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Abstract
This paper establishes nonlinear asymptotic stability of homo-

geneous reference states in dissipative relativistic fluid dynamics.
The result is a counterpart for general non-barotropic fluids of
one obtained by the author in a previous paper on barotropic
fluids. Differently from that of this earlier finding, the proof
here crucially relies on analyzing the corresponding linearized
problem in Fourier space, with different scalings for small and
large wave numbers.

1 Introduction
The present paper studies a second-order quasilinear system of partial
differential equations,

Aaβg(ψ)∂ψg
∂xβ

= ∂

∂xβ

(
Baβgδ(ψ)∂ψg

∂xδ

)
, (1.1)

that was recently proposed in [4, 8] as a model for the relativistic dynamics
of fluids in the presence of viscosity, heat conduction, and diffusion.1 To
motivate system (1.1), we start from the relativistic Euler equations

∂

∂xβ

(
Tαβ

)
= 0, (1.2)

∂

∂xβ

(
Nβ
)

= 0, (1.3)

in which
Tαβ = (ρ+ p)uαuβ + ρgαβ, Nβ = nuβ

are the energy-momentum tensor and the matter current of an ideal fluid,
of specific energy ρ, pressure p, and particle number density n, that moves
at a 4-velocity uα. The fluid is specified by an equation of state which
identifies its specific internal energy e = e(n, s) as a function of n and

1We use the Einstein summation convention, Greek indices run from 0 to 3 and are
raised or lowered by contraction with gαβ , gαβ , where gαβ = diag(−1, 1, 1, 1) is the
standard Minkowski metric; cf., e.g., [20, Section 2.5]. Roman indices a, g, e run
from 0 to 4 and are symbolically used like the Greek ones, including the summation
convention.
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specific entropy s. Expressions for other thermodynamic state variables
such as ρ and p as well as the temperature θ and chemical potential υ
derive from the equation of state as

ρ = ρ(n, s) = ne(n, s), p = p(n, s) = n2en(n, s) = p̂(ρ, s),
θ = θ(n, s) = es(n, s), υ = (ρ+ p)/n− θs = υ̂(p, θ).

(1.4)

On the equation of state, we assume only the two fundamental properties
characterizing the generic causal non-barotropic one-phase fluid:

0 < ∂p̂

∂ρ
(ρ, s) < 1, (1.5)

D2υ̂(p, θ) < 0. (1.6)

Assumption (1.5) means that the speed of sound is strictly positive and
strictly smaller than the speed of light, while (1.6) says that system (1.2),
(1.3) possesses a convex mathematical entropy (cf. [17]). This allows
writing (1.2), (1.3) as a symmetric hyperbolic system

Aaβg(ψ)∂ψg
∂xβ

= 0, (1.7)

in the Godunov-Boillat variables ψα = uα/θ, ψ4 = υ/θ as new primary
unknowns; in (1.7), the coefficients Aaβg derive as

Aaβg(ψ) =
∂2
(
X̂(θ, ψ4)ψβ

)
∂ψa∂ψg

.

from a scalar function X̂(θ, ψ4) which is induced by the equation of state
[17]. The left-hand side of (1.1) is thus the relativistic Euler operator for
general non-barotropic ideal fluids in Godunov-Boillat form. Note that
(1.6) excludes the barotropic fluids studied in [18].2

Now, compared to the equations (1.2), (1.3) of the ideal case, dissipative
fluid dynamics is often formulated as

∂

∂xβ

(
Tαβ + ∆Tαβ

)
= 0, (1.8)

∂

∂xβ

(
Nβ + ∆Nβ

)
= 0, (1.9)

where ∆Tαβ , ∆Nβ augment the energy-momentum tensor and the matter
current to describe the dissipation effects. System (1.1) expresses (1.8),

2For these, υ ≡ 0 and equations (1.2) uncouple from (1.3); cf. [5].
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(1.9) in the Godunov-Boillat variables. We assume that the corresponding
coefficients Baβgδ on the right-hand side of (1.1) are given by 3

Bαβγδ = χθ2uαuγgβδ − σθuβuδΠαγ + ζ̃θΠαβΠγδ

+ ηθ(ΠαγΠβδ + ΠαδΠβγ − 2
3ΠαβΠγδ)

+ σθ(uαuβgγδ − uαuδgβγ) + χθ2(uβuγgαδ − uγuδgαβ) (1.10)

Bαβ4δ = 0, B4βγδ = σθ
(
uβgγδ − uδgβγ

)
, (1.11)

B4β4δ = µgβδ, (1.12)

where η, ζ̃, χ and µ denote the coefficients of shear viscosity, modified
bulk viscosity, heat conduction, and diffusion, and σ = (4/3)η + ζ̃. With
this choice the right-hand side of (1.1) is the second-order symmetric
hyperbolic description of dissipation given by Freistühler and Temple.
Without entering into details of its derivation and justification we refer the
reader to [4, 8] for these and limit ourselves here to the remark that this
description has been provided as an alternative to previous formulations
which are known to suffer from deficits such as a lack of causality (cf.
references brought up in the introductions of [7, 8]).
The purpose of this paper is to show the following.

1.1 Theorem. Let s ≥ 3 and ψ̄ = (θ̄−1, 0, 0, 0, ῡ/θ̄) with θ̄ and ῡ being
constant. Then there exist δ0 > 0, C0 = C0(δ0) > 0 such that the following
holds: For all (0ψ, 1ψ) with (0ψ − ψ̄, 1ψ) ∈

(
Hs+1 ×Hs

)
∩
(
L1 × L1) and

‖(0ψ − ψ̄, 1ψ)‖2s+1,s,1 < δ0 there exists a unique solution ψ to (1.1) with
ψ(0) = 0ψ, ψt(0) = 1ψ and

ψ − ψ̄ ∈
s⋂
j=0

Cj
(
[0,∞), Hs+1−j

)
.

