(q2)

In particular, if L(1)= 0, we get L(p)= 0 for all p ∈R[X1, . . . , Xn] of degree deg(p)≤ k
2 .

PROOF. Take p, q ∈R[X1, . . . , Xn], deg(p),deg(q)≤ k
2 . For all r ∈R we have

L(p2)+2rL(pq)+ r2L(q2)= L((p+ rq)2)≥ 0

The left-hand side has no real zero or a real zero of multiplicity two, considered as a
polynomial in r. Therefore we get for the discriminant of the polynomial

4L(pq)2 −4L(p2)L(q2)≤ 0

which implies the claim.
The second part of the claim is a direct consequence of the following inequality

L(p)2 = L(p1)2 ≤ L(12)L(p2)= 0
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2. Truncated Quadratic Modules and the Lasserre-Relaxation

Remark 2.1.19. (i) Despite this Lemma, the conic hull of Lk in R[X1, . . . , Xn]∨k might in
general be a proper subset of L̂k, as the following example shows:
Take PO(X ) ⊂ R[X ]. The functional L : R[X ]1 → R defined by L(1) = 0 and L(X ) = c > 0
is non-negative on PO(X )1 and therefore we have L ∈ L̂1 but obviously not in the conic
hull of L1.
This functional cannot be extended to R[X ]2 in such a way that the restriction of the
extension to PO(X )2 remains non-negative. This follows from Proposition 2.1.18 and can
be seen directly as follows: For all a > 0 we have fa := X2−2aX +a2 = (X −a)2 ∈ PO(X )2.
But for every extension of L to R[X ]2 there is a choice of a > 0 such that the extension
is negative on fa.
(ii) In general, it holds true that the closure of the conic hull of Lk in R[X1, . . . , Xn]∨k is
L̂k: Take L ∈ L̂k and L0 ∈Lk. Then the functional L+αL0 is in the conic hull of Lk for
all α> 0 and we have (L+αL0)→ L for α→ 0.

2.2. The Lasserre-Relaxation

Recall that we have fixed polynomials g1, . . . , gr ∈ R[X1, . . . , Xn] and denote by C the
basic closed semi-algebraic set defined by these polynomials. We have also put Tk =
QM(g1, . . . , gr)k or Tk = PO(g1, . . . , gr)k and Lk = {L ∈ T∨

k : L(1) = 1}; the following con-
structions work for both cases.

Definition 2.2.1. Let k be in N. The Lasserre-relaxation of C of degree k is defined to
be

Ck = {(L(X1), . . . ,L(Xn)) : L ∈Lk}⊂Rn

A more abstract definition has been developed in [GN10].

Remark 2.2.2. (i) The relaxation Ck is convex because it is the image of the convex set
Lk under the linear map π : R[X1, . . . , Xn]∨k →Rn, L 7→ (L(X1), . . . ,L(Xn)).
(ii) We have C ⊂ Ck for all k ∈ N: Fix k ∈ N. For all x ∈ Rn we know that the point
evaluation at x (denoted by evx) is a linear functional on R[X1, . . . , Xn]k and we have
evx ∈Lk if x ∈ C. Hence we get C ⊂ Ck.

Next, we will give a description of the Lasserre-relaxation in terms of the truncated
quadratic module and not its dual (cf. Theorem 2.2.4). The following, easy lemma will
prove to be very useful in the following.

Proposition 2.2.3. Let p ∈R[X1, . . . , Xn]k. If for all L ∈Lk the inequality L(p)≥ 0 holds,
then p is in the closure of Tk.

PROOF. By Remark 2.1.19(ii) we know that we also have the inequality L(p)≥ 0 for all
L ∈ L̂k. This implies the claim by application of the separation theorem for convex sets
(cf. Remark 2.1.13).
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2.2. The Lasserre-Relaxation

Theorem 2.2.4. The closure of the Lasserre-relaxation of degree k ∈N is the intersection
of all closed half-spaces whose defining, linear polynomials lie in the closure of Tk, i.e. we
have for all k ∈N

cl(Ck)= {x ∈Rn : ∀ ` ∈ cl(Tk),deg(`)= 1: `(x)≥ 0}

PROOF. An element x ∈ Ck is contained in the set on the right-hand side because we
have for all linear polynomials ` ∈R[X1, . . . , Xn]1 ∩cl(Tk) and all L ∈Lk

`(L(X1), . . . ,L(Xn))= L(`)≥ 0

Since the set on the right-hand side is closed, we get one inclusion.
Now take x ∉ cl(Ck). Since {x} is compact, cl(Ck) is closed and both sets are convex, there
is a linear polynomial ` ∈ R[X1, . . . , Xn]1 such that `(x) < 0 and `|cl(Ck) > 0 (cf. [Bar02],
Theorem III.1.3). Again by the identity `(L(X1), . . . ,L(Xn))= L(`)≥ 0 we get L(`)≥ 0 for
all L ∈ Lk and by Proposition 2.2.3 we get ` ∈ cl(Tk). We now have the other inclusion
by `(x)< 0.

Remark 2.2.5. If the interior of C is non-empty, then the cone Tk is closed for all k ∈N
(cf. [Mar08], 4.1.4, or [PS01], 2.6(b)). In this case, we can drop the closure of Tk in the
claim of the above theorem:

cl(Ck)= {x ∈Rn : ∀ ` ∈ Tk,deg(`)= 1: `(x)≥ 0}

As a special case of Theorem 2.2.4, we get the following corollary which will be used
extensively in section 3.

Corollary 2.2.6. Let k ∈ N. The closure of the Lasserre-relaxation of degree k is the
closure of the convex hull of C if and only if every linear polynomial which is non-negative
on C is contained in the closure of Tk.

PROOF. If we know that every linear polynomial which is non-negative on C is con-
tained in the closure of Tk, then we get the desired claim by Theorem 2.2.4 and and
the separation theorem for convex sets (cf. Remark 2.1.13). Conversely, if the closure
of the Lasserre-relaxation of degree k is the closure of the convex hull of C and we
take a linear polynomial p ∈ R[X1, . . . , Xn] which is non-negative on C, then we get
L(p) = p(L(X1), . . . ,L(Xn)) ≥ 0 (L ∈ Lk) by cl(Ck) = cl(conv(C)). Now we apply Proposi-
tion 2.2.3 and get the desired claim.

In order to state another corollary to the theorem, we need the following notion:

Definition 2.2.7. A quadratic module QM⊂R[X1, . . . , Xn] is called archimedean if there
is an N ∈N such that the polynomial N−∑n

i=1 X2
i lies in the quadratic module (cf. [PD01]

for more information on archimedean quadratic modules).

We can now state this new corollary:
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2. Truncated Quadratic Modules and the Lasserre-Relaxation

Corollary 2.2.8. Let C be compact and QM(g1, . . . , gr) be archimedean. Then the closure
of the convex hull of C is the intersection of all its Lasserre-relaxations:

cl(conv(C))= ⋂
k∈N

Ck

PROOF. This follows from Theorem 2.2.4 by using the separation theorem for convex
sets (cf. Remark 2.1.13) and Putinar’s Positivstellensatz (cf. [PD01], Theorem 5.3.8).

In order to prove that all linear polynomials which are non-negative on C lie in the
closure of Tk it is sometimes useful to apply Farkas’s Lemma in the following form:

Corollary 2.2.9 (to Farkas’s Lemma). Let ; 6= P ⊂Rn be a non-empty polyhedron, say

P = {x ∈Rn : `1(x)≥ 0, . . . ,`r(x)≥ 0}

where `1, . . . ,`r ∈R[X1, . . . , Xn]1 are linear polynomials. Let ` ∈R[X1, . . . , Xn]1 be a linear
polynomial which is non-negative on P and min{`(x) : x ∈ P}= 0.
Then there are a1, . . . ,ar ≥ 0 such that `= a1`1 + . . .+ar`r.

PROOF. After an affine transformation we may assume that `(0) = 0 and `i(0) ≥ 0 (i =
1, . . . , r), i.e. we move an intersection point of Z(`) and P to the origin. We identify
the polynomials with their sequences of coefficients, i.e. we write ` = (`0, . . . ,`n) and
` j = (` j

0, . . . ,` j
n) ( j = 1, . . . , r). We put A = (` j

i )0≤i≤n,1≤ j≤r ∈ M(n+1)×r(R) and b = (`0, . . . ,`n).
For all y ∈ Rn we have that y ∈ P if and only if the vector (1, y)t A = (`1(y), . . . ,`r(y)) has
only non-negative entries.
If there is a vector y′ ∈ Rn+1 such that y′tb < 0 and y′t A has only non-negative entries,
then there also is a vector y ∈Rn such that (1, y) ∈Rn+1 has the same properties because
the first entry of the vector b is `0 = 0 and there are only non-negative coefficients in
the first row of the matrix A: If the first entry y′1 of y′ is non-positive, then we can put
y= (1,0, . . . ,0)+ y′. If y′1 is positive, we put y′ = 1

y′1
y′.

This point y ∈ Rn lies in the polyhedron P, but we have `(y) = (1, y)tb < 0, which is a
contradiction. So by Farkas’s Lemma A.3.12 there is a vector x ∈Rr which only has non-
negative entries such that Ax = b, i.e. there are non-negative real numbers x1, . . . , xr
such that `= x1`1 + . . .+ xr`r.

Remark 2.2.10. (i) In the situation of Corollary 2.2.9, let u ∈ P be such that `(u) = 0.
Then we have 0 = `(u) = a1`1(u)+ . . .+ ar`r(u) and because of `i(u) ≥ 0 and ai ≥ 0 for
all i = 1, . . . , r we get ai`i(u) = 0 from this equation. So those defining polynomials
of P which vanish in u suffice to write ` as a linear combination with non-negative
coefficients.
(ii) This is the reason for the failure of Corollary 2.2.9 if the polynomial ` is positive on
P:
Let P = {(x, y) ∈ R2 : x ≥ 0} and ` = X +1. Then we have `|P > 0 and ` is no multiple of
the defining polynomial X of P.
This is of course no problem in our case because we are only interested in whether or
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not the given polynomial lies in some quadratic module. And if it is strictly positive
on C, we subtract the minimum, show then, that it is in the quadratic module and can
afterwards add it again, as it is a positive constant, i.e. a square.

We will now define a short notion for the situation about the Lasserre-relaxation
which we will be most interested in for the remainder of this work.

Definition 2.2.11. We say that the Lasserre-relaxation of C by the quadratic mod-
ule (resp. the preordering) is exact if there is a k ∈ N such that the closure of the
Lasserre-relaxation of degree k constructed by using Tk = QM(g1, . . . , gr)k (resp. Tk =
PO(g1, . . . , gr)k) equals the closure of the convex hull of C, i.e. if cl(Ck)= cl(conv(C)).
The Lasserre-relaxation of C of degree k is called exact if we have cl(Ck)= cl(conv(C)).

Remark 2.2.12. The Lasserre-relaxation of a fixed degree depends, in general, on the
chosen defining polynomials for C. But as far as exactness is concerned, the statement
whether or not there is a degree such that the Lasserre-relaxation of this degree is
exact, depends only on the quadratic module which is generated by the chosen set of
defining polynomials for C (cf. Remark 2.1.2(ii)). Consider the following examples:
(i) Let g = g1 = 1− X2 ∈ R[X ]. Then we have C = [−1,1] and the Lasserre-relaxation of
degree two will be exact by the identity

1+ X = 1
2

(1+ X )2 + 1
2

(1− X2)= 1
2
+ X + 1

2
X2 + 1

2
− 1

2
X2

because this identity implies that all linear polynomials which are non-negative on C
lie in QM(g)2 (we get 1− X by applying X 7→ −X to the above equation).
(ii) Consider again g = g1 = 1− X2 ∈ R[X ] and the Lasserre-relaxation constructed by
using QM(g3). Then it will not be exact, because f := 1+X ∉QM(g3). For if f = P g3+Q
with sums of squares P,Q ∈ ∑

R[X ]2, then f would have a zero of order at least two at
the point 1 ∈ C.
But the Lasserre-relaxations approximate C as the degree grows: Let d > 0, then 1−
X2 +d ∈ QM(g3)N for all N ≥ C1

√
4(1+d)

d log
(

4(1+d)
d

)
(with a constant C1 > 0) by [Ste96],

Theorem 5. Therefore the polynomials 1+ X + d
2 and 1− X + d

2 are also in QM(g3)N by

1+ X +d = 1
2

(1+ X )2 + 1
2

(1− X2 +d)

In the same paper, we also find lower bounds for the degree of the sums of squares
needed to represent linear polynomials: If we have 1+ X + d ∈ QM(g3)k, then we also
have by the invariance of g under the coordinate transformation X 7→ −X (reflexion on
the origin) 1− X +d ∈ QM(g3)k. Hence we get 1− X2 +2d+d2 = (1+ X +d)(1− X +d) ∈
QM(g3)2k. By [Ste96], Theorem 4, we get 2k ≥ C2

1p
2d+d2 for a constant C2 > 0.

(iii) Consider the set C = [−1,1]×R ⊂ R2 defined by g = (1− X2
1)X2

2 , then the Lasserre-
relaxation of C of arbitrary degree is R2 because no non-constant, linear polynomial lies
in QM(g). For if `= aX1+bX2+ c ∈QM(g), then we must have b = 0 (or else ` would not
be non-negative on C). Now write `=σ0 +σ1 g with sums of squares σ0,σ1 ∈ R[X1, X2].
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2. Truncated Quadratic Modules and the Lasserre-Relaxation

By substituting X2 = 0 we get that aX1 + c is a sum of squares in R[X1] and therefore
we have a = 0, which means ` is constant.
If we take as defining polynomials g1 = 1− X1 and g2 = 1+ X1 both in R[X1, X2], then
obviously the Lasserre-relaxation of degree one will be exact. Yet, if we take as defining
polynomial f = 1− X2

1 ∈ R[X1, X2], then we have QM(g1, g2) = QM( f ) (by 1− X1 = 1
2 (1−

X1)2 + 1
2 (1− X2

1) and analogously 1+ X1 = 1
2 (1+ X1)2 + 1

2 (1− X2
1)). But in order to get an

exact Lasserre-relaxation in the case QM( f ), we have to take the relaxation of degree
two.

We will now show that the set Lk is in fact a spectrahedron. So the Lasserre-relaxation
is a constructive method which allows us to find a representation of the convex hull of a
basic closed, semi-algebraic set as the projection of a spectrahedron, provided that it is
exact.

Lemma 2.2.13. Let k ∈N, put g0 = 1 and di = max{l ∈N : 2l +deg(g i) ≤ k} (we assume
deg(g i)≤ k for all i = 1, . . . , r). Put

V =
r⊕

i=0
R[X1, . . . , Xn]di

and Uk = {L ∈R[X1, . . . , Xn]∨k : L(1)= 1}. Then the map

Φ : R[X1, . . . , Xn]∨k →Bilsym(V ) , L 7→ BL

BL((p0, . . . , pr), (q0, . . . , qr)) =
r∑

i=0
L(pi qi g i)

(recall that we have put g0 = 1) is linear. Furthermore we have
(i) Let L ∈Uk. Then L is in Lk if and only if BL is positive semi-definite.
(ii) If k is even, then Φ is injective.
(iii) For all L ∈ ker(Φ), we have L(1)= 0.

PROOF. The linearity of the map Φ is obvious.
(i) If L ∈ Lk, then we have BL((p0, . . . , pr), (p0, . . . , pr)) = ∑r

i=0 L(p2
i g i) ≥ 0 for all vectors

(p0, . . . , pr) ∈ V . Conversely, if we have L ∈ Uk and we know that BL is positive semi-
definite, then we get L ∈Lk because of the identity

0≤ BL((0, . . . , p, . . . ,0), (0, . . . , p, . . . ,0))= L(p2 g i)

for all p ∈R[X1, . . . , Xn]di .
(ii) Take L ∈ R[X1, . . . , Xn]k such that BL = 0, which implies that for all i = 0, . . . , r and
pi, qi ∈ R[X1, . . . , Xn]di we have L(pi qi g i) = 0. By taking i = 0 we get L(pq) = 0 for all
p, q ∈ R[X1, . . . , Xn] k

2
. As every monomial in R[X1, . . . , Xn]k of degree less than or equal

to k is the product of two monomials of degree at most k
2 , this implies the claim.

(iii) This follows directly from L(1)= BL((1,0, . . . ,0), (1,0, . . . ,0))= 0.

Theorem 2.2.14. The set Lk is a spectrahedron for all k ∈N.
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PROOF. As QM(g1, . . . , gr)k =QM(g i : deg(g i)≤ k)k, we can assume without loss of gen-
erality that k ≥max{deg(g1), . . . ,deg(gr)}. Now Lk is the preimage of the cone of positive
semi-definite bilinear forms on the real vector space V by the map Φ both introduced
in the above Lemma 2.2.13. By the alternative definition given in Remark 1.1.2, we see
that Lk is a spectrahedron for all k ∈N.
The case Tk = PO(g1, . . . , gr)k is also covered because a truncated preordering is still a
truncated quadratic module PO(g1, . . . , gr)k =QM(gα : α ∈ {0,1}r,deg(gα)≤ k)k.

Corollary 2.2.15. Let C be a basic closed semi-algebraic set. The Lasserre-relaxation
Ck is the projection of a spectrahedron for every k ∈N.
In particular, if C has an exact Lasserre-relaxation, which implies that C is convex, then
it is the projection of a spectrahedron.

Remark 2.2.16. This result is well known and is presented for example in [Sch05b]
(cf. Lemma 24) or in [Mar08] (cf. 10.5.4(a)). There, the same construction is done by
choosing the canonical basis of monomials on the ring of polynomials R[X1, . . . , Xn]k
and by looking at Symd×d(R) instead of Bilsym(V ). The linear matrix polynomial which
is obtained by this choices of bases is the following (again we assume for simplicity
deg(g i) ≤ k for all i = 1, . . . , r): Identify a linear functional L ∈ R[X1, . . . , Xn]∨k with the
sequence of its moments (L(Xα))|α|≤k = (aα)|α|≤k. Every functional gives rise to a bilinear
form as above

BL : V ×V →R, ((p0, . . . , pr), (q0, . . . , qr)) 7→
r∑

i=0
L(pi qi g i)

This bilinear form is positive semi-definite if and only if the matrix

A i :=
( ∑
|α|≤k

γi
αaα+β+δ

)
|β|,|δ|≤di

∈Mdi×di (R)

where we write g i = ∑
|α|≤kγ

i
αXα, is positive semi-definite for all i = 1, . . . , r, which is

nothing but Lemma 2.2.13(i). Thus we get the desired linear matrix inequality

Lk =
r⋂

i=1

{
(aα)|α|≤k : A i((aα))≥ 0

}= {
(aα)|α|≤k : A1((aα))� . . .� Ar((aα))≥ 0

}
and the matrices occurring in this inequality have dimension d×d for d =∑r

i=1
(di+n

di

)
.

Remark 2.2.17. We can also give the construction of the Lasserre-relaxation completely
free of coordinates:
Let V be a finite-dimensional R-vector space, dim(V )= n. Then we have an isomorphism
of the ring of polynomials R[X1, . . . , Xn] (graded by degree) and the symmetric algebra
Sym(V∨) over the dual space of V as graded rings (cf. [Eis95], Corollary A2.3(c)). Denote
by evx the evaluation at x ∈ V , which is a linear functional on A := Sym(V∨) defined on
homogeneous elements as evx(t1 ⊗ . . .⊗ tm)= t1(x) · . . . · tm(x).
Fix elements g1, . . . , gr ∈ A and set C = {x ∈ V : evx(g1) ≥ 0, . . . ,evx(gr) ≥ 0}. For all k ∈N
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2. Truncated Quadratic Modules and the Lasserre-Relaxation

we define Lk to be the intersection of the dual cone of Tk (where Tk =QM(g1, . . . , gr)k ⊂
Sym≤k(V∨) or Tk =PO(g1, . . . , gr)k) and the affine space Uk = {L ∈ (

Sym≤k(V∨)
)∨ : L(1)=

1} (where Ak := Sym≤k(V∨) denotes the subspace of elements of degree less than or
equal to k in A). Now we fix a surjective, linear map π : A∨

k → V , L 7→ π(L) such that
`(π(L))= L(`) for all elements ` of A1 and all functionals L ∈ A∨

k . We will see below that
such a map exists and that the equality π(evx)= x holds.
We define the Lasserre-relaxation of C of degree k to be Ck :=π(Lk) for all k ∈N.
By the property π(evx) = x we get C ⊂ Ck for all k ∈N and in fact, we also get Theorem
2.2.4:
For all k ∈N we have

cl(Ck)= {x ∈V : ∀ ` ∈ cl(Tk),deg(`)= 1: evx(`)≥ 0}

The proof is completely analogous because we only used Proposition 2.2.3 and the two
properties of L 7→ (L(X1), . . . ,L(Xn)) which we assumed for π.
In fact, there is only one projection π : A∨

k → V such that `(π(L)) = L(`) holds for all
` ∈ A1 and all L ∈ A∨

k .
For take a basis {X i}i=1,...,n of V∨ and denote by {e i}i=1,...,n the dual basis on V∨∨ ∼= V .
Now take L ∈ A∨

k . Then we have X i(π(L)) = L(X i). Now write π(L) = ∑n
j=1 a j e j. Then

we get ai = X i(
∑n

j=1 a j e j) = X i(π(L)) = L(X i) which means that the coordinate vector
of π(L) in the chosen basis is exactly (L(X1), . . . ,L(Xn)) which is the projection used in
Definition 2.2.1 to define the Lasserre-relaxation.
From this argument we also see that the property π(evx) = x is implied by the property
`(π(L))= L(`).
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Lasserre-Relaxation

In this chapter, we will prove the exactness of the Lasserre-relaxation for a convex,
compact, basic closed semi-algebraic set by imposing assumptions on the defining poly-
nomials. As in the preceding chapter, we will fix throughout this chapter polynomials
g1, . . . , gr ∈ R[X1, . . . , Xn] and g0 = 1 ∈ R[X1, . . . , Xn] and mostly write C for the basic
closed semi-algebraic set defined by these polynomials. As we will always assume that
the set C is compact, we will restrict our attention to archimedean quadratic modules
(and talk briefly about it before starting with the presentation of our results). This
covers also the case of preorderings, since every preordering is a quadratic module and
every preordering defining a compact set is archimedean by Schmüdgen’s Positivstel-
lensatz (cf. [PD01], Theorem 5.2.9). In the work ( [HN10]) of Helton and Nie, both
cases are covered. As we will not present any result for preorderings which would
be superior in any way to the analogous result for archimedean quadratic modules,
we will not follow this course. The analoguous statements for preorderings are al-
ways obtained by substituting the quadratic module in the statement by the corre-
sponding preordering without any other change to the assumptions, i.e. even though
PO(g1, . . . , gr) = QM(g i g j : i, j = 0, . . . , r) it is not necessary to assume the hypothesis for
the pairwise products g i g j of the defining polynomials g i. The reason is that this is the
case for the Matrix Positivstellensatz cited below (cf. [HN10], Theorems 27 and 29).
We begin this chapter by presenting that analogue for matrices of Putinar’s Positivstel-
lensatz for polynomials (cf. [PD01], Theorem 5.3.8), which will be an essential tool in
the following proofs of theorems ensuring the exactness of the Lasserre-relaxation.