Furthermore

‖(ψ(t)− ψ̄, ψt(t))‖2s+1,s +
∫ t

0
‖(ψ(τ)− ψ̄, ψt(τ))‖2s+1,sdτ

≤ C0‖(0ψ − ψ̄, 1ψ)‖2s+1,s, (1.13)

‖(ψ(t)− ψ̄, ψt(t))‖s,s−1 ≤ C0(1 + t)−
3
4 ‖(0ψ − ψ̄, 1ψ)‖s,s−1,1 (1.14)

for all t ∈ [0,∞).
3We use the standard projection Παβ = gαβ + uαuβ .
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This means nonlinear asymptotic stability of homogeneous reference
states of (1.1). The result is thus a counterpart for general non-barotropic
fluids of one obtained in [18] for barotropic fluids. While for barotropic
fluids the conservation laws (1.8) for energy and momentum uncouple from
the matter conservation law (1.9), the five equations (1.8), (1.9) now remain
genuinely coupled. The treatment of the linearized system in [18], namely
via energy methods in the spirit of Kawashima [12, 13], [2, 3], relies on
the particular structure of the coefficient matrices, in a way that does not
seem to permit carrying that treatment over to the present non-barotropic
context. In this paper a finer analysis of the linearized problem in Fourier
space is used to obtain decay estimates. Analogues of some of the key
features of this method have earlier been proposed by Bianchini, Hanouzet,
Natalini in [1] in the context of first-order nonlinear hyperbolic systems
with partial dissipation.4

To show Theorem 1.1 we proceed as follows. In the central Section 2, we
show the uniform definiteness of families of matrices which depend on a
parameter that will later correspond to the wave number. Very similarly
to parts of the argumentation in [1], in different regimes, the matrices
are decomposed with respect to carefully chosen invariant subspaces and
expanded in Taylor series. The desired definiteness properties follow from
algebraic conditions, 2.1, 2.4, that we introduce so as to reflect dissipativity
of the PDE system in the various regimes. In Section 3 we use the results
of Section 2 to derive decay and energy estimates for the linearized system.
Finally in Section 4 the full quasi-linear system is considered. Following
the classical approach for dissipative wave equations in [16], that was
also employed for hyperbolic-parabolic systems [12, 13] and first-order
symmetric hyperbolic systems [1, 9, 14, 21, 22], we view the nonlinearities
as perturbations of the linearized system and show that the estimates of
Section 3 carry over to the nonlinear case.
It is an interesting question as to wether system (1.1) can be cast in

the form of a symmetric hyperbolic system of first order, in which case
methods and results of [1, 9, 14, 21, 22] might provide an alternative proof
of Theorem 1.1. Note, however, that standard ways of introducing first-
order derivatives as additional dependent variables do not readily achieve
this. For connections between our dissipativity conditions 2.1, 2.4 with the
celebrated Kawashima-Shizuta condition [13], cf. [6].
As a preparatory step, we now bring our problem into a convenient

form from which we will start the considerations in Sections 3 and 4.

4I thank an anonymous referee for pointing out this important paper to me.
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It was shown in [4] that (1.1) is symmetric hyperbolic in the sense of
Hughes-Kato-Marsden [10]. Thus, using

Baβgδ(ψ) ∂ψγ
∂xβ∂xδ

= B̃aβgδ(ψ) ∂ψγ
∂xβ∂xδ

,

with
B̃aβgδ(ψ) = 1

2
(
Baβgδ(ψ) +Baβgδ(ψ)

)
,

we can write (1.1) as

A(ψ)ψtt −Bij(ψ)ψxixj +Dj(ψ)ψtxj + f(ψ,ψt, ∂xψ) = 0, (1.15)

where

A = (−B̃a0g0)0≤a,g≤4, Bij = (B̃aigj)0≤a,g≤4,

Dj = (−2B̃a0gj)0≤a,g≤4

are symmetric 5×5 matrices, A(ψ) is positive definite, ξiBij(ψ)ξj is positive
definite for arbitrary ξ ∈ R3 \ {0}, and

fa = Aaβg
∂ψg
∂xβ

− ∂

∂xβ

(
Baβgδ(ψ)

) ∂ψg
∂xδ

, a = 0, 1, 2, 3, 4.

In the sequel, we will consider the Cauchy problem associated with (1.15):

Aψtt −Bijψxixj +Djψtxj + f = 0 on (0, T ]× R3, (1.16)
ψ(0) = 0ψ on R3, (1.17)
ψt(0) = 1ψ on R3. (1.18)

Notation. In the statement and in the sequel, the following notation is
used. For p ∈ [1,∞] and some n,m ∈ N just write Lp for Lp(Rn,Rm). For
s ∈ N0 we denote by Hs the L2-Sobolev-space of order s, namely

Hs := {u ∈ L2 : ∀ α ∈ Nn0 (|α| ≤ s) : ‖∂αxu‖L2 <∞}

with norm

‖u‖s =

 ∑
0≤|α|≤s

‖∂αxu‖L2

 1
2

.

We just write ‖u‖ instead of ‖u‖0. For s, k ∈ N0 and U = (u1, u2) ∈ Hs×Hk

set
‖U‖s,k =

(
‖u1‖2s + ‖u2‖2k

) 1
2
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and for U ∈ (Hs ×Hk) ∩ (Lp × Lp) set

‖U‖s,k,p = ‖U‖s,k + ‖u1‖Lp + ‖u2‖Lp .

For u ∈ Hs and integers 0 ≤ k ≤ s, ∂kxu shall denote the vector whose
entries are the partial derivatives of u of order k. Also we just write ψ
instead of ψe for the state variable.

2 Perturbation theory for a class of linear
second-order symmetric hyperbolic operators

The Fourier analysis of the linearization of (1.1) in Section 3 will require
an understanding of the time asymptotics of certain families

Wt(κ, t) = M(κ)W (κ, t)

of systems of ordinary differential equations. The goal is to show that with
respect to appropriate bases the self-adjoint part M(κ) +M(κ)∗ becomes
definite, uniformly in κ in appropriate ranges.
We consider two situations that will later correspond to small wave

numbers, (a), and large wave wave numbers, (b), and a connection between
them, (c). In the following a, b, B are fixed symmetric N × N matrices
with a,B positive definite.

(a) Small wave numbers

We first study the matrix family

M(κ) =
(

0 I
−κ2B + iκb −a

)
, κ ∈ C. (2.1)

We set
B̃ = a−

1
2Ba−

1
2 , b̃ = a−

1
2 ba−

1
2

and
Ñ(κ) = −κ2B̃ + iκb̃.

Requiring definiteness of one operator on all eigenspaces of a second one,
the following dissipativity condition 2.1, as well as condition 2.4 below, are
similar in spirit to the Kawashima-Shizuta condition ([13], [1, 14, 15, 22]).
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2.1 Condition. There exists a C > 0 such that for all λ ∈ σ(b̃), each
u ∈ Eigb̃(λ) satisfies

〈(B̃ − b̃a−1b̃)u, u〉 ≥ C|u|2.

2.2 Proposition. If Condition 2.1 holds, then there exist r0, c0 > 0 and a
holomorphic family of invertible 2N × 2N matrices

{S(κ) : |κ| ≤ r0},

such that M∗(κ) = (S(κ))−1M(κ)S(κ) satisfies

〈(M∗(κ) + (M∗(κ))∗)u, u〉 ≤ −c0κ
2|u|2,

for all u ∈ C2N and κ ∈ R, |κ| ≤ r0.

Proof. For κ = 0, R2N splits as ker(M(0)) ⊕ im(M(0)); the main idea is
to continue this splitting regularly as κ is varied away from 0. (The same
idea was used before in [1].)
First set

S1 =
(
a

1
2 a

1
2

0 −a
3
2

)
.

and
T (κ) := S−1

1 M(κ)S1 =
(
Ñ(κ) Ñ(κ)
−Ñ(κ) −Ñ(κ)− a

)
.

Then write T (κ) = T (0) + κT (1) + κ2T (2), where

T (0) =
(

0 0
0 −a

)
, T (1) = i

(
b̃ b̃

−b̃ −b̃

)
, T (2) =

(
−B̃ −B̃
B̃ B̃

)
.

For ζ ∈ ρ(T (0)) let R(ζ) denote the resolvent of T (0). Let 0 < τ < min σ(a)
and set Γ = ∂Bτ (0) ⊂ C. Now choose r > 0 such that

max
κ∈Br(0)

|A(κ)| < min
ζ∈Γ
|R(ζ)|−1,

where A(κ) := T (κ)− T (0). Then for κ ∈ Br(0) and ζ ∈ Γ, the resolvent
R(ζ, κ) of T (κ) is well-defined and holomorphic on Γ × Br(0) (cf. [11,
Chapter II.1]). Next define

P (κ) = − 1
2πi

∫
Γ
R(ζ, κ)dζ.
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Since µ0 = 0 is the only eigenvalue of T (0) lying inside Γ, P (κ) is the total
projection for the µ0-group of eigenvalues of T (κ) (cf. [11, chapter II.2]),
particularly

P := P (0) =
(
I 0
0 0

)
.

We now use the so called reduction process (cf. ibd.) to expand the product
P (κ)T (κ)P (κ) in a Taylor series. To this end consider the operator

T̃ (κ) = 1
κ
T (κ)P (κ), T̃ (0) = PT (1)P.

Due to T (κ)R(ζ, κ) = I + ζR(ζ, κ) and R(ζ) having a pole of order one at
ζ = 0 , T̃ is holomorphic. Furthermore

T̃ (0) =
(
ib̃ 0
0 0

)

and thus
σ(T̃ (0)) = iσ(b̃) ∪ {0}.

Let λ1, . . . , λs be (the pairwise distinct) eigenvalues of b̃. At this point
we may assume w.l.o.g λi 6= 0 for 1 ≤ i ≤ s (otherwise we could have
considered M + iακI instead of M for a suitable α > 0). Let

γ = min{|λj |, |λi − λj | : 1 ≤ i, j ≤ s, i 6= j} > 0.

and Γj = ∂Bγ/2(iλj) for j = 1, . . . , s . Then the resolvent R̃(ζ) of T̃ (0) is
well defined for ζ ∈ Γj and satisfies

|R̃(ζ)|−1 = dist(ζ, σ(T̃ (0)) ≥ γ

4 .

Now chose 0 < r̃ < r such that

|Ã(κ)| < γ

4 , for all κ ∈ Br̃(0),

where Ã(κ) = T̃ (κ)− T̃ (0). Then for ζ ∈ Γj , |κ| ≤ r̃, the resolvent R̃(ζ, κ)
of T̃ (κ) is well-defined and holomorphic. Again, the total projection for
the iλj-group of eigenvalues of T̃ (κ), i.e.

Pj(κ) = − 1
2πi

∫
Γj
R̃(ζ, κ)dζ, (2.2)
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is itself holomorphic for |κ| ≤ r̃ and

Pj := Pj(0) =
(
pj 0
0 0

)
,

where pj is the eigenprojection corresponding to the eigenvalue λj of b̃.
Furthermore each eigenvalue of the µ0-group belongs to some iκλj-group
and the total projection for this group is Pj(κ). Now, the construction of
the transformation matrices S(κ) works as follows (cf. [11, Chapter II.4]):
Set

P0(κ) = I −
s∑
j=1

Pj(κ) (P0 = P0(0)),

Q(κ) =
s∑
j=0

(∂κPj(κ))Pj(κ)

and consider the matrix-valued initial-value problem

∂κU(κ) = Q(κ)U(κ), U(0) = I. (2.3)

The unique solution S(κ) is invertible, holomorphic and has the property

S(κ)Pj(S(κ))−1 = Pj(κ), j = 0, . . . , s.

Define M∗(κ) = (S(κ))−1T (κ)S(κ). By definition each Pj is M∗(κ)-
invariant. Since the Pj are orthogonal projections, PjPk = δjkPk, and∑s
j=0 Pj = I, the assertion is shown if we can prove

〈(M∗(κ) + (M∗(κ))∗)Pju, Pju〉
≤ −cκ2|Pju|2, κ ∈ [0, r̃], u ∈ C2N , j = 0, . . . , s.

First consider j = 0. Since S(0) = I and M∗ is holomorphic, we have

P0M∗(κ)P0 =
(

0 0
0 −a

)
+ κP0H1(κ)P0,

where H1(κ) is holomorphic. As a > 0, this yields

〈(M∗(κ) + (M∗(κ))∗)P0u, P0u〉 ≤ |P0u|2(−c+O(κ)), κ ∈ [0, r̃]. (2.4)

Next let j ∈ {1, . . . , s}. As PjT (0) = T (0)Pj = 0, we can write

PjM∗(κ)Pj = κM
(1j)
∗ + κ2M

(2j)
∗ + κ3PjH2(κ)Pj ,
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where H2(κ) is holomorphic

M
(1j)
∗ = PjT

(1)Pj =
(
iλjpj 0

0 0

)
,

and

M
(2j)
∗ = PjT

(2)Pj + Z(1)T (1)Pj + PjT
(1)W (1) + Z(1)T (0)W (1),

whith W 1 = ∂κS(0)Pj and Z1 = Pj∂κ((S(κ))−1) |κ=0 . From (2.3) we get
W (1) = P ′j(0)Pj and Z(1) = PjP

′
j(0). The general form of P ′j(0) can be

computed by inserting the Neumann-series for the resolvent R̃ of T̃ in (2.2)
(which is done for the general case in [11, chapter II.2]). In our case some
computations lead to

M
(2j)
∗ =

(
−pj(B̃ − λ2

ja
−1)pj 0

0 0

)
.