We will talk briefly about archimedean quadratic modules:

Definition 3.0.1. A quadratic module QM⊂R[X1, . . . , Xn] is called archimedean if there
is an N ∈N such that the polynomial

N −
n∑

i=1
X2

i

lies in the quadratic module QM.

Remark 3.0.2. (i) Note that an archimedean quadratic module always defines a com-
pact semi-algebraic set. The converse is not true in general. Yet it is true, if the
quadratic module happens to be closed under multiplication because it is then a pre-
ordering and therefore archimedean by Schmüdgen’s Positivstellensatz ( [PD01], Theo-
rem 5.2.9).
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(ii) To assume that the quadratic module QM(g1, . . . , gr) is archimedean is not a grave
restriction if we assume anyway that C = {x ∈ Rn : ∀ f ∈ QM(g1, . . . , gr) : f (x) ≥ 0} is
compact: We can then consider the quadratic module QM(g1, . . . , gr, gr+1) with gr+1 =
N −∑n

i=1 X2
i and N ∈ N so large that C ⊂ B(0, N). Obviously, this quadratic module is

archimedean and it also defines the same set C.
(iii) The importance of this property lies in Putinar’s Positivstellensatz (cf. [PD01], The-
orem 5.3.8): It is the essential hypothesis which distinguishes Schmüdgen’s Positivstel-
lensatz, which is formulated for preorderings, from this more special case of quadratic
modules.

Now, we will briefly summarise the facts we need to understand the analogue of Puti-
nar’s Positivstellensatz for matrices and then cite it:

Definition 3.0.3. The degree deg(F) of a matrix F = ( f i j)i, j ∈Mm×n(R[X1, . . . , Xn]) is the
maximum of the degrees of its entries, i.e. deg(F)=max{deg( f i j) : 1≤ i ≤ m,1≤ j ≤ n}.

Definition 3.0.4. A symmetric matrix F ∈ Symd×d(R[X1, . . . , Xn]) is said to be a sum of
squares if there is a k ∈N and a matrix G ∈Mk×d(R[X1, . . . , Xn]) such that F =G tG.

Remark 3.0.5. If a matrix F = ( f i j) ∈ Symd×d(R[X1, . . . , Xn]) is a sum of squares, then
the diagonal entries of F are sums of squares f ii ∈∑

R[X1, . . . , Xn]2 (i = 1, . . . ,d) of poly-
nomials.

For the following definition, observe that Md×d(R[X1, . . . , Xn]) = Md×d(R)[X1, . . . , Xn],
i.e. a square matrix polynomial is the same as a polynomial with square matrices as
coefficients.

Definition 3.0.6. (a) Let F ∈ Md×d(R) be a square matrix. We write λmax(F) for the
greatest absolute value of an eigenvalue of F, i.e. max{|λ| : λ ∈C,λ eigenvalue of F}.
(b) For a square matrix F =∑

α∈Nn
0

FαXα ∈ Md×d(R[X1, . . . , Xn]) with real coefficient ma-
trices Fα ∈Md×d(R) we define the norm of F to be

‖F‖ =max
{
λmax(Fα)

α1! · . . . ·αn!
|α|! : α ∈Nn

0

}
Next we cite the Positivstellensatz, we will use. A proof can be found in the given

reference.

Theorem 3.0.7 (cf. [HN10], Theorem 29). Let QM(g1, . . . , gr) be archimedean and let
F ∈Symd×d(R[X1, . . . , Xn]) be a symmetric matrix. Assume that there is a δ> 0 such that
for all x ∈ C we have F(x)≥ δId > 0. Then there are a constant c > 0 and sums of squares
G i ∈Symd×d(R[X1, . . . , Xn]) such that

F =G0 + g1G1 + . . .+ grGr

and deg(g iG i)≤ c
(
deg(F)2ndeg(F) ‖F‖

δ

)c
.

Remark 3.0.8. If F(x)> 0 is positive definite for all x ∈ C, then there exists such a δ> 0
as in the hypothesis of the preceding theorem due to the compactness of C and the fact
that the eigenvalues of F(x) are continuous functions of x ∈ C.
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3.1. Basic Version of the Main Results
In this section, we prove a basic theorem on which all results coming up in this chapter
will be reduced to. We begin with some technical preparations.

Remark 3.1.1. If we have two matrices A = (ai j),B = (bi j) ∈ Symd×d(R[X1, . . . , Xn])
and the polynomials F := (Y1, . . . ,Yd)A(Y1, . . . ,Yd)t = (Y1, . . . ,Yd)B(Y1, . . . ,Yd)t are equal,
where Y1, . . . ,Yd are indeterminates, then we already have A = B.
This is simply the well-known fact that there is a unique, symmetric matrix represent-
ing a quadratic form: The quadratic form in question is

F =
d∑

i, j=1

1
2

(ai j +a ji)YiY j =
d∑

i, j=1
ai jYiY j =

d∑
i, j=1

bi jYiY j

The following lemma is very convenient if one wants to check whether a matrix is a
sum of squares or not.

Lemma 3.1.2. A symmetric matrix A ∈ Symd×d(R[X1, . . . , Xn]) is a sum of squares if
and only if the polynomial (Y1, . . . ,Yd)A(Y1, . . . ,Yd)t ∈R[X1, . . . , Xn,Y1, . . . ,Yd] is a sum of
squares.

PROOF. Write Y = (Y1, . . . ,Yd). If A is a sum of squares, then there is a matrix G ∈
Mk×d(R[X1, . . . , Xn]) such that A = G tG. So the polynomial f := Y AY t = Y G tGY t is a
sum of squares in R[X1, . . . , Xn,Y1, . . . ,Yd].
Conversely, let f be a sum of squares in R[X1, . . . , Xn,Y1, . . . ,Yd], say f = f 2

1 + . . .+ f 2
k .

Since f is homogeneous of degree 2 in the variables Y1, . . . ,Yd, all polynomials f i in the
above representation of f are homogeneous of degree 1 with respect to the variables
Y1, . . . ,Yd. Let B ∈ Mk×d(R[X1, . . . , Xn]) be a matrix such that BY t = ( f1, . . . , fk)t (the jth

row of B is the coefficient vector of f j as a polynomial in the variables Yi). Then we have
Y AY t =Y BtBY t and therefore A = BtB is a sum of squares (cf. Remark 3.1.1).

With the help of the above lemma we can prove:

Lemma 3.1.3 (cf. [HN10], Lemma 7). Let P ∈Symd×d(R[X1, . . . , Xn]) be a sum of squares
and write X = (X1, . . . , Xn). Then for all u ∈ Rn the matrix F ∈ Symd×d(R[X1, . . . , Xn])
defined by

F =
∫ 1

0

∫ t

0
P(u+ s(X −u))dsdt

is a sum of squares (the integration is to be understood entrywise).

PROOF. The matrix F ∈ Symd×d(R[X1, . . . , Xn]) is a sum of squares if and only if the
polynomial (Y1, . . . ,Yd)F(Y1, . . . ,Yd)t is a sum of squares in R[X1, . . . , Xn,Y1, . . . ,Yd] (by
Lemma 3.1.2). Write Y = (Y1, . . . ,Yd) and X = (X1, . . . , Xn).
By linearity of integration we have

Y FY t =
∫ 1

0

∫ t

0
Y P(u+ s(X −u))Y tdsdt
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Since P is a sum of squares, so is the polynomial fu := Y tP(u+ s(X −u))Y ∈ R[s, X ,Y ].
Now fix a sum of squares representation of fu, say fu = f 2

1 + . . .+ f 2
k with polynomials

f1, . . . , fk ∈ R[s, X ,Y ]. Let Au(s) ∈ SymN×N(R) (where N = (n+r
r

)+ d is the sum of the
number of monomials in X1, . . . , Xn of degree ≤ r and the number of variables Yi) be
a positive semi-definite Gram matrix corresponding to the representation fu(s, X ,Y ) =
f1(s, X ,Y )2 + . . .+ fk(s, X ,Y )2 (cf. [Sch08, Kapitel V], Satz 1.11) as a polynomial in the
variables X and Y , i.e. the entries in the i-th row of Au(s) are the coefficients of f i as a
polynomial in X and Y and are therefore polynomial functions of the parameter s ∈ R.
We have

Y FY t =
∫ 1

0

∫ t

0
(1, X1, . . . , X r

n,Y1, . . . ,Yd)Au(s)(1, X1, . . . , X r
n,Y1, . . . ,Yd)tdsdt

= (1, X1, . . . , X r
n,Y1, . . . ,Yd)

∫ 1

0

∫ t

0
Au(s)dsdt(1, X1, . . . , X r

n,Y1, . . . ,Yd)t

Note that the integral
∫ 1

0
∫ t

0 Au(s)dsdt exists because we chose Au(s) in such a way that
the coefficients are continuous (in fact polynomial) functions of s.
Since the chosen Gram matrix Au(s) is positive semi-definite for all values of s ∈ R,
the matrix

∫ 1
0

∫ t
0 Au(s)dsdt is also positive semi-definite. Now it is a well known fact

(it follows for example from principal axis transformation) that there is a matrix D ∈
MN×N(R) such that D tD = ∫ 1

0
∫ t

0 Au(s)dsdt. Hence, the polynomial Y FY t is a sum of
squares in R[X ,Y ] which implies the claim.

Now to the last technical step we will need for now.

Proposition 3.1.4. Let A ∈Symd×d(R[X1, . . . , Xn]), let x,u ∈Rn. Assume A(u+s(x−u))≥
0 for all s ∈ [0,1] and A(u)> 0. Then the real matrix∫ 1

0

∫ t

0
A(u+ s(x−u))dsdt ∈Symd×d(R)

is positive definite.

PROOF. Linearity of integration implies that the matrix

F :=
∫ 1

0

∫ t

0
A(u+ s(x−u))dsdt ∈Symd×d(R)

is positive semi-definite.
Now let z ∈Rn such that ztFz = 0, i.e.

∫ 1
0

∫ t
0 zt A(u+s(x−u))zdsdt = 0. From the assump-

tion A(u+ s(x−u)) ≥ 0, we get zt A(u+ s(x−u))z = 0 for all s ∈ [0,1]. From A(u) > 0 we
therefore deduce z = 0, which means that F is positive definite.

Definition 3.1.5. A function f : D →R on a convex set D is called concave if the follow-
ing inequality holds for all x, y ∈ D and t ∈ [0,1]

f (x+ t(y− x))≥ f (x)+ t ( f (y)− f (x))= (1− t) f (x)+ t f (y)

(cf. sections A.1 and A.2 for more details)
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Now we are ready to state and prove the main result of this section:

Theorem 3.1.6. Let S = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} be a compact set and suppose
that its convex hull C := conv(S) has non-empty interior. Let p1, . . . , ps ∈ QM(g1, . . . , gr)
and assume that there is an open set U ⊂Rn with the property {x ∈U : p1(x)≥ 0, . . . , ps(x)≥
0}= C. Further assume that for all i ∈ {1, . . . , s} one of the following two conditions holds:

1. The matrix −p′′
i ∈Symn×n(R[X1, . . . , Xn]) is a sum of squares.

2. For all x ∈ Z(pi)∩ cl(Ex(C)) the matrix p′′
i (x) ∈ Symn×n(R) is negative definite and

pi is concave as a function on C.

If QM(g1, . . . , gr) is archimedean, then there is a number N ∈ N such that every lin-
ear polynomial ` ∈ R[X1, . . . , Xn]1 which is non-negative on S (and therefore also non-
negative on C) lies in the truncated quadratic module QM(g1, . . . , gr)N . In particular, the
Lasserre-relaxation for C is exact.

Remark 3.1.7. (i) In the following proof, we will need the existence of Lagrange multi-
pliers for a linear polynomial as an objective function of an optimisation problem over
C in a point, which lies in cl(Ex(C)). This hypothesis means for a semi-algebraic set
C = {x ∈ Rn : p1(x) ≥ 0, . . . , ps(x) ≥ 0}, which we will consider, that there are a minimiser
u ∈ cl(Ex(C)) of the linear polynomial ` (note that by [Bar02], Corollary II.3.4, every lin-
ear polynomial has a minimiser on C which is an extreme point of C) and non-negative
scalars λ1, . . . ,λr ∈ R, which we call Lagrange multipliers, such that the two following
conditions hold

λi g i(u) = 0 for all i = 1, . . . , r

`′(u)−
r∑

i=1
λi g′

i(u) = 0

The first of these two equations is often referred to as the complementary slackness of
Lagrange multipliers because it states simply the fact, that the Lagrange multiplier
for every non-active polynomial at u (i.e. g i(u) 6= 0) is zero. In Appendix A.3, we will
introduce so-called constraint qualifications (which is a name for sufficient conditions
ensuring the existence of Lagrange multipliers). If for example the Slater constraint
qualification or the Mangasarian-Fromowitz constraint qualification hold, this implies
the existence of Lagrange multipliers (cf. A.3.6 or A.3.11). We will also give examples of
sets which do not admit Lagrange multipliers for some objective function.
In our case, the existence of Lagrange multipliers is ensured by the so-called Mangasarian-
Fromowitz constraint qualification:
Assume that C is convex and has non-empty interior as in the hypothesis of the pre-
ceding theorem and let u ∈ ∂C. If the gradients at u of all polynomials pi which vanish
there are non-zero, then the Mangasarian-Fromowitz constraint qualification is met at
u:
In every neighbourhood of u, there is a point x such that pi(x) > 0 for all i = 1, . . . , s,
because the interior of C is non-empty. This means that there is an x ∈ C such that
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3. The Exactness of the Lasserre-Relaxation

p′
i(u)(x−u)> 0 if pi(u)= 0 (this follows from Taylor expansion at u) which is exactly the

Mangasarian-Fromowitz constraint qualification at u (cf. Definition A.3.8(b)).
So, if for all i = 1, . . . , s the gradient p′

i(u) is non-zero for all u ∈ ∂C where pi vanishes,
then the Mangasarian-Fromowitz constraint qualification holds for all linear polynomi-
als as objective functions.
But, since pi is concave on C for all i = 1, . . . , s, this is the case by Remark A.1.3 and we
therefore have Lagrange multipliers for all linear polynomials as objective functions.
(ii) We can substitute the assumption of C having non-empty interior in the hypothe-
sis of Theorem 3.1.6 by the assumption that Lagrange multipliers exist for all linear
polynomials as objective functions in a minimiser in Ex(C). The interior of C is of no
other importance in the proof than assuring the existence of Lagrange multipliers by
the Mangasarian-Fromowitz constraint qualification as just explained.

PROOF OF THEOREM 3.1.6. We want to start the proof with a technical step, which we
will need later and which would only cloud the view to the core of the proof by its sheer
length if we were to give it in the place where we need it: Let K ⊂ {1, . . . , s} be the set of
indices such that pi does not satisfy condition 1. We will show that there is a δ> 0 such
that the inequality

δIn ≤
∫ 1

0

∫ t

0
−p′′

i (u+ s(x−u))dsdt =: A i(x,u)

holds for all u ∈ Z(pi)∩cl(Ex(C)), all x ∈ S and all i ∈ K .
This claim holds because the matrices A i(x,u) are positive definite by Proposition 3.1.4
(applied to A = −p′′

i ) for all i ∈ K , all x ∈ S and all u ∈ Z(pi)∩ cl(Ex(C)). Since the set
S × (Z(pi)∩ cl(Ex(C))) ⊂ Rn ×Rn is compact for all i ∈ K , the existence of a δi > 0 with
the desired property follows because the lowest eigenvalue of A i(x,u) is a continuous
function of x and u. Now take δ=min{δi : i ∈ K} to be the smallest of these δi.
By the Matrix-Positivstellensatz 3.0.7, there are for all i ∈ K and all u ∈ Z(pi)∩cl(Ex(C))
matrices G(i)

j ∈ Symn×n(R[X1, . . . , Xn]) ( j = 0, . . . , r) which are sums of squares with de-

gree bounds deg(G(i)
j g j)≤ 2Ni −2 where

Ni =max
{

l ∈N : max{deg(g1), . . . ,deg(gr)}≤ 2l−2≤ c
(
deg(A i)2ndeg(A i) ‖A i‖

δ

)c}
such that

A i(X ,u)=G(i)
0 +

r∑
j=1

G(i)
j g j

Note that the degree of A i is bounded (independently of u) by the degree of A i(X ,0). The
norm ‖A i(X ,u)‖ also depends on u, but it is a continuous function of u (because it only
involves the greatest eigenvalues of the coefficient matrices of the matrix polynomial
A i(X ,u)) and we define ‖A i‖ to be the maximum of ‖A i(X ,u)‖ over u ∈ Z(pi)∩cl(Ex(C)).
By taking N := max{Ni : i = 1, . . . , s}, we get a uniform degree bound for the matrices
G(i)

j (this bound only depends on the dimension n, the maximal degree of p1, . . . , ps, the
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norm of the matrices A i and on δ).
Now we start with the essential argument:
Let ` ∈ R[X1, . . . , Xn]1 be a linear polynomial which is non-negative on C. By Remark
3.1.7, there is a minimiser u ∈ Ex(C) and there are Lagrange multipliers λ1, . . . ,λs ≥ 0
such that

`′(u) = λ1 p′
1(u)+ . . .+λs p′

s(u)
λi pi(u) = 0 for all i = 1, . . . , s

We define the polynomial f` := `−`∗−∑s
i=1λi pi ∈ R[X1, . . . , Xn] where `∗ denotes the

minimum of ` on C. Note that we have ` ∈ QM(g1, . . . , gr)N+N ′ if we have p1, . . . , ps ∈
QM(g1, . . . , gr)N ′ (such an N ′ ∈ N exists by hypothesis) and f` ∈ QM(g1, . . . , gr)N which
we will now show:
By the properties of the Lagrange multipliers, the polynomial f` and its derivative van-
ish at u, i.e. f`(u) = 0 and f ′

`
(u) = 0. So the following equality holds for all x ∈Rn due to

the fundamental theorem of calculus

f`(x)=
∫ 1

0

∫ t

0
f ′′` (u+ s(x−u))dsdt =

s∑
i=1

λi(x−u)t
(∫ 1

0

∫ t

0
−p′′

i (u+ s(x−u))dsdt
)
(x−u)

Put I = {i ∈ {1, . . . , s} : pi(u) = 0}, the set of indices corresponding to active inequalities
at u. Put Fi =

∫ 1
0

∫ t
0 −p′′

i (u+ s(X − u))dsdt = A i(X ,u) ∈ Symn×n(R[X1, . . . , Xn]) (which is
symmetric because the Hessian matrix of a polynomial is) for all i ∈ I and for all i ∉ I
put Fi = 0 ∈ Symn×n(R[X1, . . . , Xn]). By the complementary slackness of the Lagrange
multipliers we have

f`(x)=
s∑

i=1
λi(x−u)tFi(x)(x−u)= ∑

i∈I
λi(x−u)tFi(x)(x−u)

Let i ∈ I. If −p′′
i is a sum of squares, then the matrix Fi ∈ Symn×n(R[X1, . . . , Xn]) is a

sum of squares by Lemma 3.1.3.
Recall that we defined the set of indices K := {i ∈ I : −p′′

i is not a sum of squares}. By the
preliminary step, which we have taken at the beginning of the proof, there are matrices
G(i)

j ( j = 1, . . . , r) with a degree bound N ∈N such that

Fi =G(i)
0 +

r∑
j=1

G(i)
j g j

and deg(G(i)
j g j)≤ N for all j = 1, . . . , r and i ∈ K . Write

σ0 := ∑
i∈I\K

λi(X −u)tFi(X −u)+ ∑
i∈K

λi(X −u)tG(i)
0 (X −u)

σ j := ∑
i∈K

λi(X −u)tG(i)
j (X −u) for j = 1, . . . , r

Thus we get sums of squares σ j ∈ ∑
R[X1, . . . , Xn]2 and end up with a representation

f` =σ0+σ1 g1+ . . .+σr gr of f` with uniform (in `) degree bounds deg(σ j g j)≤ 2N. So we
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get f` ∈QM(g1, . . . , gr)2N as desired.
The second part of the claim about the exactness of the Lasserre-relaxation is simply
an application of Corollary 2.2.6.

Remark 3.1.8. This Theorem in particular states the following:
Let C = {x ∈U : p1(x) ≥ 0, . . . , ps(x) ≥ 0} (for an open set U ⊂ Rn) be a locally basic-closed
semi-algebraic and compact set with non-empty interior such that the defining polyno-
mials p1, . . . , ps satisfy the hypothesis of Theorem 3.1.6, i.e. condition 1 or 2. Then the
Lasserre-relaxation for C is exact for all archimedean quadratic modules QM(g1, . . . , gr)
such that the convex hull of the set S = {x ∈Rn : g1(x)≥ 0, . . . , gr(x)≥ 0} is C.

As an immediate corollary, we get a first criterion for the exactness of the Lasserre-
relaxation.

Corollary 3.1.9 (cf. [HN10], Theorem 5 and 6). Let C = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0}
be convex and compact with non-empty interior. Assume that one of the two following
conditions holds for all i ∈ {1, . . . , r}:

1. The matrix −g′′
i is a sum of squares in Symn×n(R[X1, . . . , Xn]).

2. For all x ∈ Z(g i)∩ cl(Ex(C)) the matrix g′′
i (x) ∈ Symn×n(R) is negative definite and

g i is concave as a function on C.

If QM(g1, . . . , gr) is archimedean, then the Lasserre-relaxation (by the quadratic module)
is exact.