Since λj is a real number, condition 2.1 yields〈(
M∗(κ)) + (M (j)

∗ (κ)))∗
)
Pju, Pju

〉
≤ |Pju|2(−cκ2 +O(κ3))

for κ > 0, which together with (2.4) proves the assertion.

2.3 Corollary. Assume Condition 2.1. Let r0 > 0 be the constant in
Proposition 2.2 and λ1, . . . , λs be the eigenvalues of b̃ with correspond-
ing eigenprojections p1, . . . , ps. Furthermore for each j = 1, . . . , s, let
βj1, . . . , βjn be the eigenvalues of

pj(B̃ − λ2
ja
−1)pj |im(pj).

Then for |κ| ≤ r0 the spectrum of M(κ) is given as

σ(M(κ)) = {γ11, . . . , γ1n, . . . , γs1, . . . , γsn, υ1, . . . , υm}

with
γjk = iκλj − κ2βjk + o(κ2), (2.5)

and
υk = −αk + o(1), (2.6)

where α1, . . . , αm are the eigenvalues of a. In particular there exists a c > 0
such that

<(γ) ≤ −cκ2

for all γ ∈ σ(M(κ)) and κ ∈ R, |κ| ≤ r0.
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Proof. Let κ ∈ R, |κ| ≤ r0. Obviously, M∗(κ) has the same spectrum as
M(κ). In the proof of Proposition 2.2 we have seen that for j = 1, . . . , s,

PjM∗(κ)Pj = κM
(1j)
∗ + κ2M

(2j)
∗ +O(κ3)

where
Pj =

(
pj 0
0 0

)
,

M
(1j)
∗ =

(
iλjpj 0

0 0

)
,

M
(2j)
∗ =

(
−pj(B̃ − λ2

ja
−1)pj 0

0 0

)
.

By [11, Chapter II.2] the eigenvalues of PjM∗(κ)Pj are given by γjk (k =
1, . . . , n) as defined in (2.5). Furthermore for

P0 =
(

0 0
0 I

)

we have
P0M∗(κ)P0 =

(
0 0
0 −a

)
+O(κ), |κ| ≤ r0,

and hence the eigenvalues of P0M∗(κ)P0 are given by υk as defined by (2.6).
Since P0, . . . , Ps form a complete M∗(κ)-invariant set of projections the
assertion is proven.

(b) Large wave numbers

Consider now the matrix family

K(ν) =
(

0 I
−B + iνb −νa

)
, ν ∈ C

which is "dual" to (2.1).

2.4 Condition. Let there exist a C > 0 such that for each µ ∈ σ(B), each
u ∈ EigB(µ) satisfies

〈(a+B−
1
2 b)u, u〉 ≥ C|u|2,

〈(a−B−
1
2 b)u, u〉 ≥ C|u|2.
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2.5 Proposition. Let Condition 2.4 hold. Then there exist r∞, c∞ > 0
and an holomorphic, invertible family of 2N × 2N matrices

{S(ν) : |ν| ≤ r∞}

such that K∗(ν) = (S(ν))−1K(ν)S(ν) satisfies

〈(K∗(ν)) + (K∗(ν))∗)u, u〉 ≤ −c∞ν|u|2,

for all u ∈ C2N and ν ∈ R, |ν| ≤ r∞.

Proof. The crucial point is again the continuation of a natural splitting, at
ν = 0, into invariant subspaces.
First set

S1 :=
(
B−

1
2 B−

1
2

iI −iI.

)
and then define

K1(ν) := S−1
1 K(ν)S1 = K

(0)
1 + νK

(1)
1 ,

where

K
(0)
1 =

(
iB

1
2 0

0 −iB
1
2

)
,

K
(1)
1 = 1

2

(
−a+ bB

1
2 −a+ bB

1
2

a− bB
1
2 −a− bB

1
2 .

)
Obviously

σ(K(0)
1 ) = {iµ

1
2
1 , . . . , iµ

1
2
l ,−iµ

1
2
1 , . . . ,−iµ

1
2
l },

where µj (1 ≤ j ≤ l) are the (strictly positive) eigenvalues of B. Due to
Condition 2.4 it can be shown, as in the proof of Proposition 2.2, that there
exists an r > 0 such that for each j = 1, . . . , l the total projections P+j(ν)
and P−j(ν) for the iµ

1
2
j - and −iµ

1
2
j -group of eigenvalues are well-defined

and holomorphic on Br(0). Furthermore,

P+j := P+j(0) =
(
pj 0
0 0

)
, P−j = P−j(0) =

(
0 0
0 pj

)
,

where pj is the eigenprojection for the eigenvalue µj of B. Then, again
as in the proof of Proposition 2.2, there exists an invertible holomorphic
family of 2N × 2N matrices

{S(ν) : |ν| ≤ r},
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such that
S(ν)P±j(S(ν))−1 = P±j(ν), j = 0, . . . , l.

Now define K∗(ν) = (S(ν))−1K1(ν)S(ν). Since S(0) = I and

S′(0)K(0)
1 P±j = P±jK

(0)
1

d

dν
S(ν)−1 |ν=0 = 0

(cf. [11, Chapter II.4]), one gets

P+jK∗(ν)P+j = P+jK
(0)
1 P+j + νP+jK

(1)
1 P+j + ν2P−jH+(ν)P−j

=

iµ 1
2 − ν

2pj

(
a− µ−

1
2

j b

)
pj 0

0 0

+ ν2P+jH+(ν)P+j

and

P−jK∗(ν)P−j =
(

0 0
0 −iµ

1
2 − ν

2pj
(
a+ µ−

1
2 b
)
pj

)
+ ν2P−jH−(ν)P−j ,

where H± are holomorphic. Thus Condition 2.4 yields

〈(K∗(ν) + (K∗(ν))∗)P±ju, P±ju〉 ≤ |P±ju|2(−cν + 0(ν2))

for ν ∈ [0, r], u ∈ C2N , 1 ≤ j ≤ l. As {P+j , P−j}1≤j≤l form a complete set
of K∗-invariant, orthogonal projections, this proves the assertion.

Next, define the matrix family

M̃(κ) = κK(κ−1) =
(

0 κIN
−κB + ib −a

)
, κ ∈ C.

Then the following result is an immediate consequence of Proposition 2.5.

2.6 Corollary. Let Condition 2.4 hold. Then there exist r∞, c∞ > 0 and
an invertible holomorphic family of 2N × 2N matrices

{S(κ) : |κ| ≥ r∞}

such that κ 7→ S(κ), κ 7→ S−1(κ) are bounded on [r∞,∞) and M̃∗(κ) =
(S(κ))−1M̃(κ)S(κ) satisfies

〈(M̃∗(κ)) + (M̃∗(κ))∗)u, u〉 ≤ −c∞|u|2,

for all u ∈ C2N and κ ∈ R, |κ| ≥ r∞.
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2.7 Corollary. Assume Condition 2.4. Let r∞ > 0 be the constant from
Corollary 2.6, µ1, . . . , µl be the eigenvalues of B with corresponding eigen-
projections p1, . . . , pl. Furthermore, for each j = 1, . . . , l let η±j1, . . . , η

±
jn be

the of
pj

(
a± µ−

1
2

j b

)
pj

Then for |κ| ≥ r∞ the spectrum of M(κ) is given by

σ(M(κ)) = {ω±11, . . . , ω
±
1n, . . . , ω

±
l1, . . . , ω

±
ln}

with
ωjk = ∓iκµj −

1
2η
±
jk + h(κ), (2.7)

where
h(κ)→ 0, as κ→∞

In particular there exists a c > 0 such that

<(ω) ≤ −c

for all ω ∈ σ(M(κ)), κ ∈ R, |κ| ≥ r∞.

Proof. As
M(κ) = (L(κ))−1M̃(κ)L(κ),

where
L(κ) =

(
I 0
0 κ

)
,

M(κ) and M̃(κ) have the same spectrum for κ 6= 0. Hence the assertion
follows from the proof of Proposition 2.5 and Corollary 2.7 in the same
way as Corollary 2.3 followed from the proof of Proposition 2.2.

(c) A connection between Conditions 2.1 and 2.4

2.8 Proposition. Let B = I. Then the following statements are equivalent:

1. Condition 2.1 holds.

2. Condition 2.4 holds.

3. The matrices a+ b and a− b are positive definite.

Futhermore if these conditions are satisfied, then each eigenvalue of M(κ)
has strictly positive real part for all κ ∈ R+.
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Proof. We first prove the equivalence of the three statements. That Con-
dition 2.4 is equivalent to a + b > 0 and a − b > 0 for B = I is obvious.
Furthermore with B = I, Condition 2.1 reads:

〈a−1(I − λ2)u, u〉 ≥ C|u|2 (2.8)

for all λ ∈ σ(b̃), each u ∈ Eigb̃(λ). Since

〈a−1(I − λ2)u, u〉 = (1− λ2)|a−
1
2u|2

and a > 0, (2.8) is equivalent to |λ| < 1. This holds true if and only if

I ± b̃ = I ± a−
1
2 ba−

1
2 > 0.

It is obvious that this is the case if and only if a+ b > 0 and a− b > 0.
Due to Corollaries 2.3 and 2.7, the second part of the assertion is shown

if we can prove that no eigenvalue of M(κ) is purely imaginary for κ > 0.
To this end suppose that there exist κ > 0, β ∈ R and U ∈ C2N \ {0} such
that

(iβ −M(κ))U = 0. (2.9)
Write U = (v, w) (v, w ∈ CN ). Then it follows from (2.9) with B = I that
w = iβv (in particular v 6= 0) and(

κ2 − iκb+ (iβ)2 + iβa
)
v = 0.

Taking the scalar product of this equation with v and using the symmetry
of a and b gives

(κ2 − β2)|v|2 = 0,
〈(−κb+ βa)v, v〉 = 0.

Hence κ = |β| and
β〈(a± b)v, v〉 = 0

Since a± b > 0 and |β| = κ > 0, this is a contradiction.

3 Decay Estimates for the Linearized System
In this section we consider the linearization of (1.15) about an arbitrary
fixed homogeneous reference state, in the fluid’s rest frame ψ̄ = (ψ̄α, ψ̄4) =
(1/θ̄, 0, 0, 0, ῡ/θ̄), where θ̄ > 0 and ῡ are the constant temperature and
chemical potential at the reference state.

We start our considerations with a useful observation about the structure
of the first-order terms of (1.15).
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3.1 Remark. As stated in Section 1, the fluid’s equation of state induces
a scalar function X̂(θ, ψ4) such that for

Xβ(ψ) = X̂(θ, ψ4)ψβ, (3.1)

we have
Aaβg(ψ) = ∂2Xβ(ψ)

∂ψg∂ψa
.

Some computations then lead to

Aαβγ = θ2∂X̂

∂θ

(
uαgβγ + uβgαγ + uγgαβ

)
+ ∂

∂θ

(
θ3∂X̂

∂θ

)
uαuβuγ , (3.2)

Aαβ4 = θ
∂2X̂

∂ψ4∂θ
uαuβ + ∂X̂

∂ψ4
gβγ = A4βα, (3.3)

A4β4 = ∂2X̂

∂ψ2
4
ψβ. (3.4)

Furthermore, due to (1.5),

Aa0b(ψ)−Aaib(ψ)ωi > 0 for all ω = (ω1, ω2, ω3) ∈ S2. (3.5)

By evaluating B̃aβgδ and Aaβg at ψ̄, we find that the linearization at the
reference state is given by

A(1)ψtt −B
ij
(1)ψxixj + a(1)ψt + bj(1)ψxj = 0, (3.6)

A(1) =

χθ̄2 0 0
0 σθ̄I3 0
0 0 µ

 ,

Bij
(1) =

χθ̄2δij 0 0
0 ηθ̄δijI3 + 1

2 θ̄(
1
3η + ζ̃)(ei ⊗ ej + ej ⊗ ei) 0

0 0 µδij

 ,

a(1) =

 θ̄3X̂θθ 0 θ̄X̂ψθ − X̂ψ

0 θ̄2X̂θI 0
θ̄X̂ψθ − X̂ψ 0 θ̄−1X̂ψψ

 ,
bj(1) = θ̄2X̂θ(e0 ⊗ ej + ej × e0) + X̂ψ(e5 ⊗ ej + ej ⊗ e5).