Remark 3.1.10. This corollary implies [HN10], Theorem 1. There, the authors assume
that the matrix

∑r
i=1λi g′′

i (u`) is negative definite for all linear polynomials ` and every
minimiser u` ∈ C of ` on C as well as every possible tuple of Lagrange multipliers for `
at u`, which they need in order to make a compacity argument in the proof work. Since
the defining polynomials are supposed to be concave and C to have non-empty interior
in the hypothesis of this theorem, we conclude from Remark A.1.3 that the gradient of
g i does not vanish in any zero of g i on C.
In particular, if we take a zero x ∈ C of g i, then (0, . . . ,1, . . . ,0) is a valid tuple of La-
grange multipliers for the linear functional v 7→ g′

i(x)v, which minimises in x because
{v ∈Rn : g′

i(x)(v− x)≥ 0} is a supporting hyperplane to C at x. Therefore that hypothesis
says that g′′

i (x) is negative definite. This is essentially condition 2 in the hypothesis of
the above corollary 3.1.9.

Example 3.1.11. Consider g = 1−X4
1 −X4

2 −X2
1 X2

2 ∈R[X1, X2] and the set C = {(x1, x2) ∈
R2 : g(x1, x2)≥ 0}. We have g′ = ( −4X3

1 −2X1X2
2 −4X3

2 −2X2
1 X2

)
and the Hessian ma-

trix of g is

g′′ =
( −12X2

1 −2X2
2 −4X1X2

−4X1X2 −12X2
2 −2X2

1

)
Indeed, −g′′

i is a sum of squares: By Lemma 3.1.2 we need to show that the polynomial
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Figure 3.1.: The grey shaded area is the set {(x1, x2) ∈Rn : 1− x4
1 − x4

2 − x2
1x2

2 ≥ 0}.

f :=Y 2
1 (12X2

1 +2X2
2)+Y 2

2 (12X2
2 +2X2

1)+8Y1Y2X1X2 =
(

Y1 Y2
)
(−g′′)

(
Y1 Y2

)t

is a sum of squares in R[X1, X2,Y1,Y2]. We show that this polynomial is non-negative
on R4:
The polynomial f is globally non-negative if the polynomial

f̃ := f
Y 2

1
=

(
Y2

Y1

)2
(12X2

2 +2X2
1)+

(
Y2

Y1

)
8X1X2 +12X2

1 +2X2
2 ∈R[

Y2

Y1
, X1, X2]

is non-negative on the whole of R3. We look at this polynomial as a polynomial in the
variable Y2

Y1
and calculate its discriminant

δ f̃ = 64X2
1 X2

2 −4(12X2
2 +2X2

1)(12X2
1 +2X2

2)=−512X2
1 X2

2 −16(6X4
1 +6X4

2 +X2
1 X2

2)≤ 0

As the leading coefficient of f̃ as a polynomial in Y2
Y1

is positive, we get that f̃ is non-
negative on R3. From [CLR80], Theorem 7.1, which states roughly that every globally
non-negative biform of degree (m,2) is a sum of squares, we know that f is a sum of
squares in R[X1, X2,Y1,Y2], so the Lasserre-relaxation for C is exact by Corollary 3.1.9
above.
(The quadratic module QM(g) is archimedean because C is compact and QM(g)=PO(g)
and therefore we have N−X2

1 −X2
2 ∈QM(g) for all N ∈N such that N−x2

1−x2
2 > 0 for all

(x1, x2) ∈ C by Schmüdgen’s Positivstellensatz (cf. [PD01], Theorem 5.2.9).)

We can now easily deduce the following result:

Corollary 3.1.12. Let C = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} be compact, and assume that
QM(g1, . . . , gr) is archimedean. Then there is an N ∈N such that for all k ≥ N the closure
cl(Ck) of the Lasserre-relaxation of degree k is compact.

In [Las09], it is shown using Putinar’s Positivstellensatz with results on degree bounds
(proved in [NS07]) that under these hypothesis, the Lasserre-relaxations approximate
C in the Hausdorff-metric (cf. [Las09], Theorem 6). This is mainly a combination of this
corollary and Corollary 2.2.8.

PROOF. By the archimedean condition there is an R > 0 such that f := R −∑n
i=1 X2

i ∈
QM(g1, . . . , gr), i.e. QM( f ) ⊂ QM(g1, . . . , gr). By Corollary 3.1.9 the Lasserre-relaxation
for cl(B(0,R)) is exact (because the negative Hessian matrix of f is a sum of squares).
Thus there is a N ∈N such that for all k ≥ N we have cl(Ck)⊂ cl(B(0,R)).
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3.2. Strictly Quasiconcave Polynomials
In this section, we will begin to exploit the fact that Theorem 3.1.6 allows us to substi-
tute the defining polynomials. In order to do that in a helpful way, we need again some
preparations.

Proposition 3.2.1 (cf. [HN10], Lemma 13). For every constant M > 0 there exists a
polynomial q ∈R[X ] in one variable such that for all t ∈ [0,1] we have

q(t) > 0
q(t)+ q′(t)t > 0

2q′(t)+ q′′(t)t
q(t)+ q′(t)t

≤ −M

PROOF. We consider the function

h : R→R, t 7→ h(t)=
∞∑

k=0

(−1)k

(k+1)!
(M+1)ktk =

{
1 , if t = 0

1−exp(−(M+1)t)
(M+1)t , if t ∈ (0,1]

This function is in h ∈C∞([0,1])=C∞((0,1))∩C ([0,1]) because

lim
t→0

h(t)= lim
t→0

1−exp(−(M+1)t)
(M+1)t

= lim
t→0

(M+1)exp(−(M+1)t)
M+1

= 1

by l’Hôpital’s rule. Next, we calculate for t ∈ (0,1)

h(t)+ th′(t)= (th(t))′ = exp(−(M+1)t)
2h′(t)+ th′′(t)= (h(t)+ th′(t))′ =−(M+1)exp(−(M+1)t)

and put qN := ∑N
k=0

(−1)k

(k+1)! (M +1)ktk, i.e. the initial part of the series defining h up to
degree N. Obviously, the sequence of polynomials (qN)N∈N converges (and all its deriva-
tives) pointwise to the function h (and its derivatives) and, since [0,1] is compact and
the limit is differentiable of any order, it converges also in C 2([0,1]) equipped with the
norm

‖ f ‖C 2 =
2∑

i=0

1
i!

max{ f (i)(x) : x ∈ [0,1]}

(i.e. the sequence {q(i)
N }N∈N converges uniformly in C ([0,1]) for i = 0,1,2). So there is for

all ε> 0 an N ∈N such that for all t ∈ [0,1]

|qN(t)−h(t)| < ε

|q′
N(t)−h′(t)| < ε

|q′′
N(t)−h′′(t)| < ε

As h satisfies the claimed properties and the third of them with −M −1 on the right
hand side, so does qN for sufficiently large N ∈N.
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3.2. Strictly Quasiconcave Polynomials

The assumption on the polynomial that we will need in order to substitute it in a
reasonable way will be the following:

Definition 3.2.2. Let D ⊂Rn be open. A twice differentiable function f : D →R is called
strictly quasiconcave in x ∈ D if for all y ∈ Rn, y 6= 0 such that f ′(x)y = 0 the following
inequality holds

yt f ′′(x)y< 0

It is said to be strictly quasiconcave on D if it is strictly quasiconcave in all points x ∈ D
of D.

Remark 3.2.3. Note that, if the gradient of the function f in the above definition van-
ishes in the point x ∈ D, then the definition means simply that the Hessian of the poly-
nomial in that point is negative definite.

Lemma 3.2.4 (cf. [HN10], Proposition 10). Let D ⊂Rn be a convex and compact set and
let g ∈R[X1, . . . , Xn] be a polynomial which is strictly quasiconcave and non-negative on
D. Then there is a polynomial h ∈R[X1, . . . , Xn] satisfying the following conditions:
(i) h is positive on D, i.e. h(x)> 0 for all x ∈ D.
(ii) The Hessian matrix of the polynomial p = gh is negative definite for all x ∈ D,
i.e. p′′(x)< 0 for all x ∈ D. In particular, p is concave as a function on D.

PROOF. Without loss of generality, we can assume that g(D) ⊂ [0,1] (by scaling the
coefficients of the polynomial). For any polynomial q ∈ R[X ], we calculate the second
derivative of p = gq(g) by applying the product rule

p′′ = (
q(g)+ q′(g)g

)
g′′+ (

2q′(g)+ q′′(g)g
)

g′t g′

= (
q(g)+ q′(g)g

)(
g′′+ 2q′(g)+ q′′(g)g

q(g)+ q′(g)g
g′t g′

)
We now see that if we choose q to be a polynomial as in the above Proposition 3.2.1 with
the constant M given by Remark A.2.2 and making the right expression in brackets
in the above equation a negative definite matrix, i.e. we choose M greater than the
maximum over all non-negative eigenvalues of g′′(x) for x ∈ D (or any M > 0 if there
are no non-negative eigenvalues of g′′(x)), then we get the desired claims by putting
h := q(g).

We can now prove the following

Theorem 3.2.5 (cf. [HN10], Theorem 2). Let C = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} be
convex and compact. Assume that one of the three following conditions is satisfied for all
i = 1, . . . , r:

1. The matrix −g′′
i ∈Symn×n(R[X1, . . . , Xn]) is a sum of squares.

2. For all x ∈ Z(g i)∩ cl(Ex(C)) the matrix g′′
i (x) ∈ Symn×n(R) is negative definite and

g i is concave as a function on C.
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3. The Exactness of the Lasserre-Relaxation

3. The polynomial g i is strictly quasiconcave as a function on C.

If QM(g1, . . . , gr) is archimedean, then the Lasserre-relaxation for C by the quadratic
module QM(gα : |α| ≤ 2) (i.e. we take the quadratic module generated by g1, . . . , gr and
all the products of two of them) is exact.

PROOF. We substitute all defining polynomials which do not satisfy condition 1 or 2 by
polynomials pi as guaranteed by Lemma 3.2.4. These polynomials lie in the quadratic
module QM(gα : |α| ≤ 2) because the polynomial hi in Lemma 3.2.4 is in QM(g1, . . . , gr),
which is archimedean by hypothesis, by Putinar’s Positivstellensatz (cf. [PD01], The-
orem 5.3.8). We put pi = g i if g i satisfies condition 1 or 2. Thus we get polynomi-
als p1, . . . , pr ∈ QM(gα : |α| ≤ 2) as in the hypothesis of Theorem 3.1.6 and so get the
claim.

Remark 3.2.6. (i) Condition 3 in the above Corollary 3.2.5 compares to condition 2 in
points x ∈ Z(g i)∩ cl(Ex(C)), namely condition 2 implies condition 3 in these points. But
in other points and foremost in interior points, they do not compare: As we show in
Remark A.1.6(iii) and (iv), the assumption on a function to be concave or to be strictly
quasiconcave on a convex set are logically independent of each other. We will take a
closer look at the comparability of the three conditions in the above Corollary 3.2.5 in
the following examples.
(ii) If we take the preordering generated by g1, . . . , gr instead of the quadratic module
QM(g1, . . . , gr) in the above corollary, then the Lasserre-relaxation by the same pre-
ordering PO(g1, . . . , gr) is exact because a preordering is stable under multiplication and
archimedean if and only if the described set is compact (by Schmüdgen’s Positivstellen-
satz, cf. [PD01], Theorem 5.2.9).

Examples 3.2.7. (i) We consider the polynomials g1 = 1− X2
1 ∈ R[X1, X2] and g2 = 1−

X2
2 ∈R[X1, X2] and the convex and compact set

C = {(x1, x2) ∈R2 : g1(x1, x2)≥ 0, g2(x1, x2)≥ 0}= [−1,1]× [−1,1]

We calculate the Hessian matrix of the two polynomials

g′′
1 =

( −2 0
0 0

)
g′′

2 =
(

0 0
0 −2

)
which immediately shows that they are both a sum of squares in Sym2×2(R[X1, X2]).
So we know by Corollary 3.1.9 as well as Theorem 3.2.5 that the Lasserre-relaxation
by the quadratic module QM(g1, g2) (which is archimedean because of the identity
g1 + g2 = 2− X2

1 − X2
2) is exact.

But neither the polynomial g1 nor the polynomial g2 is strictly quasiconcave and none
of them has a negative definite Hessian matrix if evaluated in points x ∈ Z(g i)∩∂C. So
condition 1 in Corollary 3.2.5 is independent of conditions 2 or 3.
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3.2. Strictly Quasiconcave Polynomials

Figure 3.2.: The grey area defined in terms of polynomials by X1, 1−X2
1 −X2 and 4X1X2−1 is

the projection of a spectrahedron. This example shows that Theorem 3.2.5 is more
general than Corollary 3.1.9.

(ii) Here, consider g1 = X1, g2 = 1− X2
1 − X2

2 , g3 = 4X2
1 X2 −1 ∈ R[X1, X2], all as poly-

nomials in two variables (cf. Figure 3.2). The Hessian matrices of the polynomials g1
and g2 are both sums of squares in Sym2×2(R[X1, X2]) and the polynomial g3 is strictly
quasiconcave on the set C := {(x1, x2) ∈R2 : g1(x1, x2)≥ 0, g2(x1, x2)≥ 0, g3(x1, x2)≥ 0}. For
the derivative of g3 is g′

3(x1, x2)= 4( 2x1x2 x2
1 ) and the Hessian matrix is

g′′
3(x1, x2)=

(
8x2 8x1
8x1 0

)
For all x1 > 0 and x2 > 0 we have: g′

3(x1, x2)
(

x2
1 −2x1x2

)t = 0 and

( x2
1 −2x1x2 )g′′

3(x1, x2)
(

x2
1

−2x1x2

)
=−24x4

1x2 < 0

Observing that C is convex and compact and QM(g1, g2, g3) archimedean (because of
g2), we get from Theorem 3.2.5 the exactness of the Lasserre-relaxation by the quadratic
module. Corollary 3.1.9 does not give this result in this case because the Hessian matrix
of g3 is indefinite (the determinant is det(g′′

3(x1, x2))=−64x2
1).

(iii) Corollary 3.1.9 is also not strong enough to cover the following example of a spec-
trahedron: Take g1 = 1− X2

1 − X2
2 , g2 = 4X1X2 −1, g3 = X1 ∈ R[X1, X2] (cf. Figure 3.3).

Since the Hessian matrix of g2 is indefinite, this polynomial is not concave. This set
is a spectrahedron because it is the intersection of two spectrahedra, namely the disc
D2 and {(x1, x2) ∈ R2 : x1 ≥ 0,4x1x2 −1 ≥ 0}. The latter is rigidly convex and therefore a
spectrahedron by the Theorem of Helton and Vinnikov 1.1.7; a representation can also
be given explicitly(

2x1 1
1 2x2

)
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3. The Exactness of the Lasserre-Relaxation

Figure 3.3.: The grey area is a spectrahedron defined in terms of polynomials by X1, 1−X2
1−X2

2
and 4X1X2 −1.

Since the polynomial g2 is strictly quasiconcave in the first quadrant, we know at least
by Theorem 3.2.5 that it is the projection of a spectrahedron.

3.3. Extension of the Boundary
We still fix a basic closed, semi-algebraic set C ⊂Rn defined by g1, . . . , gr ∈R[X1, . . . , Xn].
With the help of Theorem 3.2.5 and the local-global principle for projections of spectra-
hedra 1.3.5, we can easily prove the following

Corollary 3.3.1. Let C = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} be compact and convex with
non-empty interior. Assume that for all i = 1, . . . , r one of the following conditions holds:

1. The matrix −g′′
i is a sum of squares in Symd×d(R)[X1, . . . , Xn].

2. The polynomial g i is strictly quasiconcave in every point x ∈ Z(g i)∩∂C.

Then the set C is the projection of a spectrahedron.

PROOF. Condition 1 is a global condition and it suffices to observe that condition 2 is
open which is done in A.2.1(iii): Since C is compact, we can now cover the boundary of
C with a finite number of sets of the form C∩B(xi, r i) for points xi ∈ ∂C, r i > 0, such that
the hypothesis of Theorem 3.2.5 is met (note that the canonical defining polynomial of
the disk cl(B(xi, r i)) satisfies condition 1). The archimedean condition on the quadratic
module can be forced by adding the polynomial N −∑n

i=1 X2
i for sufficiently large N ∈N

to the list of defining polynomials (again, note that this polynomial satisfies condition
1). So, by the local-global principle (cf. Theorem 1.3.5), we get the claim.

We will now further exploit the possibility of replacing the defining polynomials by
others which still lie in the quadratic module QM(g1, . . . , gr) generated by the defin-
ing polynomials of C in order to improve this result. We would like to show that the
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3.3. Extension of the Boundary

Lasserre-relaxation by the quadratic module QM(g1, . . . , gr) is exact, which has the ad-
vantage of knowing, in theory, how to construct a representation explicitly. In order to
do this in practise, we might come to too high dimensions to calculate the representa-
tion. On the other hand, if we need to apply the local-global principle, then we first
have to find a covering of the boundary by projections of spectrahedra, which is not an
easier problem at all. Unfortunately, we will only get that the Lasserre-relaxation by
the quadratic module QM(gα : |α| ≤ 2) is exact (as in Theorem 3.2.5) and, which is worse,
we will have to strengthen the hypothesis. We will prove the following

Theorem 3.3.2. Let C = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} be compact and convex with
non-empty interior. Assume that for all i = 1, . . . r one of the following two conditions
holds:

1. The matrix −g′′
i is a sum of squares in Symd×d(R)[X1, . . . , Xn].

2. The polynomial g i does not vanish in any interior point of C and is strictly quasi-
concave in every point x ∈ Z(g i)∩∂C. Further, there is an open set Ui ⊂Rn such that
Z(g i)∩∂C ⊂Ui ∩Z(g i) and Ui ∩Z(g i) is a smooth and strictly convex hypersurface
in Rn (in particular, g′

i(x) 6= 0 for all x ∈Ui ∩Z(g i)).

If the quadratic module QM(g1, . . . , gr) is archimedean, then the Lasserre-relaxation for
C by the quadratic module QM(gα : |α| ≤ 2) is exact.

The condition that U ∩Z(g i) is a strictly convex hypersurface is a technical condi-
tion that is necessary for the constructions in the proof to work. We will define it later
(cf. Definition 3.3.3). Before we start with the rather complicated technical prepara-
tions, we will first give a short sketch of the idea of the proof:
We want to substitute the polynomials satisfying condition 2 as we did for the proof of
Theorem 3.2.5 in Proposition 3.2.4, i.e. we want to find for every such polynomial a new
polynomial that is strictly positive on C such that the product of the two of them has
negative definite Hessian in every x ∈ C. In order to substitute g i, we will in a first
step construct a convex and compact set K i with non-empty interior such that the in-
tersection of the boundary of this set and the boundary of C is Z(g i)∩∂C, the zero set of
g i on C. We will make sure that the boundary of K i is a smooth and positively curved
hypersurface (cf. appendix C.1 for definitions and some details). For this construction,
we need the assumption of U ∩Z(g i) being a strictly convex hypersurface.
In a second step, we will then construct a function G i ∈ C 2(Rn;R) which defines K i lo-
cally (i.e. K i = {x ∈U : G i(x)≥ 0} for a neighbourhood U of K1) and has negative definite
Hessian in all points of K i. By some technical conditions on G i, we will make sure
that the quotient G i

g i
is a well defined and twice differentiable function on an open set

containing K i. By using a Weierstraß approximation of this quotient, we will get the
desired substitute for g i.
Now, we will start with the construction of this compact and convex set K i. We will do
this in an abstract setting and need the following definition for that:
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3. The Exactness of the Lasserre-Relaxation

Definition 3.3.3. (a) A set M ⊂ Rn is called a smooth hypersurface in Rn, if for every
p ∈ M there is an open neighbourhood U ⊂ Rn of p and a function f ∈ C∞(U ;R) such
that U ∩M = {x ∈U : f (x)= 0} and f ′(x) 6= 0 for all x ∈U .
(b) A hypersurface M is called orientable if there is a smooth unit normal vector field
N → Sn−1 on M, i.e. a map such that 〈v, N(p)〉 = 0 for all tangent vectors v ∈ TpM and
p ∈ M. An oriented hypersurface is a pair of an orientable hypersurface M and a fixed
unit normal vector field N on M.
(c) An oriented hypersurface (M, N) is called strictly convex, if for all p ∈ M the following
conditions are satisfied:

1. M has positive curvature at p (i.e. the second fundamental form of M at p is
positive definite, cf. appendix C.1).

2. The intersection M∩ T̂pM of M and the affine tangent space to M at p is {p}.

3. M lies on one side of the affine tangent hyperplane T̂pM for every p ∈ M, i.e. 〈q−
p,n〉 ≥ 0 for all q ∈ M and a normal vector of TpM (with suitable sign).

Remark 3.3.4. (i) If we require in the following that a subset M ⊂Rn is a strictly convex
hypersurface, we implicitly assume that it is orientable and that we fixed a smooth unit
normal vector field N on M, i.e. we assume that we deal with an oriented hypersurface
and often drop the fixed unit normal vector field in notation.
(ii) We will say that an oriented smooth hypersurface (M, N) lies strictly on one side of
its affine tangent hyperplanes, if conditions 2 and 3 of the above definition are satisfied.
(iii) From the fact that a strictly convex hypersurface is positively curved we know that
it lies for every p ∈ M to the side of its affine tangent hyperplane at p defined by N(p),
i.e. 〈q− p, N(p)〉 ≥ 0 (q ∈ M): It is true locally because of the positive curvature of M
(cf. Remark C.1.17) and therefore it follows globally by the definition of a strictly convex
hypersurface.
(iv) If M is connected, then conditions 1 and 2 imply condition 3: Take p ∈ M and
consider the function

hp : M \{p} : R, q →〈q− p, N(p)〉
which is continuous. Therefore, since M \ {p} is connected, so is hp(Mp). But hp(q) 6= 0
for all q ∈ M \{p} and hp(q)> 0 for all q in a neighbourhood of p because M is positively
curved (cf. Remark C.1.17). That means that hp(M \{p})⊂ (0,∞), i.e. condition 3.
(v) We will often say that a set S lies on the inner side (resp. outer side) of an affine tan-
gent hyperplane T̂pM for an oriented smooth hypersurface M with unit normal vector
field N : M → Rn. By this we mean that 〈s− p, N(p)〉 ≥ 0 (resp. 〈s− p, N(p)〉 ≤ 0) for all
s ∈ S. So in this manner of speaking, a strictly convex smooth hypersurface always lies
on the inner side of its affine tangent hyperplanes.