Note that χ, σ, η, ζ̃, µ and the derivatives of X are all evaluated at the
reference state and that no mixed derivative ψtxj occurs here, as

B̃a0gj = B̃ajg0 = 0
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at the reference state. Next multiply (3.6) by (A(1))−
1
2 and write it in

variables (A(1))
1
2ψ to obtain

ψtt − B̄ij + aψtt + bjψxj = 0, (3.7)

where
B̄ij = (A(1))−

1
2Bij

(1)(A(1))−
1
2 ,

a = (A(1))−
1
2a(1)A

− 1
2

(1) , bj = (A(1))−
1
2 bj(1)(A(1))−

1
2 .

Our goal is to prove decay and energy estimates for the Cauchy problem
associated with (3.6),

ψtt − B̄ijψxixj + aψt + bjψxj = 0, (3.8)
ψ(0) = 0ψ, (3.9)
ψt(0) = 1ψ, (3.10)

which will be considered on a fixed time interval [0, T ]. The proof relies on
pointwise estimates for the Fourier transform of(3.8)-(3.10):

ψ̂tt + |ξ|2B(ξ̌)ψ̂ + aψ̂t − i|ξ|b(ξ̌)ψ̂ = 0, (3.11)
ψ̂(0) = 0ψ̂(ξ), (3.12)
ψ̂t(0) = 1ψ̂(ξ), (3.13)

where ξ̌ = ξ/|ξ| and for ω ∈ S2

B(ω) = ωiB̄
ijωj =

1 0 0
0 σ−1

(
ηI +

(
ζ̃ + 1

3η
)

(ω ⊗ ω)
)

0
0 0 1

 ,

b(ω) = bjωj =

 0 (χσθ̄)−
1
2 X̂θω

t 0
(χσθ̄)−

1
2 X̂θω 0 (µσθ̄)−

1
2 X̂ψω

0 (µσθ̄)−
1
2 X̂ψω

t 0

 .
The structure of (3.11) can be simplified due to its following property.

3.2 Remark. For each ξ ∈ R3, consider the orthogonal decomposition

C5 = (C× ξC× C)⊕ ({0} × {ξ}⊥ × {0}) := J1(ξ)⊕ J2(ξ).
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Setting ψ̂ = w + v with w ∈ J1(ξ) and v ∈ J2(ξ), (3.11) decomposes into
the two uncoupled systems

wtt + |ξ|2w + ãwt − i|ξ|b̃w = 0, (3.14)
vtt + ησ−1|ξ|2v + σ−1θ̄Xθvt = 0, (3.15)

where

ã =

 χ−1(X̂θ + θ̄X̂θθ) 0 (χµ)−
1
2 (X̂ψθ − θ̄−1X̂ψ)

0 σ−1θ̄X̂θ 0
(χµ)−

1
2 (X̂ψθ − θ̄−1X̂ψ) 0 (µθ̄)−1X̂ψψ

 ,

b̃ =

 0 (χσθ̄)−
1
2 X̂θ 0

(χσθ̄)−
1
2 X̂θ 0 (µσθ̄)−

1
2 X̂ψ

0 (µσθ̄)−
1
2 X̂ψ 0

 .
In particular, (3.5) yields ã± b̃ > 0.

We get the following pointwise decay estimate for solutions to (3.11)-
(3.13).

3.3 Lemma. For some s ∈ N0 let (0ψ, 1ψ) ∈ (Hs+1 ×Hs) and
(ψ(t), ψt(t)) ∈ Hs+1 ×Hs be a solution of (3.8)-(3.10). Then there exist
c, C > 0 such that for each t ∈ [0, T ], ξ ∈ R3,

(1 + |ξ|2)|ψ̂(t, ξ)|2 + |ψ̂t(t, ξ)|2

≤ C exp(−cρ(ξ)t)
(
(1 + |ξ|2)|0ψ̂(ξ)|2 + |1ψ̂(ξ)|2

)
, (3.16)

where ρ(ξ) = |ξ|2/(1 + |ξ|2).

Proof. Let ψ̂ be the Fourier transform of a solution ψ to (3.8)-(3.10). For
fixed ξ ∈ R3 write ψ̂ = w + v with w ∈ J1(ξ), v ∈ J2(ξ). Then w and v
satisfiy (3.14) and (3.15), respectively (see Remark 3.2).

First, take the scalar product (in C2) of (3.15) with vt. The real part of
the resulting equation reads

1
2
d

dt

(
|vt|2 + ησ−1|ξ|2|v|2

)
+ σ−1θ̄Xθ|vt|2 = 0 (3.17)

The real part of the scalar product of (3.15) with v is given by

1
2
d

dt

(
2<〈vt, v〉+ σ−1θ̄Xθ|v|2

)
− |vt|2 + ησ−1|ξ|2|v|2 = 0. (3.18)
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Set d = σ−1θ̄Xθ. Then adding (3.17)+d(3.18) yields

1
2
d

dt
E(2) + F (2), (3.19)

where
E(2) = |vt|2 + d2/2|v|2 + d<〈vt, v〉+ ησ−1|ξ|2|v|2 (3.20)

and
F (2) = d/2|vt|2 + dησ−1|ξ|2|v|2. (3.21)

It is obvious that E(2) is uniformly equivalent to E(2)
0 = |vt|2 + (1 + |ξ|2)|v|2

and F (2) ≥ cρ(ξ)E(2)
0 for some constant c > 0. Hence applying Gronwall’s

Lemma to (3.19) leads to

(1 + |ξ|2)|v|2 + |vt|2 ≤ C exp(−cρ(ξ)t)((1 + |ξ|2)|v(0)|2 + |vt(0)|2). (3.22)

Next we consider (3.14). Set W = (w,wt), then we can write (3.14) as

Wt = M(|ξ|)W, ξ ∈ R3, (3.23)

where
M(κ) =

(
0 I3

−κ2I3 + iκb̃ −ã

)
, κ ∈ C. (3.24)

By Proposition 2.2 there exist r0 > 0, c0 > 0 and a family of holomorphic
and invertible 6× 6 matrices

{S(κ) : |κ| ≤ r0},

such that M∗(κ) = (S(κ))−1M(κ)S(κ) satisfies

〈(M∗(κ) +M∗(κ)∗)Z,Z〉 ≤ −c0κ
2|Z|2, (3.25)

for Z ∈ C6, and κ ∈ [0, r0]. Now, set W̃ (ξ) = S−1(|ξ|)W (ξ). W̃ satisfies

W̃t = M∗(|ξ|)W̃ .

Taking the scalar product of this equation with W̃ , considering the real
part and using (3.25) gives

d

dt
|W̃ (ξ)|2 = 〈(M∗(|ξ|) +M∗(|ξ|))∗)W̃ (ξ), W̃ (ξ)〉 ≤ −c0|ξ|2|W̃ (ξ)|2

for |ξ| ∈ [0, r0]. Applying Gronwall’s Lemma yields

|W̃ (t, ξ)|2 ≤ exp(−c0|ξ|2t)|W̃ (0, ξ)|2, (t, |ξ|) ∈ [0, T ]× [0, r0].
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Since S(|ξ|) is continuous on [0, r0], there exists a C > 0 (independent of
ξ) such that

|W (t, ξ)|2 ≤ C exp(−c0|ξ|2t)|W (0, ξ)|2, (t, |ξ|) ∈ [0, T ]× [0, r0]. (3.26)

Due to
ρ(ξ) ≤ |ξ|2 ≤ r2

0, |ξ| ∈ [0, r0],

(3.26) yields

(1 + |ξ|2)|w(t, ξ)|2 + |wt(t, ξ)|2

≤ C exp(−c0ρ(ξ)t)
(
(1 + |ξ|2)|w(0, ξ)|2 + |wt(0, ξ)|2

)
,

(t, |ξ|) ∈ [0, T ]× [0, r0]. (3.27)

Next set V = (|ξ|w,wt) and write (3.14) as

Vt = N(|ξ|)V,

N(κ) =
(

0 κI3
−κI3 + ib̃ −ã

)
, κ ∈ C.

Due to Corollary 2.6 there exist r∞, c∞ > 0 and a family of bounded and
invertible 6× 6 matrices

{L(κ) : |κ| ≥ r∞},

where κ 7→ (L(κ)−1) is also bounded such that N∗(κ) = L(κ)−1N(κ)L(κ)
satisfies

〈(N∗(κ) + (N∗(κ))∗)Z,Z〉 ≤ −c∞|Z|2,

for all Z ∈ C6, κ ∈ [r∞,∞). It follows with the same arguments as in the
first part of the proof that there exists a C > 0 such that

|V (t, ξ)|2 ≤ C exp(−c∞t)|V (0, ξ)|2, (t, |ξ|) ∈ [0, T ]× [r∞,∞). (3.28)

Using ρ(ξ) ≤ 1, this gives

(1 + |ξ|2)|w(t, ξ)|2 + |wt(t, ξ)|2

≤ C exp(−c∞ρ(ξ)t)
(
(1 + |ξ|2)|w(0, ξ)|2 + |wt(0, ξ)|2

)
,

(t, |ξ|) ∈ [0, T ]× [r∞,∞). (3.29)
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Lastly, let ξ0 ∈ R3 with r0 ≤ |ξ0| ≤ r∞. Due to Lemma 2.8 each eigenvalue
of M(|ξ0|) has negative real part. Therefore there exists an invertible
matrix Qξ0 ∈ C6×6 and a c > 0 such that M∗(κ) = Q−1

ξ0
M(κ)Qξ0 satisfies

〈(M∗(|ξ0|) + (M∗(|ξ0|))∗)Z,Z〉 ≤ −c|Z|2, Z ∈ C6.

Since M is continuous there also exist δ(ξ0), c(ξ0) > 0 such that for all
ξ ∈ Bδ(ξ0)

〈(M∗(|ξ|) + (M∗(|ξ|))∗)Z,Z〉 ≤ −c|Z|2, Z ∈ C6.

Hence by Gronwall’s Lemma there exists a C > 0 such that

|W (t, ξ)|2 ≤ Ce−ct|W (0, ξ)|2, t ∈ [0, T ], (3.30)

for ξ ∈ Bδ(ξ0). As K = {ξ ∈ R3|r0 ≤ |ξ| ≤ r∞} is compact, there exist
c, C > 0 (independent of ξ) such that (3.30) holds for all ξ ∈ K, and thus

(1 + |ξ|2)|w(t, ξ)|2 + |wt(t, ξ)|2

≤ C exp(−cρ(ξ)t)
(
(1 + |ξ|2)|w(0, ξ)|2 + |wt(0, ξ)|2

)
,

(t, |ξ|) ∈ [0, T ]× [r0, r∞].

This, together with (3.27) and (3.29), proves that

(1 + |ξ|2)|w(t, ξ)|2 + |wt(t, ξ)|2

≤ C exp(−cρ(ξ)t)
(
(1 + |ξ|2)|w(0, ξ)|2 + |wt(0, ξ)|2

)
(3.31)

holds for all (t, ξ) ∈ [0, T ]×R3. The assertion follows by adding (3.31) and
(3.22).

Based on Lemma 3.3 the proof of the following decay estimate goes as
[2, Proof of Theorem 3.1].

3.4 Proposition. For some s ∈ N0 let (0ψ, 1ψ) ∈ (Hs+1×Hs)∩ (L1×L1)
and (ψ(t), ψt(t)) ∈ Hs+1 × Hs be a solution to (3.8)-(3.10). Then there
exist c, C > 0 such that for all integers 0 ≤ k ≤ s and all t ∈ [0, T ]

‖∂kxψ(t)‖1 + ‖∂kxψt(t)‖ ≤ C(1 + t)−
3
4−

k
2
(
‖0ψ‖L1 + ‖1ψ‖L1

)
+ Ce−ct

(
‖∂kx(0ψ)‖1 + ‖∂kx(1ψ)‖

)
. (3.32)
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Next, consider the inhomogeneous initial-value problem

ψtt − B̄ijψxixj + aψt + bjψxj = h, (3.33)
ψ(0) = 0ψ, (3.34)
ψt(0) = 1ψ. (3.35)

for some h : [0, T ]× R3 → R5. Due to Duhamel’s principle the following
result is an immediate consequence of Proposition 3.4.