Lemma 3.3.5. Let (M, N) be a strictly convex hypersurface in Rn. For all r ∈R we define
the set

Mr = {p+ rN(p) : p ∈ M}
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3.3. Extension of the Boundary

and the corresponding map

fr : M → Mr, p 7→ p+ rN(p)

There is an r0 > 0 such that for all r ∈ (−∞, r0] the following assertions (i)-(iii) hold (we
write pr for fr(p)):
(i) Mr is a smooth hypersurface, called a parallel hypersurface to M.
(ii) Mr is positively curved.
(iii) The map Nr : Mr → Rn, Nr(pr) = N(p) defines a smooth unit normal vector field on
Mr.
(iv) For all r < 0 the hypersurface Mr lies strictly on one side of the hyperplanes T̂xMr
(x ∈ Mr) and

dist(p, Mr)= dist(p, T̂pr Mr)= r

(v) For every compact subset K ⊂ M there is an r1 > 0 such that for all r ∈ [0, r1] the
set Kr := fr(K) ⊂ Mr lies strictly on one side of its tangent hyperplanes T̂xMr (x ∈ Kr).
Further we have

dist(p,Kr)= dist(p, T̂pr Mr)= r

for all p ∈ K .
In particular, the parallel hypersurface of a strictly convex and compact hypersurface is
again strictly convex for a sufficiently small distance of the two hypersurfaces.

In the following proof, we will need some basics in differential geometry, which are
explained in Appendix C.1. We also need some notation: We denote by Dv f (p) the di-
rectional derivative of a function f : M1 → M2 of hypersurfaces in direction v ∈ TpM1 at
p (cf. Definition C.1.10) and by Lp : TpM → TpM the Weingarten map of a hypersurface
M at p (cf. Definition C.1.12).

PROOF. (i) From the fact that M is positively curved, we deduce that Dv fr(p) = Inv+
rDvN(p)= (In − rLp)(v), where In denotes the n×n identity matrix and v is considered
as a vector in Rn, is an invertible linear map from TpM to Tpr Mr if r ∈ (−∞, r0] for some
r0 > 0. Therefore, by the inverse function theorem (cf. [Nar68], 2.2.10), the map fr is a
local diffeomorphism, which implies that Mr = fr(M) is a smooth hypersurface in Rn.
Claims (ii) and (iii) are special cases of a theorem proved in [Hic65], section 2.6 (see
p. 35f).
(iv) This can be computed directly: Take r < 0 and take pr ∈ Mr. We have for all qr ∈
Mr \{pr}

〈qr − pr, Nr(pr)〉 = 〈q+ rN(q)− p− rN(p), N(p)〉
= 〈q− p, N(p)〉+ r〈N(q)−N(p), N(p)〉
= 〈q− p, N(p)〉+ r〈N(q), N(p)〉− r > 0

by the Cauchy-Schwartz inequality |〈N(q), N(p)〉| ≤ ‖N(q)‖‖N(p)‖ = 1. As for the dis-
tance: For all qr ∈ Mr we know that ‖qr− p‖ ≥ r because ‖qr−q‖ = r and M lies globally
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3. The Exactness of the Lasserre-Relaxation

on the inner side of the tangent hyperplane T̂qM whereas qr lies to the outer side. And
on the other hand ‖pr − p‖ = r and thus we get the desired claim.
(v) The set K lies locally strictly on one side of its tangent hyperplanes (as a subset of a
positively curved hypersurface, cf. Remark C.1.17). Now, define

hr : K ×K →R, (p, q) 7→ hr(p, q)= 〈qr − pr, N(p)〉

which is the signed distance of qr and T̂pr Mr because Nr is a unit normal vector field.
From the fact that Kr0 lies locally strictly on one side of the tangent hyperplanes and
that hr is smooth for all r ∈ (−∞, r0], we deduce that there is an open subset U ⊂ K ×K
containing the diagonal such that hr0 |U ≥ 0 (and hr0(p, q)= 0 for (p, q) ∈U if and only if
p = q). Since for r < r0 we have

hr(p, q)= 〈qr0 −pr0 , N(p)〉+(r−r0)〈N(q), N(p)〉−(r−r0)≥ 〈qr0 −pr0 , N(p)〉 = hr0(p, q)

by the Cauchy-Schwartz inequality |〈N(q), N(p)〉 ≤ ‖N(q)‖‖N(p)‖ = 1, we conclude hr|U ≥
0 (and hr(p, q) = 0 for (p, q) ∈U if and only of p = q) for all 0 < r ≤ r0. Further, we con-
clude from the fact that M is strictly convex that h0 > 0 on A := (K ×K) \U . This set
is compact and therefore it follows that there is an r1 > 0 such that for all r ∈ [0, r1] we
have hr|A > 0 as well (because hr → h0 as r → 0). Everything put together, we have seen
that Kr lies globally strictly on one side of its tangent hyperplanes for r ∈ [0, r1].
Now the claim on the distances follows easily from this: Obviously, ‖pr − p‖ = r and
thus dist(p,Kr)≤ r. On the other hand, Kr lies globally on the inner side of the tangent
hyperplane T̂pr Mr whereas p lies on the outer side, i.e. ‖qr − p‖ ≥ ‖pr − p‖ = r for all
qr ∈ Kr. This gives the reverse inequality.

Definition 3.3.6. Let C ⊂ Rn be a convex set with non-empty interior. We say that the
radii of curvature are bounded from below by r ∈ R>0, if for all p ∈ ∂K there is a p′ ∈ K
such that cl(B(p′, r))⊂ K and p ∈ cl(B(p′, r)).

With the following lemma we come close to finishing the first step, i.e. the construction
of the convex extension of C which we mentioned in the outline of the proof of Theorem
3.3.2.

Lemma 3.3.7. Let C ⊂ Rn be a convex and compact set with non-empty interior. Let
M ⊂Rn be a strictly convex smooth hypersurface such that M∩int(C)=; and Z := ∂C∩M
is non-empty and compact. Further assume that C lies strictly on one side of the affine
hyperplane T̂pM for all p ∈ M (i.e. C lies on one side of the affine hyperplane T̂pM and
T̂pM ∩C = {p} for all p ∈ M). Then there is a compact and convex set K satisfying the
following properties

1. C \ Z ⊂ int(K).

2. ∂K ∩C = Z.

3. The radii of curvature of K are bounded from below by some r > 0.
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3.3. Extension of the Boundary

4. There is an open subset U ⊂ M such that Z ⊂U , Z ⊂ intU (U∩K) and U∩int(K)=;.

Given an open set O ⊂Rn with C ⊂O, the set K can be chosen to be contained in O.

Remark 3.3.8. The hypothesis that C lies strictly on one side of the affine tangent
hyperplanes T̂pM in the above Lemma can be dropped after substituting M by the
intersection of M and a suitable open set U containing C, i.e. taking an open subset of
M containing Z instead of the whole of M. A similar argument is given in the proof of
Theorem 3.3.2 below - it can be easily adapted to see this.

PROOF OF LEMMA 3.3.7. Let Z ⊂U ⊂ M be an open set with compact closure (taken in
M). Put

Cr = C \
( ⋃

0≤s<r
Us

)
where Us denotes the parallel hypersurface {p+ sN(p) : p ∈U} to U defined in Lemma
3.3.5. We will show that this set is compact for all r ∈ (0,δ1) and some δ1 > 0 and then
use that to show that Cr lies to the inside of the affine tangent hyperplanes T̂pMr for
all p ∈ cl(Ur) ⊂ Mr and all r ∈ (0,δ2) (and some δ2 > 0). We will do this in part (i) of
the following proof (cf. Figure 3.4). After having proved this (using mainly the implicit
function theorem), we will be able to easily conclude the proof in part (ii):
(i) Since C lies to the inside of the tangent hyperplanes to any point in U and U lies to
the inside of the tangent hyperplane to any point in Us for s < 0, we have for all a < 0
and r > 0

Cr = C \
( ⋃

a<s<r
Us

)
In order to prove the compactness of Cr, we will show that U(a,r) := ⋃

a<s<r Us is open
by using the implicit function theorem: Choose for every p ∈ cl(U) a neighbourhood
Vp ⊂Rn of p and a function gp : Vp →R such that {x ∈Vp : gp(x)= 0}= M∩Vp and N(p)=

1
‖g′

p(p)‖ g′
p(p). Then choose an open neighbourhood Wp ⊂ Vp of p with compact closure

cl(Wp) ⊂ Vp. By covering cl(U) by these neighbourhoods Wp of p and its compactness,
we conclude cl(U)⊂Wp1 ∪ . . .∪Wpm for some p1, . . . , pm ∈ cl(U) and some m ∈N. Put

δ1 =max
{|λ| : λ< 0,λ eigenvalue of g′′

pi
(y), y ∈ cl(Wpi ), i = 1, . . . ,m

}−1

and

c1 =max
{
λ : λ> 0,λ eigenvalue of g′′

pi
(y), y ∈ cl(Wpi ), i = 1, . . . ,m

}−1

if this set is non-empty and c1 = −∞ if this set is empty. Then for all i = 1, . . . ,m, the
matrix In+sg′′

pi
(p) is positive definite for s ∈ (−c1,δ1) and p ∈ cl(Wpi ) because g′′

pi
can be

diagonalised simultaneously to In and has at least (n−1) negative eigenvalues which
follows from the positive curvature of M (cf. Proposition C.1.15).
Now, fix a point pt0 ∈Ut0 ⊂U(a,r). Let p ∈U be a point such that p+ t0N(p) = pt0 . Let
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C
U

Us

Figure 3.4.: Starting with the grey shaded area as our set C, we move U to Us and the
set Cs as defined above is then the part of the grey shaded area which is
limited by Us.

pi ∈ cl(U) be such that p ∈Wpi =: W and g := gpi : Vpi →R be the function chosen above.
Now, define the function

Φ : Rn ×W × (−c1,δ1)→Rn+1, (x, y, s) 7→
(

y+ sg′(y)− x
−g(y)

)
The partial differential (d2Φ) of Φ with respect to the last n+1 variables, i.e. (y, s), is

(d2Φ)(x, y, s)=
(

In + sg′′(y) −g′(y)t

−g′(y) 0

)
and the determinant is det((d2Φ)(x, y, s)) = g′(y)

(
In + sg′′(y)

)−1 (g′(y))t det(In + sg′′(y)).
Now put B := min{‖g′

pi
(y)‖ : y ∈ cl(Wpi ), i = 1, . . . ,m} > 0 and take a =−c1B and r = δ1B.

For s0 = t0
‖g′(p)‖ (the restrictions just made ensure s0 ∈ (−c1,δ1)) we have Φ(pt0 , p, s0)= 0

and the rank of (d2Φ)(pt0 , p, s0) is full because In + s0 g′′(p) is positive definite. By
the implicit function theorem (cf. e.g. [Nar68], Theorem 1.3.5) there is a neighbour-
hood O1 ×O2 ⊂ Rn × (W × (−c1,δ1)) of (pt0 , p, s0) such that for every qt ∈ O1 there is
a unique (q, s) ∈ O2 such that Φ(qt, q, s) = 0. That means simply that q ∈ W ∩ M and
qt = q+ sg′(q) = q+ s‖g′(q)‖N(q) because 1

‖g′(q)‖ g′(q) = N(q) by our choice of the sign of
g made above. Thus we conclude qt ∈Us‖g′(q)‖ ⊂U(a,r) which implies that U(a,r) is open.
Since δ1 can be chosen to be any number 0< δ≤ δ1 without changing the argument, we
have seen that U(a,r) is open for a =−c1B and arbitrary 0< r ≤ δ1B. This in turn implies
that Cr is compact for all 0< r ≤ δ1B.
In order to finish the first part, take δ to be the minimum of r0, δ1B and the biggest
positive number r1 such that cl(U)s lies strictly to the inside of the affine tangent hy-
perplanes T̂pMs for all s ∈ [0, r1] (cf. Lemma 3.3.5(v)) and define the function

hr : cl(U)×Cδ→R, (p, x) 7→ 〈x− pr, N(p)〉
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which is the signed distance of x to T̂pr Mr (at least for r < r0 as in Lemma 3.3.5). Clearly,
h0(p, x) > 0 for all (p, x) ∈ cl(U)×Cδ. Since hr converges pointwise to h0 for r → 0 and
cl(U)×Cδ is compact, it converges uniformly and therefore there is a δ ≥ δ2 > 0 such
that hr > 0 on cl(U)×Cδ for all r ∈ [0,δ2). This means that Cδ lies to the inside of T̂pMs
for all p ∈ cl(U)s and s ∈ [0,δ2]. But, since

Cr = Cδ∪
( ⋃

r≤s<δ
Us

)

this also implies that Cr lies globally to the inside of the affine tangent hyperplanes
T̂pMr for all p ∈ cl(U)r and all r ∈ (0,δ2) because Us does for s ∈ (r,δ2). This finishes the
first part.
(ii) We will finish by the following construction: Fix some r ∈ (0,δ2) and define S =
conv(cl(U)r ∪Cr) and

K = S+cl(B(0, r))

This set is convex (as the Minkowski sum of two convex sets) and compact (as the image
of the compact set S× cl(B(0, s)) under the continuous map +) with non-empty interior
(because the interior of the disc is non-empty). The radii of curvature of K are bounded
from below by r, which follows directly from the definition of the radius of curvature.
So it remains to prove properties 1, 2 and 4. We begin with property 1: Take x ∈ C\Z. If
x ∈ S, then B(x, r)⊂ K and it follows that x is an interior point of K . If x ∉ S, then there is
an s ∈ (0, r) such that x ∈Us. Then there is a q ∈Ur with dist(x,S)= ‖q−x‖ = r−s < r be-
cause S contains Ur and lies to the inside of its affine tangent hyperplanes. This means
x ∈ B(q, r) ⊂ int(K). This shows property 1 and gives the inclusion ∂K ∩C ⊂ Z. The
reverse inclusion is an easy distance argument: If p ∈ U , then dist(p,Ur) ≥ dist(p,S).
From the fact that S lies globally on the inside of the affine tangent hyperplanes T̂prUr
for all pr ∈Ur we conclude equality r = dist(p,Ur) = dist(p,S), which says p ∈ ∂K , since
∂K = {x ∈ Rn : dist(x,S) = r}. This gives the reverse inclusion for property 2, because
Z ⊂U , and proves property 4 because U ⊂ K is open as a subset of M.
If we want to make sure that K lies in an open set O which contains C, then we have to
slightly correct the construction: Let d := dist(∂O,C) > 0 be the distance of the bound-
ary of O and C and put U ′ := U ∩ {x ∈ Rn : dist(x,C) < d

2 }. Then conv(cl(U ′)∪C) ⊂ {x ∈
Rn : dist(x,C) ≤ d

2 } = C+ cl(B(0, d
2 )) ⊂ O. Take in step (ii) an r ∈ (0,min{δ2, d

2 }) and put as
above K = conv(cl(U ′)r ∪Cr)+ cl(B(0, r)). Then K ⊂ {x ∈ Rn : dist(x,C) < d} ⊂ O since the
distance function d(.,C) : Rn →R, x 7→ dist(x,C) is convex.

Next, we finally complete the first step by the construction of the compact convex set
with non-empty interior that we were talking about in the sketch of the proof above.

Lemma 3.3.9. Let K1 ⊂ Rn be a compact and convex set with non-empty interior and
suppose that the radii of curvature of K1 are bounded from below by r > 0. Let M ⊂Rn be
a strictly convex smooth hypersurface such that M∩ int(K1)=; and M∩∂K1 6= ;. Then,
for every compact subset Z ⊂ intM(M ∩∂K1) of the interior of M ∩∂K1 (in M), there is a
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3. The Exactness of the Lasserre-Relaxation

convex, compact set K2 with non-empty interior such that ∂K2 is a smooth and positively
curved hypersurface and Z ⊂V ⊂ ∂K2 for an open set V ⊂ M.
Additionally, given a compact and convex set C with C ⊂ int(K1)∪ Z and an open set
O ⊂ Rn with K1 ⊂ O, we can choose the set K2 such that K2 ⊂ O, C ⊂ K2 and C∩∂K1 =
C∩∂K2.

In [Gho04], a very similar result (cf. Proposition 3.3) is shown. In fact, we will use
the same construction which is given there and only check that it is compatible with the
additional properties, which we require here. In the proof, we will need the following
result on convergence of a sequence of convex sets in the Hausdorff metric (for more
information on the Hausdorff metric, cf. [Sch93], chapter 1.8):

Remark 3.3.10. Let K1 be a compact and convex set with non-empty interior and
{Kε}ε∈(0,1) a family of compact and convex sets with non-empty interior which converges
to K1 in the Hausdorff metric, i.e. limε→0 Kε = K1. Then the boundaries of the sets Kε

converge to the boundary ∂K1 of K1:
For, if x ∈ ∂K1 and δ> 0, then B(x,3δ) contains a point y with dist(y,K1)= 2δ (take a sup-
porting hyperplane H to K1 at x and take y= x+2δn for an outward unit normal vector
of H) and so y ∉ Kε for all ε such that dH(Kε,K1)< δ. This yields that B(x,2δ)∩∂Kε 6= ;
for small ε which gives a sequence of points {xε} such that xε ∈ ∂Kε and xε→ x for ε→ 0.
By [Sch93], Theorem 1.8.7, this means x ∈ lim∂Kε. On the other hand, if x ∈ int(K1) and
δ > 0 such that B(x,3δ) ⊂ K1 and suppose x ∈ lim∂Kε, then there is an ε′ > 0 such that
for all 0 < ε ≤ ε′ there is a yε ∈ ∂Kε with ‖x− yε‖ < δ and dH(Kε,K1) < δ. Again, take
a supporting hyperplane to Kε at yε and put zε = yε+2δn for the outward normal unit
vector n on the supporting hyperplane. Then zε ∈ B(y,3δ) ⊂ K1 and d(zε,Kε) = 2δ > δ

which gives a contradiction to dH(Kε,K1)< δ.

PROOF OF LEMMA 3.3.9. Let h be the support function of K1, i.e. the function hK1 : Rn →
R, p 7→ max{〈x, p〉 : c ∈ K1} (cf. appendix C.2 for more details). We will use an integral
transformation of h to get the convex set K2: For ε> 0 let θε ∈C∞(R≥0;R≥0) be a smooth
function with supp(θ) ⊂ [ ε2 ,ε] and

∫
Rn θε(‖x‖)dx = 1 (such a function exists, cf. [Nar68],

Lemma 1.2.5). The integral transformation

h̃ε(p) :=
∫
Rn

h(p+‖p‖x)θε(‖x‖)dx

of h is a convex and positively homogeneous function (cf. [Sch93], Theorem 3.3.1) and
thus determines a compact and convex set with non-empty interior K̃ε, the so-called
Schneider transform of K1 (cf. Theorem C.2.6, which is [Sch93], Theorem 1.7.1).
Put U := intM(M ∩∂K1) and let V ⊂ M be open with Z ⊂ V and cl(V ) ⊂U compact. Put
U ′ = N(U) and V ′ = N(V ), where N denotes the outward unit normal vector field on
M, which makes M negatively curved. Since N : M → Sn−1 is a local diffeomorphism,
these sets are open subsets of the sphere Sn−1 ⊂ Rn. Now, let φ ∈ C∞(Sn−1;R) be a
smooth function with support supp(φ) ⊂ U ′ and φ|V ′ ≡ 1 (again, the existence of such
a function can be easily derived from [Nar68], Corollary 1.2.6, after applying e.g. a
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suitable stereographic projection). Extend this function to the function φ : Rn →R by

x 7→
{
φ( 1

‖x‖ x) if x 6= 0
0 if x = 0

Using the integral transform of h defined above and this function φ, we define hε : Rn →
R, p 7→ hε(p) := h̃ε(p)+φ(p)

(
h(p)− h̃ε(p)

)
. We claim that this is the support function of

a compact and convex set and that there is an ε> 0 such that this set, which is

Kε := {x ∈Rn : ∀ p ∈Rn 〈x, p〉 ≤ hε(p)}

(cf. Remark C.2.7(i)) has all the claimed properties. Note that the function hε is in
C∞(Rn \ {0};R) because h̃ε and φ are and the second summand only appears for p ∈ Rn

such that 1
‖p‖ p ∈U ′ and h is infinitely differentiable in such points by [Gho04] Lemma

3.1. By calculating
∂

∂pi
h̃ε(p) =

∫
Rn

(
∂

∂pi
h(p+‖p‖x)+ pi

‖p‖〈h
′(p+‖p‖x), x〉)

)
θε(‖x‖)dx

∂2

∂pi∂p j
h̃ε(p) =

∫
Rn

(
∂2

∂pi∂p j
h(p+‖p‖x)+ terms of order ≥ 1 in x

)
θε(‖x‖)dx

we see that the derivatives of h̃ε up to order 2 converge pointwise to the derivatives of
h for ε→ 0.
Now first, we want to show that hε is a support function. The fact that h and h̃ε are
positively homogeneous and that φ(λp) = φ( λ

‖λp‖ p) = φ(p) holds for all λ > 0, yield that

hε is positively homogeneous, too. In order to show that hε is convex we check that
the Hessian of h is positive semi-definite in all p ∈ Sn−1. We will do this in exactly the
same way as in the proof of [Gho04], Proposition 3.3, using [Gho04], Lemmas 3.1 and
3.2. For p ∈ cone(Sn−1 \ U ′) this follows from the fact hε|Sn−1\U ′ = h̃ε|Sn−1\U ′ and the
convexity of h̃ε. Since M is positively curved we know by [Gho04], Lemma 3.1, that
vth′′(p)v > 0 for all v ∈ TpSn−1 and all p ∈ cl(U ′). But by construction, the function hε(p)
and its derivatives up to order 2 converge to h(p) and its derivatives up to order 2 for
all p ∈ Sn−1. In particular, this yields that hε converges to h in the C 2-norm on cl(U ′)

‖ f ‖C 2(cl(U ′)) =
∑

|α|≤2

1
α!

max
{∣∣∣∣ ∂α∂xα

f (x)
∣∣∣∣ : x ∈ cl(U ′)

}

So there is an ε0 > 0 such that vth
′′
ε (p)v > 0 for all v ∈ TpSn−1, all ε ∈ (0,ε0) and all

p ∈ cl(U ′). By positive homogeneity of hε it follows that h
′′
ε (p) is positive semi-definite

for all p ∈ cl(U ′):

0= d2

d2t
th(p)= d2

d2t
h(tp)= pth

′′
(tp)p

for all t > 0 and p is a normal vector to the hyperplane TpSn−1. So hε is the support
function of a compact and convex set with non-empty interior for all ε ∈ (0,ε0).
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Next, we want to show that the boundary of the set defined by hε is a smooth and
positively curved hypersurface for ε ∈ (0,ε0). Again by [Gho04], Lemma 3.1, we need to
check that hε ∈ C∞(Rn \ {0};R) and vth

′′
ε (p)v > 0 for all v ∈ TpSn−1 and p ∈ Sn−1. The

order of differentiability and the second condition for p ∈ U ′ have already been done
above. Since the functions hε and h̃ε coincide in all p ∈ cone(Sn−1 \U ′), it suffices to
check this condition for h̃ε. This follows from [Gho04], Lemmas 3.1 and 3.2, by the
hypothesis that the radii of curvature of K1 are bounded from below by r > 0.
And finally we check that Z ⊂ ∂Kε: Let N be the outward unit normal vector field on
∂Kε. Since V ⊂ ∂K1 is smooth, the support function at p is h(p)= 〈N−1(p), p〉 (cf. Remark
C.2.12) and we conclude with the aid of [Sch93], Corollary 1.7.3, the following equality

N−1(p)= h′(p)t = h
′
ε(p)t = N

−1
(p)

for all p ∈ V ′ (note that the normal vector field is a local diffeomorphism because of the
positive curvature of M ⊃V ). This implies Z ⊂V ⊂ N

−1
(V ′)⊂ ∂Kε.

This completes the proof of the original version [Gho04], Proposition 3.3. We now check
the addendum:
Let C be a compact and convex set with non-empty interior such that C ⊂ int(K1)∪Z.
Recall that we have chosen Z ⊂V ⊂U = intM(M∩∂K1). We have just seen V ⊂ ∂K1∩∂Kε

for all ε ∈ (0,ε0) and as V is open in M and therefore a set V ⊂ M as claimed. It also
implies that ∂K1 \ V and ∂Kε \ V are compact. Put S := C ∩∂K1. Obviously, S ⊂ Z ⊂
∂Kε and therefore C ∩ (∂K1 \ V ) = ;. The sets {Kε} converge to K1 in the Hausdorff
metric of sets because the support functions {hε} converge to the support function h
of K1 (cf. [Sch93], Theorem 1.8.11). Since Kε and K1 are convex, the boundaries also
converge ∂Kε → ∂K1 (cf. Remark 3.3.10). Therefore ∂Kε \ V converges to ∂K1 \ V and
since C∩ (∂K1 \ V ) =; this implies C∩ (∂Kε \ V ) =; for all 0 < ε < ε0 and some ε0 > 0.
Thus we conclude C∩∂Kε = C∩V from V ⊂ ∂Kε and this implies S = C∩V ⊂ ∂C∩∂Kε ⊂
C∩∂Kε = C∩V ⊂ C∩U = S = C∩∂K1 for 0< ε< ε0.
It remains to show that C ⊂ Kε: Suppose C * Kε. Then int(C) * int(Kε) because Kε is
closed. So take x ∈ int(C)∩int(Kε), which is non-empty for ε ∈ (0,ε1) and some 0< ε1 < ε0,
and y ∈ int(C)\Kε; then int(C)⊃ [x, y]* Kε (where [x, y] denotes the set {x+λ(y−x) : λ ∈
[0,1]}) and therefore ; 6= [x, y]∩∂Kε 3 p. It follows p ∈ int(C), i.e. p ∉ V and therefore
C∩ (∂Kε\V ) 6= ; which contradicts what we have just seen.
By choosing ε maybe even smaller, we also satisfy the condition K2 ⊂ O for a given
open set K1 ⊂ O ⊂ Rn because dH(K1,Kε) → 0 (ε→ 0). This finishes the proof of this
Lemma.

Taking the last three Lemmas together, we have completed the first step of our strat-
egy to prove Theorem 3.3.2. So we turn to the second step and continue with the con-
struction of the defining function G i of K i and the quotient G i

g i
as mentioned in the

outline above.

Definition 3.3.11. Let K ⊂ Rn be a convex and compact set with non-empty interior
and suppose that 0 ∈ int(K). The Minkowski functional to the set K is defined to be the

52



3.3. Extension of the Boundary

map

pK : Rn →R, x 7→
{

min{λ> 0: 1
λ

x ∈ K} for x 6= 0
0 for x = 0

Proposition 3.3.12. Let K ⊂ Rn be a compact and convex set with non-empty interior
and smooth and positively curved boundary. Assume 0 ∈ int(K) and denote by pK the
Minkowski functional of K .
(i) There is an ε> 0 and an open set U ⊂Rn such that K ⊂U and the function G : Rn →R,
x 7→ (1−ε∑n

i=1 x2
i )(1− pK (x)3) satisfies the following properties:

1. G is twice differentiable everywhere, in fact G ∈C∞(Rn \{0})∩C 2(Rn)

2. K = {x ∈U : G(x)≥ 0} and ∂K = {x ∈U : G(x)= 0}

3. G is regular at all points x ∈ ∂K , i.e. G′(x) 6= 0.

4. The Hessian of G is negative definite at all x ∈ K .

(ii) Let K ⊂O ⊂Rn be open and let g ∈C∞(O;R). Write Z(g)= {x ∈O : g(x)= 0}. Let W ⊂O
be an open set which contains int∂K (∂K ∩Z(g)) such that g(x) 6= 0 for all x ∈ W \ ∂K .
Further assume that g′(x) 6= 0 for all x ∈ ∂K ∩Z(g) and G(x)g(x) ≥ 0 for all x ∈ W . Then
the quotient

w : W →R, x 7→ w(x) := G(x)
g(x)

is well defined, positive and of class w ∈C 2(W ;R).

PROOF. (i) Since the boundary of K is assumed to be smooth, the Minkowski functional
pK : Rn → R of K is of class C∞(Rn \ {0};R)∩C (Rn;R) and p′

K (x) 6= 0 for all x ∈ Rn \ {0}
(cf. Lemma C.2.11). Therefore the function G̃ : Rn → R, x 7→ (1− pK (x)3) satisfies G̃ ∈
C∞(Rn \{0};R)∩C (Rn;R) and G̃′(x) 6= 0 for all x ∈Rn \{0}. By |pK (x)| ≤ c‖x‖ for some c > 0
(take e.g. c = max{|pK (x)| : x ∈ Sn−1} and use positive homogeneity on both sides) we
deduce from pK ∈C (Rn;R) that p3

K is twice differentiable at 0 ∈Rn, i.e. p3
K ∈C 2(Rn;R).

We calculate the second derivative of G̃ =ψ◦ pK for ψ : R→R, t 7→ 1− t3:

G̃′ = (ψ′ ◦ pK )p′
K , i.e. G̃′(x)=−3pK (x)2 p′

K (x)
G̃′′ = (ψ′′ ◦ pK )p′t

K pK + (ψ′ ◦ pK )p′′
K , i.e. G̃′′(x)=−6pK (x)

(
p′t

K p′
K

)−3pK (x)2 p′′
K (x)

From the facts that −pK is strictly quasiconcave in every x ∈Rn\{0} (cf. Corollary C.2.13)
and that p′′

K (x)≥ 0 (x ∈Rn) we deduce that G̃′′(x)< 0 for all x ∈ K\{0} by Lemma A.2.1(iii)
(note that the constant M there can be chosen arbitrarily small because p′′

K is already
positive semi-definite).
The origin can be dealt with in the following way: Define for all ε > 0 the function
Gε : Rn →R, x 7→ (1−ε∑n

i=1 x2
i )G̃(x). Then G′′

ε (0)=−2εIn because G̃′(0)= 0 and G̃′′(0)= 0.
On the other hand, there is for all x ∈ K an εx > 0 such that for all ε ∈ (0,εx) the matrix
G′′
ε (y) is negative definite for all y in a suitable neighbourhood of x; since K is compact
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this yields an ε> 0 such that G′′
ε (x) < 0 for all x ∈ K (and U ⊂ B(0, 1

ε
)). Then G =Gε is a

function as we claimed to exist: Property 2 holds for G̃ by properties of the Minkowski
functional (cf. Remark C.2.3(iii)) and we have seen properties 1,3 and 4 for G̃ and seen
to it that none of them is disturbed by the multiplication with (1−ε∑

X2
i ).

(ii) Take x ∈ int∂K (∂K∩Z(g)) in the relative interior of ∂K∩Z(g) as a subset of the hyper-
surface ∂K . Since g′(x) 6= 0 and G′(x) 6= 0 are both normal to Tx∂K and G(x)g(x)≥ 0 on W ,
they are collinear, i.e. 1

‖g′(x)‖ g′(x)= 1
‖G′(x)‖G′(x). By the implicit function theorem we can

find an infinitely differentiable change of coordinates Φ : V → Rn for a neighbourhood
V ⊂ W of x such that Φ ∈ C∞(V ;Rn), Φ(x) = 0, Φ(∂K ∩V ) = {(Φ1(y), . . . ,Φn−1(y),0): y ∈
V∩∂K} and Φ( 1

‖g′(x)‖ g′(x))= aen for some a ∈R\{0}. For, if ϕ is an implicit solution of the
equation G(y)= 0 in a neighbourhood V of x and we assume ∂

∂xn
G(x)en =G′(x) 6= 0 after a

linear change of coordinates, then V ∩∂K = {(y1, . . . , yn−1,ϕ(y1, . . . , yn−1)) : (y1, . . . , yn−1) ∈
π(V )}; now define Φ : V →Rn by (y1, . . . , yn) 7→ (y1 − x1, . . . , yn−1 − xn−1, yn −ϕ(y1, . . . , yn)).
By Taylor expansion at x = 0, we get in these new coordinates:

G(y) = G(0)+G′(0)y+RG(y)=G′(0)y+RG(y)
g(y) = g(0)+ g′(0)y+Rg(y)= g′(0)y+Rg(y)

with G′(0)= aG en, g′(0)= agen, aGag > 0 and

RG(y) = 1
2

ytG′′(ηG)y

Rg(y) = 1
2

yt g′′(ηg)y

for some ηG ,ηg ∈ [x, y]. The remainder terms are RG ,Rg ∈ C∞(Φ(V );R). We now write
y= (y′, t) and sort the Taylor expansion of G and g by degree in t:

G(y)=G(y′, t) = G1(y′)t+G2(y′)t2

g(y)= g(y′, t) = g1(y′)t+ g2(y′)t2

where g1(0) = ag 6= 0 (and G1(0) = aG 6= 0). We do not get any constant terms in t in the
expansion of g and G for sufficiently small t because g(y′,0) = 0 =G(y′,0) for all y′ in a
neighbourhood of the origin in Rn−1. So it follows

G(y)
g(y)

= G1(y′)+G′
2(y)t

g′
1(y)+ g′

2(y)t

and numerator as well as denominator of this fraction are infinitely differentiable func-
tions and the denominator does not vanish in (y′, t) = 0. So the quotient is well-defined
in a neighbourhood of 0 and as the quotient of C∞-functions again a C∞-function. It
follows that w is well-defined and infinitely differentiable at x. By agaG > 0 we also get
w(x)> 0.

Finally, we have finished with the technical preparations for the proof of

Theorem (Theorem 3.3.2). Let C = {x ∈Rn : g1(x)≥ 0, . . . , gr(x)≥ 0} be compact and con-
vex with non-empty interior. Assume that for all i = 1, . . . r one of the following two con-
ditions holds:
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3.3. Extension of the Boundary

1. The matrix −g′′
i is a sum of squares in Symd×d(R)[X1, . . . , Xn].

2. The polynomial g i does not vanish in any interior point of C and is strictly quasi-
concave in every point x ∈ Z(g i)∩∂C. Further, there is an open set Ui ⊂Rn such that
Z(g i)∩∂C ⊂Ui ∩Z(g i) and Ui ∩Z(g i) is a smooth and strictly convex hypersurface
in Rn (in particular, g′

i(x) 6= 0 for all x ∈Ui ∩Z(g i)).

If the quadratic module QM(g1, . . . , gr) is archimedean, then the Lasserre-relaxation for
C by the quadratic module QM(gα : |α| ≤ 2) is exact.

PROOF OF THEOREM 3.3.2. After an affine change of coordinates, we assume 0 ∈ int(C).
Fix an index i ∈ {1, . . . , r} such that g i does not satisfy condition 1. We will construct a
substitute for this polynomial as explained in the sketch of this proof above:
First, we need to show that C lies strictly on the inner side of the affine tangent hy-
perplanes T̂p(Ui ∩Z(g i)) (p ∈Ui ∩Z(g i)=: Mi) for some maybe smaller open set Ui ⊂Rn.
Suppose there is no such open set. Since C lies strictly to the inner side of T̂pMi for
all p ∈ Z(g i)∩C =: Zi (C ⊂ S (g i) and S (g i) lies locally strictly on one side of these
tangent hyperplanes), there is a sequence {pn}n∈N ⊂ Mi \ Zi such that pn → p ∈ Zi and
T̂pn Mi ∩C 6= ;. For all n ∈N, choose xn ∈ T̂pn Mi ∩C 6= ;. Since C is compact, there is a
convergent subsequence of {xn}n∈N. For simplicity of notation, we assume that {xn}n∈N
converges to x ∈ C. This limit lies in T̂pMi because 0 = 〈xn − pn, N(pn)〉→ 〈x− p, N(p)〉.
Therefore we have x = p. Since 〈p− xn, N(p)〉 < 0 (T̂pMi is a supporting hyperplane
to C) for all n ∈ N there is an n ∈ N such that 〈p− xn, N(pn)〉 < 0 (〈., N(pn)〉 converges
uniformly on C to 〈., N(p)〉) and from this we get 0 > 〈p− xn, N(pn)〉 = 〈p− pn, N(pn)〉+
〈pn − xn, N(pn)〉 = 〈p− pn, N(pn)〉 which is a contradiction to the hypothesis that Mi is
strictly convex (cf. Remark 3.3.4(iii)).
Therefore C lies strictly on the inner side of T̂pMi for all p ∈ Mi. Let O ⊂Rn be an open
set such that Z(g i)∩O = Mi = Z(g i)∩Ui and C ⊂O. Now apply Lemma 3.3.7 for M = Mi
and therefore Z = Zi and get a compact and convex set K1 ⊂ Rn with the properties
C ⊂ K1 ⊂ O, C \ Zi ⊂ int(K1), ∂K1 ∩C = Zi and the radii of curvature of K1 are bounded
from below by some r > 0.
To this set K1 we apply Lemma 3.3.9 for M = Mi∩U =U for a set U as given by property
4 of 3.3.7 and Z = Zi and end up with a compact and convex set K2 such that C ⊂ K2 ⊂O,
Zi = C∩∂K1 = C∩∂K2 and the boundary of K2 is a smooth and positively curved hyper-
surface in Rn which contains an open (in ∂K2) neighbourhood of Zi. We are now in a sit-
uation where we can apply Proposition 3.3.12: Take as W a neighbourhood of C with the
required properties in the hypothesis there (e.g. W = (int(K)∩{x ∈O : g(x)> 0})∪⋃

x∈V Wx
for suitable neighbourhoods of x ∈ V ⊂ M, where G as well as g change sign). Then we
get a function

w : S →R, x 7→ G(x)
g i(x)

which is well-defined on S ⊃ C, positive on int(K2)∪int∂K2(K2∩M)⊃ C and C 2(S;R). By
the Weierstraß approximation theorem (cf. [Nar68], Theorem 1.6.2) there is for all ε> 0
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3. The Exactness of the Lasserre-Relaxation

a polynomial hε ∈R[X1, . . . , Xn] such that

∑
|α|≤2

1
α!

max
{∣∣∣∣ ∂|α|∂xα

(w−h)(x)
∣∣∣∣ : x ∈ C

}
= ‖w−hε‖C 2(C) < ε

Since ‖G −hεw‖C 2 ≤ ‖G −wg i‖C 2 +‖g i‖C 2‖w−hε‖C 2 we can choose an ε > 0 such that
hε(x)> 0 for all x ∈ C (w(x)> 0 for all x ∈ C) and the Hessian of hεg i is negative definite
in all x ∈ C (the Hessian of G is negative definite on C). Put hi := hε for such an ε > 0
and put pi := hi g i. Note that hi is in QM(g1, . . . , gr), which is archimedean, by Putinar’s
Positivstellensatz ( [PD01], Theorem 5.3.8) and therefore pi ∈QM(gα : |α| ≤ 2).
We do this for all i ∈ {1, . . . , r} such that g i does not satisfy 1 and put pi := g i for all i
such that g i satisfies 1. Then the hypothesis of our basic version Theorem 3.1.6 is met
and we conclude that the Lasserre-relaxation by the quadratic module QM(gα : |α| ≤ 2)
is exact.

Remark 3.3.13. The author conjectures that the following is true: Assume that C =
{x ∈Rn : g1(x)≥ 0, . . . , gr(x)≥ 0} is compact and convex with non-empty interior. Further
assume that g i does not vanish in any interior point of C and is strictly quasiconcave
as a function on C ∩Z(g i). Then there is an open set Ui ⊂ Rn containing C such that
Ui ∩Z(g i) is a strictly convex hypersurface.
If that were true, it would greatly simplify condition 2 of the hypothesis in Theorem
3.3.2, because it says mainly that the first part of this condition 2, which is relatively
easy to check, implies the second.
It is clear, that there is an open set Vi containing C such that Vi ∩Z(g i) is a positively
curved and smooth hypersurface (because this is an open condition on g′′

i , resp. g′
i) and

therefore locally on the inside of its affine tangent hyperplanes. The problem is the
global condition, i.e. conditions 2 and 3 of Definition 3.3.3, in the case that C∩Z(g i) is
not connected.

Unfortunately, these results do not cover all sets which admit an exact Lasserre-
relaxation, as the following example (due to Netzer, Plaumann and Schweighofer) shows.

Example 3.3.14 (cf. [NPS10], Example 3.7). (i) Consider g1 = X1, g2 = 1−X2, g3 = X2−
X2n+1

1 ∈ R[X1, X2] for some n ∈N and the set C = {(x1, x2) ∈ R2 : g1(x1, x2) ≥ 0, g2(x1, x2) ≥
0, g3(x1, x2)≥ 0} (cf. Figure 3.5) which is convex and compact.
The polynomial g3 is the interesting thing here: It is concave as a function on C but

its Hessian matrix evaluated in the origin (0,0) ∈ Z(g3)∩∂C is the zero matrix. Thus
the polynomial is not strictly quasiconcave on C either and −g′′

3 is not a sum of squares
because the first diagonal entry − ∂2

∂X2
1

g3 = (2n+1)2nX2n−1
1 of −g′′

3 is not a sum of squares.
So this polynomial does not satisfy any of the assumptions in the above corollaries on
the exactness of the Lasserre-relaxation and yet the Lasserre-relaxation is exact as can
be shown by direct calculation:
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3.3. Extension of the Boundary

Figure 3.5.: The grey area is a projection of a spectrahedron defined in terms of polynomials by
X1, 1− X2 and X2 − X3

1 . It has an exact Lasserre-relaxation although this cannot
be deduced from any result in this work.

The tangent `a to Z(g3) at (a,a2n+1) is

`a = ∂g3

∂X1
(a,a2n+1)(X1 −a)+ ∂g3

∂X2
(a,a2n+1)(X2 −a2n+1)

= −(2n+1)a2n(X1 −a)+ X2 −a2n+1

= X2n+1
1 − (2n+1)a2nX1 +2na2n+1 + (X2 − X2n+1

1 )

The polynomial f := X2n+1
1 − (2n+ 1)a2nX1 + 2na2n+1 ∈ R[X1] in one variable is non-

negative on [0,∞) as it attains its minimum on [0,∞) at X1 = a ( f ′ = (2n+1)X2n
1 − (2n+

1)a2n and f ′′ = (2n+1)2nX2n−1
1 ) and f (a)= 0. Now [KMS05], Theorem 4.1, tells us that

f ∈ QM(X1)2n+1 = PO(X1)2n+1 ⊂ R[X1]2n+1 because {X1} is the natural set of generators
for [0,∞). Thus we get `a ∈QM(g1, g2, g3)2n+1 ⊂PO(g1, g2, g3)2n+1 ⊂R[X1, X2]2n+1.
This gives the exactness of the Lasserre-relaxation of degree 2n+1 because by Theorem
2.2.4 we have

cl(C2n+1)⊂ g−1
1 [0,∞)∩ g−1

2 [0,∞)∩⋂
{`−1

a [0,∞) : a ∈ [0,1]}= C

From Corollary 2.2.6 we know that all linear polynomials which are non-negative on C
lie in QM(g1, g2, g3)2n+1. This can also be seen by using Farkas’s Lemma:
Take a linear polynomial ` ∈R[X1, X2]1 which is non-negative on C and satisfies `(u)= 0
for some u ∈ C. If ` is equal to g1, g2 or any of the `a for a ∈ [0,1], then we have already
seen ` ∈ QM(g1, g2, g3)2n+1. Otherwise, we have u ∈ {(0,0), (0,1), (1,1)}. If u = (0,0),
then the polynomial ` is non-negative on the polyhedron g−1

1 ([0,∞))∩`−1
0 ([0,∞)) and

by Corollary 2.2.9, ` is a positive combination of g1 and `0 and in particular also in
QM(g1, g2, g3)2n+1. The other two cases for u are completely analogous.
(ii) If we take in part (i) instead of g3 the polynomial X2 − X2n

1 ∈ R[X1, X2] for some
n ∈N, then the Hessian matrix of this polynomial is a sum of squares and the Lasserre-
relaxation for C is exact by, for example, Corollary 3.1.9.
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3. The Exactness of the Lasserre-Relaxation

3.4. Short Summary
In this last section of the chapter, we want to give a short summary, repeat the im-
portant results of this chapter and point out the distinguishing examples: Let C =
{x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} be a compact and convex set defined by polynomials
g1, . . . , gr ∈R[X1, . . . , Xn].

The basic result is

Theorem (3.1.6). Let C = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} be a convex and compact set.
Let p1, . . . , ps ∈ QM(g1, . . . , gr) and assume that there is an open set U ⊂ Rn with the
property {x ∈U : p1(x) ≥ 0, . . . , ps(x) ≥ 0} = C. Further assume that for all i ∈ {1, . . . , s} one
of the following two conditions holds:

1. The matrix −p′′
i ∈Symn×n(R[X1, . . . , Xn]) is a sum of squares.

2. For all x ∈ Z(pi)∩ cl(Ex(C)) the matrix p′′
i (x) ∈ Symn×n(R) is negative definite and

pi is concave as a function on C.

If QM(g1, . . . , gr) is archimedean, then there is a number N ∈ N such that every linear
polynomial ` ∈R[X1, . . . , Xn]1 which is non-negative on C lies in the truncated quadratic
module QM(g1, . . . , gr)N . In particular, the Lasserre-relaxation for C is exact.

We formulated the direct Corollary 3.1.9, where we chose in the above theorem s = r
and pi = g i. We gave an example illustrating the difference between the two different
conditions in the hypothesis of our basic theorem in Example 3.2.7(i).
In the second section, we reduced the following theorem to our basic version by con-
structing substitutes of the defining polynomials of C by elementary means:

Theorem (3.2.5). Let C be convex and compact. Assume that one of the three following
conditions is satisfied for all i = 1, . . . , r:

1. The matrix −g′′
i ∈Symn×n(R[X1, . . . , Xn]) is a sum of squares.

2. For all x ∈ Z(g i)∩ cl(Ex(C)) the matrix g′′
i (x) ∈ Symn×n(R) is negative definite and

g i is concave as a function on C.

3. The polynomial g i is strictly quasiconcave as a function on C.

If QM(g1, . . . , gr) is archimedean, then the Lasserre-relaxation for C by the quadratic
module QM(gα : |α| ≤ 2) (i.e. we take the quadratic module generated by g1, . . . , gr and
all the products of two of them) is exact.

We show by giving Example 3.2.7(ii) that this Theorem 3.2.5 is indeed more general
than Corollary 3.1.9.

In the third part, we used more advanced techniques to reduce the proof of our prob-
ably most general result to the basic version:

Theorem (3.3.2). Let C be compact and convex with non-empty interior. Assume that
for all i = 1, . . . r one of the following two conditions holds:
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3.4. Short Summary

1. The matrix −g′′
i is a sum of squares in Symd×d(R)[X1, . . . , Xn].

2. The polynomial g i does not vanish in any interior point of C and is strictly quasi-
concave in every point x ∈ Z(g i)∩∂C. Further, there is an open set Ui ⊂Rn such that
Z(g i)∩∂C ⊂Ui ∩Z(g i) and Ui ∩Z(g i) is a smooth and strictly convex hypersurface
in Rn (in particular, g′

i(x) 6= 0 for all x ∈Ui ∩Z(g i)).

If the quadratic module QM(g1, . . . , gr) is archimedean, then the Lasserre-relaxation for
C by the quadratic module QM(gα : |α| ≤ 2) is exact.

Here, the author conjectures, that this Theorem 3.3.2 can be applied in almost all
examples where Theorem 3.2.5 is applicable (as explained in Remark 3.3.13).
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A. Concave Functions, Convex Sets
and Lagrange Multipliers

In this appendix, we will assemble some well-known facts on concave and quasiconcave
functions which we use in the preceding. Some of these facts can be found in standard
textbooks on Analysis or (partly as exercises) in e.g. [BV04]. We will first look at convex
and concave functions and later turn to the generalisation of quasiconcave functions
and the partly independent notion of strictly quasiconcave functions.

A.1. Concave and Quasiconcave Functions
Definition A.1.1. Let D ⊂Rn be a convex set.
A function f : D → R is called concave if for all x, y ∈ D and t ∈ [0,1] the following in-
equality holds

f (x+ t(y− x))≥ f (x)+ t ( f (y)− f (x))= (1− t) f (x)+ t f (y)

Lemma A.1.2. (i) Let a < b, let f : (a,b)→R be a differentiable function. If f is concave,
then we have for all x, y ∈ (a,b), x < y

f ′(x)≥ f (y)− f (x)
y− x

The function f is concave if and only if its derivative is monotonically decreasing. So in
particular, if f is twice differentiable, then it is concave if and only if its second derivative
is non-positive.
(ii) Let ; 6= D ⊂Rn be an open and convex set. Let f : D →R be a differentiable map. Then
again, if f is concave, then we have for all x, y ∈ D

f (y)≤ f (x)+ f ′(x)(y− x)

And again, if f is twice differentiable, then it is concave if and only if the Hessian of f is
negative semi-definite.

PROOF. (i) Let x, y ∈ (a,b), x < y. Put z = x+ t(y− x) for t ∈ (0,1). Then we have t = z−x
y−x .

Now concavity of f is equivalent to the following inequality (mind y− x > 0)

f (z) ≥
(
1− z− x

y− x

)
f (x)+ z− x

y− x
f (y)

⇔ 0 ≥ (z− x) f (y)− z f (x)+ yf (x)− (y− x) f (z) (A.1)
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By expanding the expressions on the right-hand side and adding xf (x)− xf (x) we see
that this inequality is equivalent to the following (again, mind y− x > 0 and z− x > 0)

f (z)− f (x)
z− x

≥ f (y)− f (x)
y− x

(A.2)

By taking the limit for z → x, we get the claim f ′(x)≥ f (y)− f (x)
y−x .

Inequality A.1 is also equivalent to (add yf (y)− yf (y))

f (y)− f (x)
y− x

≥ f (y)− f (z)
y− z

(A.3)

From inequalities A.2 and A.3 we deduce, that the derivative of f is monotonically
decreasing.
Conversely, if the derivative of f is monotonically decreasing, take x, y ∈ (a,b) and t ∈
(0,1). Again, put z = x+ t(y−x). By the mean value theorem, we find two points x < w1 <
z and z < w2 < y such that the following two equalities hold

f (z)− f (x)
z− x

= f ′(w1) (A.4)

f (y)− f (z)
y− z

= f ′(w2) (A.5)

By monotonicity of f ′, i.e. f ′(w1)≥ f ′(w2), we get

f (z)− f (x)
z− x

≥ f (y)− f (z)
y− z

This inequality is equivalent to the concavity of f .
The claim on the second derivative being non-positive if and only if f is concave is a
direct consequence of the monotonicity of f ′.
(ii) We will reduce to the one-dimensional case (i): Take x, y ∈ D. Since D is convex
and open, there is a r > 0 such that {x+ t(y− x) : t ∈ (−r,1+ r)} ⊂ D. Now we consider
f̃ : (−r,1+ r) → R, t 7→ f (x+ t(y− x)). Then f̃ is concave and by part (i) we get the first
part of the claim of (ii) by the identity

f̃ (1)− f̃ (0)
1−0

≤ f̃ ′(t)= f ′(x+ t(y− x))(y− x)

For the second part of (ii) take x ∈ D. As D is open, there is a r > 0 such that B(0, r)⊂ D.
For all v ∈ Rn, ‖v‖ = 1, consider the map f̃v : (−r, r) → R, t 7→ f (x+ tv). It is concave and
again by part (i) we get

0≥ f̃ ′′(0)= vt f ′′(x)v

As this inequality holds for all v ∈Rn, ‖v‖ = 1, it follows that the Hessian of f is negative
semi-definite. The converse follows in the same way from the converse of part (i) (Take
x, y ∈ D and consider f̃ : {x+ t(y− x) : t ∈ [0,1]} → R, f̃ (x+ t(y− x)) = f (x+ t(y− x)), the
restriction of f to this line segment).
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Remark A.1.3. Let ; 6= D ⊂ Rn be an open set and f : D → R be a diffenrentiable func-
tion. Suppose f is concave on a closed and convex set C ⊂ D. Then for all x, y ∈ C the
inequality

f (y)≤ f (x)+ f ′(x)(y− x)

holds. In particular, if f (y)> 0 for some y ∈ C, then we deduce from the above inequality
that f ′(x) 6= 0 for all x ∈ C such that f (x) = 0, i.e. the gradient of f does not vanish in
zeros of f on C.

Definition A.1.4. Let D ⊂Rn.
(a) A function f : D → R is called quasiconcave if D is convex and for all a ∈ R the set
Da := {x ∈ D : f (x)≥ a} is convex. It is said to be quasiconvex if − f is quasiconcave.
(b) Let D be open. A twice differentiable function f : D →R is called strictly quasiconcave
in x ∈ D if for all y ∈Rn, y 6= 0 such that f ′(x)y= 0 the following inequality holds

yt f ′′(x)y< 0

It is said to be strictly quasiconcave on D if it is strictly quasiconcave in all points x ∈ D
of D. It is called strictly quasiconvex at x ∈ D if − f is strictly quasiconcave at x.

Remark A.1.5. (i) Let D ⊂ Rn be a convex set. A function f : D → R is quasiconcave
(resp. strictly quasiconcave) if and only if its restrictions to the intersection of every line
in Rn and D is the same (cf. for example the proof of Lemma A.2.1 below, where this is
used). So it is in theory sufficient to know all quasiconcave (resp. strictly quasiconcave
functions) from R to R.
(ii) Note that, if the gradient of the function f in the above definition vanishes in the
point x ∈ D, then the definition means simply that the Hessian of the polynomial in that
point is positive definite.

Remark A.1.6. (i) Every monotonic function from R to R is quasiconcave.
(ii) Every concave function is quasiconcave. The converse is in general false: Consider
for example the function f : R→ R, x 7→ x3. This function is monotonically increasing,
thus quasiconcave, but it is not concave on (0,∞).
(iii) A concave function need not be strictly quasiconcave; e.g. the polynomial f = −X4

is concave on R but it is not strictly quasiconcave in 0 ∈R.
(iv) A strictly quasiconcave function need not be concave either; e.g. the polynomial
f = X1X2 is strictly quasiconcave as a function on (0,∞)× (0,∞) ⊂R2 but its Hessian is
indefinite.
(v) The set {x ∈ Rn : g(x) ≥ 0} for a polynomial g ∈ R[X1, . . . , Xn] can of course be convex
without the polynomial being convex as a function:
Consider the polynomial g = −X4 + X3 +4X = −X (X −2)(X2 + X +2) ∈ R[X ]. The real
zeros of this polynomial are X = 0 and X = 2, both of order 1. So the polynomial is non-
negative on [0,2]. The second derivative g′′ =−12X2 +6X has the two real zeros X = 0
and X = 1

2 , so it changes sign on [0,2]. This means, that g is not concave on [0,2].
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A.2. Convex Sets
In this subsection, we will look at the converse of the first part: What can we say about
functions defining a convex set. Unfortunately, the necessary conditions on the defining
functions (we will restrict our attention to polynomials which is not necessary) are not
very useful for us in the preceding sections. We start by relating supporting hyperplanes
of a convex set defined by one function to the gradient of this function and by further
investigating the condition of (strict) quasiconcavity:

Lemma A.2.1. Let D ⊂Rn be open and f : D →R be a twice differentiable function.
(i) Let x0 ∈ D be a point such that D f (x0) := {x ∈ D : f (x)≥ f (x0)=: a} is convex and f ′(x0) 6=
0. Then the affine tangent space H := {x ∈ Rn : f ′(x0)x = f ′(x0)x0} to the set {x ∈ D : f (x) =
f (x0)} is a supporting hyperplane of the convex set Da at x0. In particular, this holds true
for all x ∈ D if f is a quasiconcave function and D is convex.
(ii) The condition yt f ′′(x0)y≤ 0 holds at x0 ∈ D for all y ∈Rn such that f ′(x0)y= 0 if and
only if there is an M ≤ 0 such that

f ′′(x0)+M f ′(x0)t f ′(x0)≤ 0

If f is quasiconcave, then these two conditions are satisfied for all x ∈ D.
(iii) The function f is strictly quasiconcave in a point x0 ∈ D if and only if there is an
M ≤ 0 such that

f ′′(x0)+M f ′(x0)t f ′(x0)< 0

In particular, if f is continuously twice differentiable, then the set of all points where f
is strictly quasiconcave is open.
(iv) Let D be convex. If f is strictly quasiconcave, then it is also quasiconcave.

PROOF. (i) Put H := {x ∈ Rn : f ′(x0)x = f ′(x0)x0}. Let x1 ∈ Da. By convexity of Da we get
for all t ∈ [0,1]

a ≤ f (x0 + t(x1 − x0))= f (x0)+ t f ′(x0)(x1 − x0)+R(t)

by Taylor expansion for a remainder term R with the property limt→0
R(t)

t = 0. So for
sufficiently small t ∈ [0,1] we get

f ′(x0)(x1 − x0) ≥ 0
f ′(x0)x1 ≥ f ′(x0)x0

which means, that Da is contained in the closed half-space {x ∈Rn : f ′(x0)x ≥ f ′(x0)x0}. If
f is quasiconcave, put a := f (x0) and Da := {x ∈ D : f (x) ≥ a}, then Da is convex and the
second part follows by the first.
(ii) Without loss of generality we can assume f ′(x0) 6= 0 (else, there is nothing to prove).
Now, if for all y ∈Rn such that f ′(x0)y= 0 the condition yt f ′′(x0)y≤ 0 holds, we set v1 :=
f ′(x0) and complete to an orthogonal basis (v1, . . . ,vn) of Rn. Then we have f ′(x0)vi = 0
for all 2≤ i ≤ n. Now choose M ≤ 0 such that

vt
1 f ′′(x0)v1 +Mvt

1 f ′(x0)t f ′(x0)v1 ≤ 0
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Then the desired condition follows for every y ∈ Rn by expansion in the chosen basis of
Rn. The converse is trivial.
If f is quasiconcave, take x0 ∈ D and x1 ∈ {x ∈ D : f (x) ≥ f (x0)}. Consider the function
f̃ : [0,1]→R, t 7→ f (x0+ t(x1−x0)) - i.e. the restriction of f to the line segment in between
x0 and x1. We have f̃ ′(t) = f ′(x0 + t(x1 − x0))(x1 − x0) and f̃ ′′(t) = (x1 − x0)t f ′′(x0 + t(x1 −
x0))(x1 − x0). Thus it is sufficient to prove the claim for f̃ :
If there were t0 ∈ [0,1] such that f̃ ′(t0) = 0 and f̃ ′′(t0) > 0, then t0 would be a local
minimiser of f̃ , i.e. for sufficiently small δ> 0 we would have f̃ (t0 −δ)> f̃ (t0) as well as
f̃ (t0 −δ) > f̃ (t0). But then the set {t ∈ [0,1]: f (t) ≥ f (t0)+ ε} would not be convex for a
suitably small ε> 0 (not even connected) which is a contradiction to the assumption of
f̃ being quasiconcave.
The proof of (iii) is analogous to the proof of (ii). The openness of the set of points where
f is strictly quasiconcave follows from the fact, that the eigenvalues of the matrix f ′′(x)+
M f ′(x)t f ′(x) depend continuously on its coefficients which in turn depend continuously
on x.
(iv) Let f be a strictly quasiconcave function on the convex set D. Let a ∈ R such that
Da := {x ∈ D : f (x) ≥ a} 6= ; and take x1, x2 ∈ Da. Again consider the function f̃ : [0,1] →
R, t 7→ f (x1 + t(x2 − x1)). As we have f̃ ′(t) = f ′(x1 + t(x2 − x1))(x2 − x1) and f̃ ′′(t) = (x2 −
x1)t f ′′(x1+ t(x2− x1))(x2− x1), we get by assumption for all t ∈ [0,1]: f̃ ′(t)= 0⇒ f̃ ′′(t)< 0.
This means that there is at most one t0 ∈ [0,1] such that f̃ ′(t0)= 0.
If f̃ ′(t) 6= 0 for all t ∈ [0,1], then f̃ is strictly monotonic on [0,1] and thus {x1+t(x2−x1) : t ∈
[0,1]}⊂ Da.
If there is a t0 ∈ [0,1] such that f̃ ′(t0)= 0, then we know by f̃ ′′(t0)< 0 that f̃ (t)> 0 for all
t ∈ [0, t0) and f̃ (t) < 0 for all t ∈ (t0]. This implies f̃ ≥ a on [0,1] as the global minima of
f̃ are attained on the boundary. Thus we also have {x1 + t(x2 − x1) : t ∈ [0,1]}⊂ Da.
So we get that Da is convex for all a ∈R which means that f is quasiconcave.

Remark A.2.2. In the above Lemma A.2.1(ii) and (iii) it suffices to choose M (strictly)
greater in absolute value than the biggest non-negative eigenvalue of f ′′(x) for fixed
x ∈ D. Thus M can be chosen to depend continuously on x and we get:
A twice differentiable function f is strictly quasiconcave on a compact set C ⊂Rn if and
only if there is a M < 0 such that for all x ∈ C the following condition holds

f ′′(x)+M f ′(x)t f ′(x)< 0

We are now ready to prove the main result:

Theorem A.2.3 (cf. [HN09], Theorem 3.5). Let C = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} be
a set defined by irreducible polynomials g1, . . . , gr ∈ R[X1, . . . , Xn]. Let u ∈ ∂C be a point
such that U∩C is convex for some neighbourhood U of u. If a polynomial g i ∈ {g1, . . . , gr}
satisfies the conditions

1. g i(u)= 0;

2. g′
i(u) 6= 0;
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3. Z(g i)∩ (V \ {u}) 6= ; for all neighbourhoods V of u, i.e. u is not an isolated zero of
g i,

then the inequality

yt g′′
i (u)y≤ 0

holds for all y ∈Rn such that g′
i(u)y= 0.

PROOF. Put I(u) := {i ∈ {1, . . . , r} : g i(u) = 0} and assume that all defining polynomials
are pairwise distinct.
First assume that |I(u)| = 1, say I(u) = {i}, i.e. fix i ∈ {1, . . . , r} such that g i(u) = 0. Then
there is a neighbourhood U ′ of u such that U ′ ∩C = {x ∈ U ′ : g i(x) ≥ 0} and U ′ ∩C is
convex. Therefore by Lemma A.2.1 the affine hyperplane H := {x ∈ Rn : g′

i(u)x ≥ g′
i(u)u}

is a supporting hyperplane to U ′ ∩C. Thus g i(u + ε
‖y‖ y) ≤ 0 for all y ∈ Rn such that

g′
i(u)y = 0 and all ε ∈ R such that u+ ε

‖y‖ y ∈ U ′. So Taylor expansion of g i at u up to
order 2 gives the claim in this case.
We now consider the general case |I(u)| ≥ 1: For all i ∈ I(u) there is a sequence {ui

k}k∈N ⊂
Z(g i)∩∂C\(

⋃
j 6=i Z(g j) (i.e. a sequence of zeros of g i on the boundary of C where no other

defining polynomial vanishes) such that ui
k → u (k → ∞). For if that were not true,

then there would be an index j and a polynomial g j that vanishes on V ∩Z(g i) for some
neighbourhood V of u and then, by Artin-Lang’s Theorem (in the version [Sch08, Kapitel
I], Satz 7.11), g i = g j (at least up to a positive constant). Since g′

i(u) 6= 0 there is an index
n0 ∈N such that for all k ≥ n0 the gradient g′

i(u
i
k) is non-zero. Therefore we know by the

first part of the proof, that the claim holds for these points, i.e. that yg′′
i (ui

k)y≤ 0 for all
y ∈Rn, g′

i(u
i
k)y = 0, k ≥ n0. This implies the claim for u because g′

i(u
i
k) → g′

i(u) (k →∞)
(and therefore, there is a sequence {yk}k∈N for all y ∈ Rn such that g′

i(u)y = 0 with the
properties yk → y (k →∞) and g′

i(u
i
k)yk = 0 for all k ∈N).

Remark A.2.4. (i) Although the nonsingular points are dense in Z(g i), we cannot use
the same approximation method, which we used in the above proof, to show that g′′

i (u)≤
0 holds in all points of Z(g i)∩∂C (so, in particular, the singular points). The reason is,
of course, that the tangent space of a nonsingular point lacks a dimension. In fact, the
claim is false in this case. Consider the example g1 := X2

2 − X3
1 , g2 := X2 ∈ R[X1, X2]:

0 ∈R2 is a point on the boundary and a singular point of g1 but the Hessian of g1 at 0 is

g′′
1(0)=

(
0 0
0 2

)
≥ 0

and obviously has the positive eigenvalue 2. (The fact that the set defined by g1 and
g2 is not compact does not change anything. One can add, for example, the defining
polynomial g3 := 1− X2

1 − X2
2 ∈ R[X1, X2], get a compact set and remain with the same

problem.)
(ii) We cannot drop assumption 3 in the above Theorem either. If a zero on the boundary
of C of one of the defining polynomials is isolated, then this polynomial is redundant
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at this point, i.e. there is a neighbourhood U of this isolated zero such that C ∩U is
defined by the other polynomials. Therefore it has no consequences for it. Consider
the example g1 := 1− X2

1 − X2
2 , g2 := (X1 −2)2 + X2

2 −1 ∈ R[X1, X2], i.e. the unit disk in
R2 with a redundant defining polynomial g2 (defining the exterior of the circle around
(2,0) with radius 1). Then (1,0) is an isolated zero of g2 on the boundary of C = {(x1, x2) ∈
R2 : g1(x1, x2) ≥ 0, g2(x1, x2) ≥ 0} and g2 does not satisfy the claim in this point (g′′

2(1,0)
has the eigenvalue 2 (with algebraic and geometric multiplicity 2)).
(iii) The assumption on the polynomials to be irreducible can be substituted by the
assumption that there is a sequence of zeros of g i on the boundary with the properties
that it converges to u and that no other polynomial vanishes in the elements of the
sequence (this is a generalisation that also holds for twice continuously differentiable
functions as defining functions). This is how [HN09], Theorem 3.5, is essentially stated.
As we show in the proof, this condition is met, when all of the defining polynomials are
irreducible - so it is slightly more general than our statement here.

A.3. Optimisation and Lagrange Multipliers
In this section of the appendix, we present some results on the existence of Lagrange
multipliers and some examples, where no Lagrange multipliers exist. Again, the facts
presented here, are well known. We stick to the book [HF] for our presentation. We
begin with some basic notions of optimisation theory.

Definition A.3.1. Let D ⊂Rn.
(a) An optimisation problem in standard form with domain D is an optimisation problem
of the form

inf{ f (x) : x ∈ D, g1(x)≥ 0, . . . , gr(x)≥ 0,h1(x)= 0, . . . ,hs(x)= 0}

with the so-called objective function f : D →R and the constraints g i : D →R (i = 1, . . . , r)
and hi : D →R (i = 1, . . . , s). We write p∗ ∈R for the optimal value, if it is attained.
(b) A point x ∈ D for which all constraints hold is called a feasible point (for the corre-
sponding problem).
(c) A feasible point x∗ ∈ D is called a minimiser if the optimal value is attained at this
point, i.e. if we have f (x∗)= p∗.

Definition A.3.2. For an optimisation problem in standard form we define the linearis-
ing cone of the problem at x0 to be

Cl(P, x0) := {v ∈Rn : g′
i(x0)v ≥ 0, if g i(x0)= 0, and h′

j(x0)v = 0 for all j = 1, . . . , s}

Remark A.3.3. The linearising cone of an optimisation problem at any feasible point is
a closed and convex cone in Rn.

Definition A.3.4. For a set S ⊂Rn we define the tangent cone of S at x0 ∈ S to be

Ct(S, x0) := {v ∈Rn : there are sequences (xk)k∈N ⊂ S and (ak)k∈N ⊂R such that

ak →+0 and
1
ak

(xk − x0)→ v}
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Remark A.3.5. (i) Examples and pictures of tangent cones to sets can be found in Chap-
ter 2.2 of [HF].
(ii) If the set S in question is closed and convex, then this cone is also closed and convex.
These statements can be found in [HF] (cf. Lemma 2.2.3 and Exercice 9 of Chapter 2).

Next, we cite the abstract and most important, known (to the author) result for the
existence of Lagrange multipliers, the Theorem of Karush-Kuhn-Tucker.

Theorem A.3.6 ( [HF], Opt., Theorem 2.2.5). Let D ⊂ Rn be open and let inf{ f (x) : x ∈
D, g1(x)≥ 0, . . . , gr(x)≥ 0,h1(x)= 0, . . . ,hs(x)= 0} be an optimisation problem in standard
form with domain D. Let x∗ ∈ Rn be a feasible point which is a minimiser. Let the dual
cones of the linearising cone at x∗ and the tangent cone to the set of feasible points at
x∗ be equal. Then there exist real, non-negative constants, called Lagrange multipliers,
λ∗

1 , . . . ,λ∗
r ≥ 0 and µ∗

1 , . . . ,µ∗
s ∈R such that the following conditions hold

λ∗
i g i(x∗) = 0 for all i = 1, . . . , r

f ′(x∗)−∑
λ∗

i g′
i(x

∗)−∑
µ∗

j h′
j(x

∗) = 0

Remark A.3.7. If the set of feasible points S is convex, then Cl(P, x0) and Ct(S, x0) are
both closed and convex cones. Thus the condition Cl(P, x0)∨ =Ct(S, x0)∨ is equivalent to
Cl(P, x0)=Ct(S, x0) (by Lemma 2.1.14(v))

Now there are many conditions, so-called constraint qualifications, which assure the
equality of the dual cones which is assumed in Theorem A.3.6. We will now present
three of them.

Definition A.3.8. Let D ⊂ Rn be an open set. Let inf{ f (x) : x ∈ D, g1(x) ≥ 0, . . . , gr(x) ≥
0,h1(x) = 0, . . . ,hs(x) = 0} be an optimisation problem in standard form with domain D
and let x0 be a feasible point.
(a) We say that the Slater constraint qualification is satisfied if the functions g i : D →R

are concave for all i = 1, . . . , r and there is a feasible point x̃ such that g i(x̃) > 0 for all
constraint functions which are not linear polynomials.
(b) The Mangasarian-Fromowitz constraint qualification requires the existence of a vec-
tor v ∈Rn with the following two properties:

g′
i(x0)v ≥ 0 for all linear polynomials with g i(x0)= 0

g′
i(x0)v > 0 for all other constraint functions with g i(x0)= 0

(c) The Abadie constraint qualification holds if the linearising cone of the optimisa-
tion problem at x0 is equal to the tangent cone to the set of feasible points at x0,
i.e. Cl(P, x0)=Ct(S, x0) (where S denotes the set of feasible points).

Remark A.3.9. (i) The Slater constraint qualification implies the Mangasarian-Fromowitz
constraint qualification. For if we take a feasible point x0 ∈Rn we get

g′
i(x0)(x̃− x0) = g i(x̃)− g i(x0)= g i(x̃)≥ 0 for all linear polynomials

g′
i(x0)(x̃− x0) ≥ g i(x̃)− g i(x0)= g i(x̃)> 0 for all other constraint functions
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by Lemma A.1.2(ii).
In turn, the Mangasarian-Fromowitz constraint qualification implies the Abadie con-
straint qualification (cf. [HF], p. 55f. for a proof). Thus it is obvious that the assumption
on the cones in Theorem A.3.6 is satisfied if the Slater constraint qualification holds for
any feasible point or any of the other two conditions is satisfied for the minimiser in
question.
(ii) The Mangasarian-Fromowitz constraint qualification is a weak assumption. Nev-
ertheless there are examples of polynomial constraint functions where the constraint
qualification is not satisfied:
Consider g1(X1, X2)= 1−X2

1−(X2−1)2 and g2(X1, X2)= 1−X2
1−(X2+1)2 both in R[X1, X2].

The only feasible point under these constraints is C = {(0,0)} ⊂ R2 but g′
1(0,0) = (0,+2)

and g′
2(0,0)= (0,−2) which means, that the Mangasarian-Fromowitz constraint qualifi-

cation is not satisfied in (0,0) ∈ ∂C.

We will now give some examples where there are no Lagrange-multipliers for certain
linear polynomials as objective functions:

Examples A.3.10. (i) Take g1 := 1− X2
1 − (X2 −1)2 and g2 := 1− X2

1 − (X2 +1)2, i.e. two
circles with radius 1 and centre (0,1), resp. (0,−1). Therefore C = {(0,0)}. There are no
Lagrange multipliers in this case for any linear polynomial a0+a1X1+a2X2 ∈R[X1, X2]
with a1 6= 0 (g′

1(0,0)= (0,+2) and (g′
2(0,0)= (0,−2)), although the polynomials g1 and g2

are concave as functions on R2. The Slater constraint qualification fails in this example
because the set has empty interior.
(ii) Consider g1 := −X1 and g2 := X3

1 + X2
1 − X2

2 . Then g′
1 = (−1,0) and g′

2 = (3X2
1 +

2X1,−2X2), so g′
2(0,0) = 0. In this case, there are no Lagrange multipliers for all lin-

ear polynomials which minimise on C at (0,0) and satisfy a2 6= 0. For example, take
` = a1X1 + a2X2 such that a1

a2
∈ (−∞,1). The constraint qualifications fail in this case,

because the polynomial g2 is not concave and non-linear and singular at (0,0).
(iii) The upper half of the cone defined by g1 := X2

3−X2
1−X2

2 and g2 := X3 ∈R[X1, X2, X3]
is another example. Again, the polynomial g1 is not concave and non-linear and sin-
gular at (0,0). And again, there are no Lagrange multipliers for all linear polynomials
minimising on C at (0,0) which are not X3, e.g. `= X3 − 1

2 X2.

We state explicitly a very useful (immediate) corollary of the Karush-Kuhn-Tucker
Theorem for our applications. It is easy to prove directly using Farkas’s Lemma (which
we will cite and derive from the Separation Theorem for convex sets just after this
corollary), so we will explicitly prove it:

Corollary A.3.11. Let C = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} be a convex, compact and
basic closed semi-algebraic set defined by polynomials g1, . . . , gr ∈ R[X1, . . . , Xn]. Let ` ∈
R[X1, . . . , Xn]1 be a linear polynomial and u ∈ ∂C be a minimiser for the optimisation
problem min{`(x) : g1(x) ≥ 0, . . . , gr(x) ≥ 0}. If the Mangasarian-Fromowitz constraint
qualification holds at u, then we get Lagrange multipliers λ1, . . . ,λr ≥ 0 such that

λi g i(u) = 0 for all i = 1, . . . , r
`′(u)−∑

λi g′
i(u) = 0
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PROOF. Assume without loss of generality that `(u) = 0. After applying the affine co-
ordinate transformation x 7→ x− u, Rn → Rn we can also assume without loss of gen-
erality that u = 0 ∈ Rn (note that the derivative of the coordinate transformation is
the identity matrix). Assume that g i(u) = 0 for all i ∈ {1, . . . , r1} and g i(u) > 0 for all
i ∈ {r1 +1, . . . , r}. Then put b = `′(u)t and A = ( ∂

∂xi
g j(u))i=1,...,n; j=1,...,r1 , i.e. we define the

j-th column of A to be the gradient of (the active polynomial) g j at u. Suppose that
there is a vector y ∈ Rn such that 0 > ytb = yt`′(u)t = `′(u)y = `(y) (note that by u = 0 it
follows that ` is homogeneous of degree 1) and (yt A)i ≥ 0. Let v ∈ Rn be a vector sat-
isfying the Mangasarian-Fromowitz constraint qualification, i.e. for all i = 1, . . . , r1 we
have g′

i(u)v > 0 if deg(g i) > 1 and g′
i(u)v ≥ 0 if deg(g i) = 1. Now, for sufficiently small

ε > 0 the inequality (y+ εv)tb < 0 holds. And for all ε > 0 and i ∈ {1, . . . , r1} such that
deg(g i) > 1 we have 0 < ((yt + εv)t A)i = (y+ εv)t g′

i(u)t = g′
i(y)(y+ εv). So from Taylor

expansion of g i at u and g i(u)≥ 0 (u ∈ C), it follows that g i(α(y+εv))≥ 0 for sufficiently
small α > 0 and all i = 1, . . . , r1. The case deg(g i) = 1 does not pose any problems be-
cause 0 ≤ (y+ εv)t g′

i(u) = g i(y+ εv). If we choose α maybe even smaller, then we can
also guarantee that g i(α(y+εv))> 0 remains positive for all i = r1 +1, . . . , r. So we have
w := α(y+ εv) ∈ C and `(w) < 0 which is a contradiction to 0 = `(u) = min{`(x) : x ∈ C}.
Therefore, by Farkas’s Lemma ( [HF], p. 43; also cited below, cf. A.3.12), there is a vector
(λ1, . . . ,λr) ∈Rr

≥0 such that A(λ1, . . . ,λr)t = b, which is nothing but the claim

r1∑
i=1

λi g′
i(u)= `′(u)

Note that the complementary slackness is included here because we can choose the
multipliers λr1+1, . . . ,λr to be 0.

Theorem A.3.12 (Farkas’s Lemma or Theorem of the Alternative, cf. [HF], p. 43). Let
A ∈Mk×l(R) be a real matrix and b ∈Rk. Then exactly one of the following claims holds:
(a) There is x ∈Rl such that x1, . . . , xl ≥ 0 and Ax = b.
(b) There is y ∈Rk such that ytb < 0 and (yt A)i ≥ 0 for all i = 1, . . . , l.

PROOF. Denote by v1, . . . ,vl the columns of A, i.e. A = (v1, . . . ,vl) and let K be the convex
cone {

∑l
i=1 aivi : a1 ≥ 0, . . . ,al ≥ 0} generated by these columns. Then there is a vector

x ∈ Rl with the properties x1, . . . , xl ≥ 0 and b = Ax = x1v1 + . . .+ xlvl if and only if b ∈ K .
If b ∉ K , then there is by the Separation Theorem for convex sets (note that K is, as a
finitely generated cone, closed) a linear functional ` ∈ K∨ such that `(b) < 0, i.e. there
is a y ∈ Rk such that ytb < 0 and (yt A)i = ytvi ≥ 0 for all i = 1, . . . , l. So (a) is equivalent
to b ∈ K and (b) is equivalent to b ∉ K by the Separation Theorem and the proof is
finished.

Remark A.3.13. As we just saw in the proof, the given version of Farkas’s Lemma is
only a reformulation in terms of matrices of the special case of the Separation Theorem
stating that a finitely generated convex cone and a point can be strictly separated by a
hyperplane.

As a last remark on Lagrange multipliers, we will show that they are in general not
continuous functions of the linear polynomial, which is to be optimised.
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Remark A.3.14. In general, the Lagrange multipliers cannot be chosen to depend con-
tinuously on the linear polynomial they correspond to. If we consider for example the
convex body (an ellipsoid) C defined by the polynomials g1 := 1− 2X2

1 − X2
2 − X2

3 and
g2 := 1− X2

1 −2X2
2 − X2

3 ∈ R[X1, X2, X3], then their gradient at (0,0,1) ∈ ∂C is the same,
namely (0,0,−2). This is the reason why we will be unable to choose Lagrange multipli-
ers continuously with respect to the corresponding linear polynomial: If we take the se-
quence { 1

n X1−X3}n∈N of linear polynomials, then they minimise in points on the bound-
ary of C where only g1 vanishes. So the Lagrange multipliers will be uniquely deter-
mined tuples of the form (λn

1 ,0) where λn
1 converges to 1

2 as n tends to ∞. But of course,
this situation is symmetric in X1 and X2, i.e. if we take the sequence { 1

n X2 − X3}n∈N
of linear polynomials, then they minimise in points on the boundary of C where only
g2 vanishes and so the Lagrange multipliers will look like (0,λn

2 ). And again, they are
unique for all n ∈N and we have λn

2 → 1
2 (n →∞). So a continuous choice of Lagrange

multipliers is impossible.
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B. The Dimension of Semi-algebraic
Sets and the Real Spectrum

In this section, we will use the real spectrum to prove Lemma 2.1.17(ii). We will rely on
the correspondence of semi-algebraic subsets of Rn and constructible subset of the real
spectrum Sper(R[X1, . . . , Xn]) of the ring of polynomials in n variables over R. This can
be found in [BCR98], chapter 7.2.

Definition B.1.15. The dimension of a semi-algebraic set S ⊂ Rn is defined to be the
algebraic dimension of its Zariski-closure

dim(S)= dim(closZ(S))

Remark B.1.16. The dimension of S is n, i.e. maximal, if the topological interior of S is
non-empty in the semi-algebraic (euclidean) topology (cf. [BCR98], Corollary 2.8.9 and
Theorem 2.3.6)

By [BCR98], Proposition 7.2.2, there is to every semi-algebraic set S ⊂Rn a uniquely
determined constructible subset of Sper(R[X1, . . . , Xn]), which we will denote by S̃, such
that S̃ ∩Rn = S. If S = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0} is a basic-closed set defined
by polynomials g1, . . . , gr ∈ R[X1, . . . , Xn], then the same is true in the real spectrum,
i.e. S̃ = {P ∈Sper(R[X1, . . . , Xn]) : g1 ∈ P, . . . , gr ∈ P}.

Definition B.1.17. Let C ⊂ Sper(R[X1, . . . , Xn]) be constructible. The dimension of C is
defined to be maximal length of a chain of specialisation in C.

Proposition B.1.18 (cf. [BCR98], Propositions 7.5.6 and 7.5.8). The dimension of S ⊂Rn

as a semi-algebraic set is equal to the dimension of S̃ ⊂ Sper(R[X1, . . . , Xn]) as a con-
structible subset of the real spectrum.

Definition B.1.19. Let A be a commutative ring with unity, let P ⊂ A be an ordering
(a prime cone in the terminology of [BCR98]) of A. The dimension of P is defined to be
the Krull dimension of the ring A/supp(P) where we write supp(P) = P ∩ (−P) for the
support of P, a prime ideal of A.

Now we can proof Lemma 2.1.17(ii):

Lemma (Lemma 2.1.17). (ii) If PO(g1, . . . , gr)k is pointed for all k ∈N, then the interior
of C = {x ∈Rn : g1(x)≥ 0, . . . , gr(x)≥ 0} is non-empty.
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PROOF. The assumption PO(g1, . . . , gr)k pointed for all k ∈ N is equivalent to saying
that the support supp(T) of the preordering T = PO(g1, . . . , gr) ⊂ R[X1, . . . , Xn] is the
zero ideal.
Now we extend the preordering T to a preordering T ′ of the function field R(X1, . . . , Xn)
in the following way: A quotient p

q of polynomials p, q ∈ R[X1, . . . , Xn] (q 6= 0) is in T ′ if
and only if pq ∈ T. This defines a proper preordering of the function field. By Theo-
rem 1.1.9 in [PD01] the preordering T ′ extends to an ordering P ′ of the function field.
By the functoriality of the real spectrum (cf. [BCR98], 7.1.7), the pullback P of P ′ to
R[X1, . . . , Xn] (i.e. φ−1(P ′) for the map φ : R[X1, . . . , Xn] → R(X1, . . . , Xn), p 7→ p

1 ) is an or-
dering of the ring of polynomials such that T ⊂ P and supp(P) = 0. Thus we know that
the dimension of P is n.
As we have T ⊂ P, we get P ∈ C̃ (where C is the basic closed, semi-algebraic set defined
by T). Thus Proposition 7.5.8 in [BCR98] gives us the following equality

dim(C)= dim(C̃)=max{dim(α) : α ∈ C̃}= n

By Remark B.1.16 this implies that the topological interior of C in the semi-algebraic
topology is non-empty which is the claim.

The claim of Lemma 2.1.17 is in general false for quadratic modules, even if they are
assumed to be archimedean. The reason is that an archimedean quadratic module with
support (0) is in general not contained in an ordering with support (0):

Example B.1.20. Take the quadratic module M = QM(X1, X2,1− X1,1− X2,−X1X2) ⊂
R[X1, X2]. This is a proper module which is archimedean and has support (0):
The module is archimedean by [KMS05], Corollary 3.6: For {X ,1−X } is the set of natural
generators for the set [0,1], so 1−X2 is in the quadratic module QM(X ,1−X ) (which also
happens to be equal to the preordering generated by the same polynomials) by [KMS05],
Corollary 3.6. Thus QM(X1, X2,1− X1,1− X2) is already archimedean (it contains the
polynomial 2− X2

1 − X2
2 = (1− X2

1)+ (1− X2
2)).

In order to show that the support of M is trivial, we define the following semi-ordering
S ⊂ R[X1, X2]: Let 0 ∈ S. Now take a polynomial p = ∑

ν∈N2
0
aνXν ∈ R[X1, X2] and let

ν= (ν1,ν2) ∈N2
0 be the smallest multi-index with respect to the lexicographic order such

that aν 6= 0. Then we have p ∈ S if and only if
aν > 0 , if ν1,ν2

∼= 0 mod 2
aν > 0 , if ν1

∼= 1 mod 2,ν2
∼= 0 mod 2

aν > 0 , if ν1
∼= 0 mod 2,ν2

∼= 1 mod 2
aν < 0 , if ν1

∼= 1 mod 2,ν2
∼= 1 mod 2

Direct verification of the definition shows that S is indeed a semi-ordering (cf. [PD01],
6.1.2 and 5.5.3). This semi-ordering contains M, because it contains every generator of
M, and the support of S is (0) by definition.
And yet M cannot be contained in an ordering of R[X1, X2] with support (0) because
already the preordering generated by the polynomials X1, X2, 1−X1, 1−X2 and −X1X2
has a non-trivial support.
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The set defined by M is [0,1]× {0}∪ {0}× [0,1] ⊂ R2; it has empty interior although the
cone QM(X1, X2,1− X1,1− X2,−X1X2)k is pointed for all k ∈N.
Another example can be found in [Sch05a] (Example 3.2).
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C. Basics of Differential Geometry
and Boundaries of Convex Sets

C.1. Hypersurfaces in Rn and Curvature
In the preceding, we need some basic facts about (analytic) hypersurfaces in Rn such as
the first and second fundamental form. These are basic concepts in differential geome-
try of embedded manifolds which are unfortunately hard to find in the literature. Most
of the books do not deal with embedded (to Rn) manifolds at all or they restrict their
attention to curves in R2 and surfaces in R3. The concepts are easily generalised to the
case of hypersurfaces in Rn. For the lack of an explicit reference, we include a short
treatment of this matter here. We will mostly omit proofs and only give short indica-
tions on how to prove the result or a reference which mostly requires generalisation to
higher dimensions to fit the claim.
The following Lemma is a well-known result in basic analysis - it follows by use of the
implicit function theorem:

Lemma C.1.1. Let M ⊂Rn be a set. The following statements are equivalent:
(i) For all p ∈ M, there is an open set U ∈ Rn−1 and a map φ ∈ C∞(U ;Rn) such that the
rank of the Jacobian of φ is n−1 in all x ∈U and φ(U)= M∩V for an open neighbourhood
V ⊂Rn of p.
(ii) For all p ∈ M, there is an open neighbourhood V ⊂Rn of p, an open set U ⊂Rn−1 and
a map f ∈C∞(U ;R) such that M∩V = graph( f )= {(x, f (x)) : x ∈U}.
(iii) For all p ∈ M, there is an open neighbourhood V ⊂ Rn of p and a map g ∈C∞(V ;R)
such that M∩V = {x ∈V : g(x)= 0}=: Z(g).

Definition C.1.2. Let M ⊂Rn be a set.
(a) It is called a smooth hypersurface, if it satisfies one of the statements in the above
Lemma C.1.1.
(b) A map φ as in C.1.1(i) is called a chart of M at p.

Remark C.1.3. Note that we do not assume the hypersurface to be connected, which
leads to minor technical difficulties in section 3.3 but also gives slightly more general
results.

Definition C.1.4. Let M ⊂Rn be a smooth hypersurface and let p ∈ M be a point. Write
Iε := (−ε,ε)⊂R. The set

TpM = {γ′(0) : γ ∈C∞(Iε; M),γ(0)= p}
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is called the tangent space of M at p. It is an R-vector space (cf. [Spi70], Chapter III).
The affine tangent space T̂pM is the affine vector space p+TpM.

Remark C.1.5. The restriction of the scalar product on Rn to TpM is called the first
fundamental form of M at p. It is, of course, still a symmetric bilinear form, written as
follows

Ip : TpM×TpM →R, (v,w) 7→ 〈v,w〉

We also denote the canonical euclidean product on Rn by 〈., .〉 because confusion does not
seem likely.

Proposition C.1.6. Let M ⊂Rn be a smooth hypersurface.
(i) The tangent space to M at any point p ∈ M is an R-vector space.
(ii) The tangent space to M has dimension n−1 at all p ∈ M.
(iii) Let p ∈ M and let V ⊂ Rn be a neighbourhood of p such that M ∩V = graph( f ) for
a map f ∈ C∞(U ;R) and p = (u, f (u)). Then the vectors {(e i, ∂

∂xi
f (u))}i=1,...,n−1 (where e i

denotes the i-th canonical base vector of Rn−1) form a basis of TpM.

PROOF. (i) is proved for the special case of surfaces in R3 in [Blo97], Lemma 5.4.2 and
the proof generalises to higher dimensions. To prove (iii), let p, V , u and f be as in the
claim. Then the claim follows by calculating the derivatives of the curves

γi : (−ε,ε)→ M, t 7→ (u+ te i, f (u+ te i))

where e i denotes the i-th canonical base vector in Rn−1 (i = 1, . . . ,n−1) and ε is chosen
such that u+ te i is contained in U for all t ∈ (−ε,ε) and all i = 1, . . . ,n−1. This implies
(ii), because the fact that the gradient of a function describing M locally as its zero set
is normal to the tangent space (cf. Proposition C.1.9(i)) implies that the dimension is at
most n−1.

Definition C.1.7. (a) A normal vector field on a smooth hypersurface M ⊂ Rn is a map
N : M → Rn such that N(p) 6= 0 is perpendicular to all tangent vectors v ∈ TpM at p,
i.e. 〈v, N(p)〉 = 0. It is called smooth, if its composition with all charts is infinitely differ-
entiable. It is called a unit normal vector field, if ‖N(p)‖ = 1 for all p ∈ M.
(b) A smooth hypersurface is called orientable, if there is a smooth normal vector field
on M.

Remark C.1.8. (i) Every hypersurface is locally orientable (as we will see in the fol-
lowing proposition). We will therefore often see the tangent space TpM to a smooth
hypersurface M ⊂Rn at p ∈ M as the hyperplane of Rn defined by a normal vector to M
at p - but sometimes, we will see it as an (n−1)-dimensional R-vector space.
(ii) Every compact (in the topology of Rn) hypersurface in Rn is orientable (cf. [Gre67],
Theorem (27.11)).
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Proposition C.1.9. Let M be a smooth hypersurface and let p ∈ M be a point.
(i) If V ⊂Rn is a neighbourhood such that M∩V is the zero set of a function g ∈C∞(V ;R),
then the map N : M∩V →Rn, x 7→ 1

‖g′(x)‖ g′(x) is a unit normal vector field on M∩V .
(ii) If V ⊂ Rn is a neighbourhood of p such that M ∩V = graph( f ) for a function f ∈
C∞(U ;R), then the map N : M ∩V → Rn, (x, f (x)) 7→ 1

‖( f ′(x),1)‖ ( f ′(x),−1) is a unit normal
vector field on M∩V .

PROOF. (i) follows from calculating the derivative of the function g◦γ : Iε := (−ε,ε)→R,
which is identically zero on Iε, at 0 for any curve γ : (−ε,ε)→ M with γ(0)= p. (ii) follows
from Proposition C.1.6(iii).

Definition C.1.10. (i) Let f : M →R be a function. The directional derivative Dv f (p) of
f at p ∈ M in direction v ∈ TpM is defined to be

Dv f (p)= d
dt

( f ◦γ)|t=0

for a curve γ ∈C∞((−ε,ε); M), γ(0)= p and γ′(0)= v (It is shown in [Blo97], Lemma 5.6.1
that this value does not depend on the choice of γ in the special case of a surface in R3 -
the proof generalises to higher dimensions).
(ii) We define the directional derivative of a function f ∈ C∞(M;Rm) to be the vector of
the directional derivatives of the component functions.

Remark C.1.11. (i) The same rules as for the usual derivative of a function from Rn to
Rm also apply to the directional derivative: If a,b ∈ R, v,w ∈ TpM and f , g ∈C∞(M;R),
then

Dv( f + g)(p) = Dv f (p)+Dv g(p)
Dv( f g)(p) = (Dv f (p)) g(p)+ f (p) (Dv g(p))

Dav+bw f (p) = aDv f (p)+bDw f (p)

If F, F ′ : M →Rm are smooth vector fields on M, then we have

Dv〈F,F ′〉(p)= 〈DvF(p),F ′(p)〉+〈F(p),DvF ′(p)〉

where 〈., .〉 denotes the scalar product on Rm.
These rules can be reduced to the corresponding rules for the derivation of maps on
euclidean space, cf. [Blo97], Lemma 5.6.2 for an example (again in the special case of
n = 3).
(ii) Let N be a unit normal vector field on M. From the above rule and 〈N(p), N(p)〉 = 1
for all p ∈ M, we immediately deduce

0= Dv〈N, N〉(p)= 2〈DvN(p), N(p)〉

This means that DvN(p) ∈ TpM for all p ∈ M.

This remark justifies the following definition:
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Definition C.1.12. Let M ⊂ Rn be a smooth orientable hypersurface with unit normal
vector field N ∈C∞(M,Rn).
(i) The map

Lp : TpM → TpM,v 7→ −DvN(p)

is called the Weingarten map of M at p.
(ii) The map

I Ip : TpM×TpM →R, (v,w) 7→ 〈Lp(v),w〉 = Ip(L(v),w)

is called the second fundamental form of M at p.

Remark C.1.13. (i) The negative sign in the definition of the Weingarten map is stan-
dard in the literature. It seems to be there for historical reasons.
(ii) The Weingarten map is linear and therefore the second fundamental form is a bilin-
ear form on the tangent space.
(iii) There is also the notion of the k-th fundamental form of a hypersurface in Rn for
k > 2 - it is defined at every p ∈ M to be the map (v,w) 7→ Ip(Lk(v),w) for v,w ∈ TpM.

Lemma C.1.14. The Weingarten map on a smooth orientable hypersurface is self-adjoint
(with respect to the first fundamental form), i.e.

Ip(L(v),w)= 〈L(v),w〉 = 〈v,L(w)〉 = Ip(v,L(w))

for all p ∈ M and v,w ∈ TpM. In particular, the second fundamental form is a symmetric
bilinear form.

PROOF. This is a computation in local coordinates, done e.g. in [Sch93], Chapter 2.5
(p. 105) (note that Schneider defines the second fundamental form without a minus
sign which does not influence the argument at all).

Proposition C.1.15. Let M ⊂Rn be a smooth orientable hypersurface and fix a unit nor-
mal vector field N ∈C∞(M;Rn). Let p ∈ M be a point.
(i) Let V ⊂ Rn be a neighbourhood of p such that M ∩V = {x ∈ V : g(x) = 0} for a func-
tion g ∈ C∞(V ,R). Choose the sign of g in such a way that 1

‖g′(p)‖ g′(p) = N(p). Then
Lp : TpM → TpM is the map v 7→ − 1

‖g′(x)‖ g′′(p)v for all p ∈ M, which means for the sec-
ond fundamental form:

I Ip(v,w)= −1
‖g′(p)‖〈g

′′(p)v,w〉

for all v,w ∈ TpM.
(ii) Let V ⊂ Rn be a neighbourhood such that M ∩V = graph( f ) for a map f ∈ C∞(U ;R)
and p = (u, f (u)). Assume that 1

‖( f ′(u),1)‖ (− f ′(u),1) = N(p). Then the Weingarten map is
given by v 7→ 1

‖( f ′(u),1)‖ f ′′(u)v which again means for the second fundamental form

I Ip(v,w)= 1
‖( f ′(u),1)‖〈 f ′′(u)v,w〉

(If N(p) 6= 1
‖( f ′(u),1)‖ (− f ′(u),1), then N(p) = − 1

‖( f ′(u),1)‖ (− f ′(u),1) and the statement re-
mains true, if the signs are adequately changed everywhere.)
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PROOF. In both cases, the proof is a straightforward computation in the given local
coordinates.

Definition C.1.16. We say that a smooth orientable hypersurface is positively curved
at p ∈ M, if the second fundamental form I Ip at p is positive definite. We say that it
has non-negative curvature at p, if I Ip is positive semi-definite.

Remark C.1.17. (i) From Proposition C.1.15(i) we see that a smooth hypersurface M is
positively curved at p ∈ M if and only if a function g ∈C∞(V ;R) such that M∩V = Z(g)
and − 1

‖g′(q)‖ g′(q) = N(q) for a neighbourhood V ⊂ Rn of p and all q ∈ M ∩V is strictly
quasiconcave at p. If we write M locally as the graph of a function f ∈ C∞(U ;R) with
p = (u, f (u)) and such that the vector (− f ′(v),1) is a positive multiple of N(v, f (v)), then
it is equivalent that M is positively curved at p and that the Hessian of f is positive
definite at u (by Proposition C.1.15(ii)).
(ii) A positively curved hypersurface M with unit normal vector field N : M → Rn lies
locally on one side of the tangent plane TpM for all p ∈ M, i.e. if p ∈ M, then there
is a neighbourhood U ⊂ M of p such that 〈q− p, N(p)〉 ≥ 0 for all q ∈ U : Let V ⊂ Rn

be a neighbourhood of p such that there is a function g ∈ C∞(V ;R) with V ∩ M = {x ∈
V : g(x) = 0} and N(p) = 1

‖g′(p)‖ g′(p). Then I Ip(v,w) = −1
‖g′(p)‖〈g′′(p)v,w〉 (by Proposition

C.1.15(i)) which is positive definite, i.e. vt g′′(p)v < 0 for all v ∈ TpM. We take the Taylor
expansion of g at p:

g(p+h)= g(p)+ g′(p)h+ht g′′(p)h+ higher order terms= g′(p)h+ht g′′(p)h+ . . .

Now, if h ∈ TpM, then g(p + h) < 0 for all h ∈ TpM with ‖h‖ < ε for some ε > 0. If
h =−αN(p) for some α> 0, then

g(p+h)= g′(p)
( −α
‖g′(p)‖ g′(p)t

)
+ . . .=−α‖g′(p)‖+ . . .

is again strictly negative for all α< ε for some (possibly smaller) ε> 0. So we have seen
g(p+h)< 0, if h lies to the outside of the tangent hyperplane to M at p (and ‖h‖ < ε for
some possibly even smaller ε> 0). This shows that there is a neighbourhood W ⊂ Rn of
p such that

M ⊂ {q ∈W : 〈q− p, g′(p)〉 ≥ 0}

and 〈q− p, g′(p)〉 > 0 for all q ∈W , q 6= p.

C.2. The Boundary of Convex Sets, Support Functions
and the Minkowski Functional

In this part of the appendix, we will study the boundary of convex sets and the con-
nections between the boundary being a smooth hypersurface of Rn and differentiabil-
ity properties of the support function and the Minkowski functional of the set. These
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functions are, basically, only a different point of view on compact and convex sets with
non-empty interior. That is because they can be defined by axiomatic properties and are
in bijection to compact and convex sets with non-empty interior.
As we will restrict our attention to such convex sets, it is convenient to give this class of
sets a separate name:

Definition C.2.1. A compact, convex set K ⊂ Rn with non-empty interior is called a
convex body.

We will start with the Minkowski functional:

Definition C.2.2. Let K ⊂ Rn be a convex body and suppose that 0 ∈ int(K). The
Minkowski functional to the set K is defined to be the map

pK : Rn →R, x 7→
{

min{λ> 0: 1
λ

x ∈ K} for x 6= 0
0 for x = 0

Remark C.2.3. (i) In the above definition, the existence of the infimum of the set {λ>
0: 1

λ
x ∈ K} is due to the compactness of K .

(ii) The Minkowski functional is positively homogeneous, i.e. for all a ∈R≥0 and all x ∈Rn

we have

pK (ax)= apK (x)

In fact, it is also convex: Take x, y ∈Rn \{0}. The convexity of K yields

K 3 pK (x)
pK (x)+ pK (y)

(
1

pK (x)
x
)
+ pK (y)

pK (x)+ pK (y)

(
1

pK (y)
y
)
= 1

pK (x)+ pK (y)
(x+ y)

which in turn implies pK (x+ y)≤ pK (x)+ pK (y).
(iii) The Minkowski functional determines the set K , from which it is derived. In fact,
it also determines its boundary and its interior in the following way:

K = {x ∈Rn : pK (x)≤ 1}
∂K = {x ∈Rn : pK (x)= 1}

int(K) = {x ∈Rn : pK (x)< 1}

The first equality is clear from the definition of the Minkowski functional. For the other
two, we only have to see the equality for the boundary: This follows from the fact that
{λx : λ ∈R≥0}∩K = [0, y] for a point y ∈ ∂K and [0, y)⊂ int(K) since 0 is an interior point
of K .
(iv) The assumption 0 ∈ int(K) is only a normalisation. If 0 ∉ int(K), then fix an interior
point x0 ∈ int(K) and define pK (x)=min{λ> 0: λ−1(x−x0) ∈ K} for x 6= x0 and pK (x0)= 0.
However, this function will not be positively homogeneous if x0 6= 0.

We now turn our attention to support functions.

82



C.2. The Boundary of Convex Sets, Support Functions and the Minkowski Functional

Definition C.2.4. Let K ⊂Rn be a convex body. The support function of K is the follow-
ing map

hK : Rn →R, p 7→max{〈x, p〉 : x ∈ K}

Remark C.2.5. (i) The existence of the supremum of the set {〈x, p〉 : x ∈ K} is again due
to the compactness of K .
(ii) The support function of a convex body is a positively homogeneous and convex func-
tion:

hK (p+ q) = max{〈x, p+ q〉 : x ∈ K}
≤ max{〈x, p〉 : x ∈ K}+max{〈x, q〉 : x ∈ K}= hK (p)+hK (q)

(iii) A coordinate free definition of the support function is the following:
Let K ⊂V be a convex set in an R-vector space V . Define

h : V∨ →R,` 7→ sup{`(x) : x ∈ K}

This gives exactly the definition above, if we fix a basis on V and identify V∨ with
V via the canonical scalar product. We stick to the above definition because we want
to encourage the geometric connection between the support function and supporting
hyperplanes to K (cf. Remark C.2.12), i.e. the support function measures the distance
of a supporting hyperplane to K and the origin. Here the supporting hyperplanes are
identified with points in Rn by taking outward (i.e. the set K is contained in the opposite
closed half space defined by the hyperplane) normal vectors.

On the other hand, given a positively homogeneous and convex function, there is a
convex body with the given function as its support function:

Theorem C.2.6 ( [Sch93], Theorem 1.7.1). If f : Rn →R is a positively homogeneous and
convex function, then there is a unique convex body K ⊂Rn with support function f .
In particular we see that there is a bijection between convex bodies and positively homo-
geneous and convex functions given by the support function.

Remark C.2.7. (i) In the proof of the above theorem in [Sch93], it is shown that the set
K := {x ∈ Rn : 〈x, p〉 ≤ f (p) for all p ∈ Rn} is the convex body whose existence is claimed,
i.e. f is the support function of this convex body K .
(ii) This theorem allows us to define a support function as a positively homogeneous and
convex function. This definition then gives the same class of functions as the one given
above.

The Minkowski functional and the support function of a convex body are closely re-
lated. To make this precise, we need the following notion:

Definition C.2.8. Let K ⊂Rn be a set. The polar of K is the set

K o := {x ∈Rn : 〈x, p〉 ≤ 1 for all p ∈ K}
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For a convex body, this notion is very well behaved for it is a duality of sets:

Theorem C.2.9 (Bipolar Theorem, cf. [Bar02], Theorem IV.1.2). Let K ⊂Rn be a convex
body containing the origin. Then the bipolar of K equals K : (K o)o = K .

With the help of the polar, we can now precisely relate the support function and the
Minkowski functional of a convex body.

Theorem C.2.10 ( [Sch93], Theorem 1.7.6). Let K ⊂Rn be a convex body with the origin
in its interior. Then the Minkowski functional of K is the support function of the polar of
K : pK (x)= hK o(x) for all x ∈Rn.

Next, we want to relate the order of differentiability of the Minkowski functional, the
support function and the boundary of the convex set as a hypersurface in Rn:

Lemma C.2.11. Let K ⊂ Rn be a convex body with 0 ∈ int(K). The following two state-
ments are equivalent:
(i) The boundary of K is a smooth hypersurface in Rn.
(ii) The Minkowski functional pK of Rn is smooth in all points except the origin and
p′

K (x) 6= 0 for all x ∈Rn \{0}.
Furthermore, the following two statements are equivalent:
(iii) The boundary of K is a smooth and positively curved hypersurface in Rn.
(iv) The support function hK of K is smooth in all points except the origin, h′

K (p) 6= 0 for
all p ∈Rn \{0} and hK is strictly quasiconvex.

PROOF. Statement (i) implies (ii) by the implicit function theorem applied to the fact
that pK (x) is the non-negative real number λ such that 1

λ
x ∈ ∂K , i.e. g( 1

λ
x) = 0 for a

function g : V →R defining ∂K in a neighbourhood V of p = 1
pK (x) x. The reverse implica-

tion is again an application of the implicit function theorem (combine Lemma C.1.1 and
Remark C.2.3(iii)). The equivalence of (iii) and (iv) is [Gho04], Lemma 3.1.

A similar statement can be found in [KP99] (cf. Corollary 6.3.13).

Remark C.2.12. Let K ⊂ Rn be a convex body and x ∈ ∂K . Assume that there is a
neighbourhood U ⊂ Rn of x such that U ∩∂K is a smooth hypersurface in Rn. In this
case, the unique supporting hyperplane at x is the affine tangent space T̂x(U ∩∂K) at x
to U ∩∂K and therefore we conclude for the support function

h(N(x))= 〈y, N(x)〉
where N is an outward unit normal vector field of U∩∂K and y some point in K∩T̂x(U∩
∂K), e.g. x. This means h(p) = 〈y, p〉 for any y ∈ N−1(p) (the value of the scalar product
does not depend on the choice) and all p ∈ N(U ∩∂K)⊂ Sn−1.

Corollary C.2.13. Let K ⊂ Rn be a convex body. The boundary of K is a smooth and
positively curved hypersurface in Rn if and only if the Minkowski functional pK of K
is smooth in all points except the origin, p′

K (x) 6= 0 for all x ∈ Rn \ {0} and pK is strictly
quasiconvex in all x ∈ ∂K .
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PROOF. The claim for the smoothness of the boundary and the Minkowski functional
is Lemma C.2.11. We need to check the claim for the curvature: For a point x ∈ ∂K ,
the negative gradient of the Minkowski-functional −p′

K (x) is an inward normal, i.e. K ⊂
{v ∈Rn : 〈v− x,−p′

K (x)〉 ≥ 0}, because K = {x ∈Rn : pK (x)≤ 1}. This means that the second
fundamental form at x is given by

I Ix(v,w)= 1
‖p′

K (x)‖〈p
′′
K (x)v,w〉

This shows the claimed equivalence of the statement that ∂K is positively curved and
the statement that pK is strictly quasiconvex in all points x ∈ ∂K .
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Zusammenfassung auf Deutsch

In dieser Arbeit werden die wesentlichen Ergebnisse aus den Arbeiten [HN09] and
[HN10] im Detail dargestellt. Es geht dabei im Wesentlichen um die Frage, wann eine
konvexe, semi-algebraische Menge die Projektion eines Spektraeders ist - ein Spek-
traeder ist eine von einer linearen Matrixungleichung definierte Menge, d.h. eine Menge
der Form

{(x1, . . . , xn) ∈Rn : A0 + x1A1 + . . .+ xn An ist positiv semi-definit}

wo A0, . . . , An ∈ Symd×d(R) symmetrische Matrizen mit reellen Einträgen sind. Es ist
recht einfach einzusehen, dass Spektraeder konvexe und basisch-abgeschlossene, semi-
algebraische Mengen sind. Deshalb folgt sofort, dass Projektionen von Spektraedern
ebenfalls konvex und semi-algebraisch sein müssen (nach dem Projektionssatz für semi-
algebraische Mengen, s. [BCR98], Theorem 2.2.1). Weitere Eigenschaften von Spek-
traedern und ihren Projektionen werden im ersten Teil des zweiten Kapitels (nach der
Einleitung) besprochen. In den verbleibenden beiden Abschnitten des ersten Kapitels
geht es um Konstruktionen, die mit der konvexen Hülle von endlich vielen (Projek-
tionen von) Spektraedern zusammenhängen. Das Hauptergebnis ist ein Lokal-Global-
Prinzip, das im letzten Abschnitt des ersten Kapitels bewiesen wird.
Im dritten Kapitel wird die Lasserre-Relaxierung eingeführt. Dabei handelt es sich
um eine konstruktive Methode, um aus den definierenden Polynomen einer basisch
abgeschlossenen, semi-algebraischen Menge mit Hilfe von quadratischen Moduln (oder
spezieller Präordnungen) eine Darstellung der Menge als Projektion eines Spektraed-
ers zu erhalten. Im ersten Teil des Kapitels werden Grundlagen, die mit quadratischen
Moduln und konvexen Kegeln zusammenhängen, zusammengefasst und im zweiten
Teil dazu verwendet, den wichtigsten Satz über die Lasserre-Relaxierung zu zeigen.
Dieser besagt, dass sie genau dann eine Darstellung als Projektion eines Spektraed-
ers liefert (wir sagen “exakt wird”), wenn alle linearen Polynome, die nicht-negativ
auf der gegebenen Menge sind, eine Darstellung im von den definierenden Polynomen
erzeugten quadratischen Modul haben (mit Gradschranken für die benötigten Quadrat-
summen von Polynomen).
Im vierten Kapitel werden dann die Ergebnisse aus den beiden Arbeiten von Helton
und Nie dargestellt. Diese Ergebnisse verwenden die im dritten Kapitel vorgestellte
Lasserre-Relaxierung, um notwendige Bedingungen, die die Exaktheit der Lasserre-
Relaxierung sicherstellen, an die definierenden Polynome einer basisch-abgeschlossenen
semi-algebraischen Menge zu zeigen. Im ersten Teil des Kapitels wird eine Basisver-
sion der folgenden Resultate gezeigt. In den beiden weiteren Abschnitten des Kapitels
wird diese Basisversion unter steigendem technischen Aufwand immer weiter verfein-
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Zusammenfassung auf Deutsch

ert. Eine der Hauptschwächen der Resultate ist wohl die Beschränkung auf basisch-
abgeschlossene, semi-algebraische Mengen. Sie wird nur durch die Resultate über kon-
vexe Hüllen von (Projektionen von) Spektraedern aus Kapitel 2 teilweise aufgewogen,
weil die konvexe Hülle von basisch-abgeschlossenen, semi-algebraischen Mengen im
allgemeinen nicht mehr basisch-abgeschlossen ist. Andererseits sind die notwendigen
Bedingungen für basisch-abgeschlossene Mengen nicht weit von der hinreichenden Be-
dingung, die im zweiten Teil von Anhang A bewiesen wird, entfernt. Tatsächlich han-
delt es sich lediglich um die Frage, ob die Hesse-Matrix eines definierenden Polynoms
negativ definit oder negativ semi-definit ist. Trotzdem ist diese Lücke groß genug und
die Resultate decken nicht alle Fälle ab, in denen die Lasserre-Relaxierung exakt ist.
In den Anhängen werden verschiedene Informationen zusammengefasst, die nicht le-
icht in der Literatur zu finden sind und für die Arbeit relevant sind.
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