3.5 Proposition. Let s be a non-negative integer,
(0ψ, 1ψ) ∈ (Hs+1 ×Hs) ∩ (L1 × L1) and h ∈ C([0, T ], Hs ∩ L1). Then the
solution ψ of (3.33)-(3.35) satisfies

‖∂kxψ(t)‖1 + ‖∂kxψt(t)‖ ≤ C(1 + t)−
3
4−

k
2 (‖0ψ‖L1 + ‖1ψ‖L1)

+ Ce−ct(‖∂kx(0ψ)‖1 + ‖∂kx(1ψ)‖)

+ C

∫ t

0
(1 + t− τ)−3/4−k/2‖h(τ)‖L1

+ Ce−c(t−τ)‖∂kxh(τ)‖dτ, (3.36)

for all t ∈ [0, T ] and 0 ≤ k ≤ s.

Furthermore we can prove the following energy estimate.

3.6 Proposition. Let s be a non-negative integer. There exists a C > 0
such that for all (0ψ, 1ψ) ∈ Hs+1 ×Hs and h ∈ C([0, T ], Hs) the solution
ψ of (3.33)-(3.35) satisfies

‖∂kxψ(t)‖21 + ‖∂kxψt(t)‖2 +
∫ t

0
‖∂k+1

x ψ(τ)‖2 + ‖∂kxψt(τ)‖2dτ

≤ C
(
‖∂kx(0ψ)‖21 + ‖∂kx(1ψ)‖2

)
+ C

∫ t

0
‖∂kxψ(τ)‖2

+ C

∣∣∣∣∫ t

0

(
∂kxh(τ), a2∂

k
xψ(τ)

)
L2
dτ

∣∣∣∣+ C

∣∣∣∣∫ t

0

(
∂kxh(τ), ∂kxψt(τ)

)
L2
dτ

∣∣∣∣
(3.37)

for all t ∈ [0, T ] and integers 0 ≤ k ≤ s.

Proof. Consider (3.33) in Fourier space, i.e.,

ψ̂tt + |ξ|2B(ξ̌)ψ̂ + aψ̂t − i|ξ|b(ξ̌)ψ̂ = ĥ. (3.38)
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For fixed ξ ∈ R3 write (3.38) as

wtt + |ξ|2w + ãwt − i|ξ|b̃w = ĥ1, (3.39)
vtt + ησ−1|ξ|2v + σ−1θ̄Xθvt = ĥ2, (3.40)

where ψ̂ = w + v, ĥ = ĥ1 + ĥ2 with w, ĥ1 ∈ J1(ξ) and v, ĥ2 ∈ J2(ξ) (see
Remark 3.2). As in the proof of Lemma 3.3 set d = σ−1θ̄Xθ and take the
scalar product of (3.40) with vt + (d/2)v. The real part reads

1
2
d

dt
E(2) + F (2) = <

〈
ĥ2, vt + d

2v
〉
, (3.41)

where E(2) and F (2) are defined by (3.20) and (3.21). Furthermore E(2)

is uniformly equivalent to (1 + |ξ|2)|v|2 + |vt|2 and F 2 ≥ c(|vt|2 + |ξ|2|v|2).
Thus integrating (3.41) leads to

C1
(
|vt|2 + (1 + |ξ|2)|v|2

)
+ C1

∫ t

0
|vt|2 + |ξ|2|v|2dτ

≤ C2
(
|vt(0)|2 + (1 + |ξ|2)|v(0)|2

)
+
∫ t

0
<〈ĥ2, vt + d

2v〉dτ. (3.42)

Next, take the scalar product of (3.39) with wt + (ã/2)w. The real part
reads

1
2
d

dt
E(1) + F (1) = <〈ĥ1, wt + 1

2 ãw〉, (3.43)

where
E(1) = |wt|2 + |ξ|2|w|2 + 1

2 |ãw|
2 + <〈ãwt, w〉,

and

F (1) = 1
2〈ãwt, wt〉+ <〈−i|ξ|b̃w, wt〉+ 1

2 |ξ|
2〈ãw, w〉 − 1

2<〈i|ξ|b̃w, ãw〉.

Using Young’s inequality it is easy to see that E(1) is uniformly equivalent
to |wt|2 + (1 + |ξ|2)|w|2. Furthermore

F (1) = 1
2〈DY, Y 〉C6 −

1
2<〈i|ξ|b̃w, ãw〉,

where

D =
(
ã b̃

b̃ ã

)
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and Y = (wt,−i|ξ|w). As

σ(D) = σ(ã+ b̃) ∪ σ(ã− b̃),

and ã± b̃ > 0 (see Remark 3.2), D is positive definite. Hence, there exist
c1, c2 > 0 such that

F (1) ≥ c1(|wt|2 + |ξ|2|w|2)− c2|ξ||w||w| ≥
c1
2 (|wt|2 + |ξ|2|w|2)− c2

2
2c1
|w|2.

Thus integrating (3.43) leads to

C1
(
|wt|2 + (1 + |ξ|2)|w|2

)
+ C1

∫ t

0
|wt|2 + |ξ|2|w|2dτ

≤ C2
(
|wt(0)|2 + (1 + |ξ|2)|w(0)|2

)
+
∫ t

0
C2|w|2 + <〈ĥ1, wt + ã

2w〉dτ.

(3.44)

Adding (3.42) and (3.44) gives

|ψ̂t|2 + (1 + |ξ|2)|ψ̂|2 +
∫ t

0
|ψ̂t|2 + |ξ|2|ψ̂|2dτ

≤ C
(
|1ψ̂|2 + (1 + |ξ|2)|0ψ̂|2

)
+
∫ t

0
C|ψ̂|2 + c<〈ĥ, ψ̂t + a

2 ψ̂〉dτ. (3.45)

Finally the assertion follows by multiplying (3.45) with ξ2α for α ∈ Nn0 , 0 ≤
|α| ≤ s, integrating with respect to ξ, and using Plancherel’s identity.

4 Global existence and asymptotic decay
To complete the proof of Theorem 1.1 we now combine the above findings
with analogues of results obtained in [18].

Consider the Cauchy problem for a second order symmetric hyperbolic
system of partial differential equations

A(ψ)ψtt −Bij(ψ)ψxixj +Dj(ψ)ψtxj + f(ψ,ψt, ∂xψ) = 0 on Rn × [0, T ],

(4.1)
ψ(0) = 0ψ on Rn, (4.2)
ψt(0) = 1ψ on Rn, (4.3)

where (ψ(t), ψt(t), ψx(t)) ∈ Ω = Ω1 × Ω2 × Ω3 for some simply connected
domains Ω1,Ω2 ∈ RN , Ω2 ∈ RnN , A(ψ), Bij(ψ), Dj(ψ) ∈ RN×N symmetric
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matrices depending smoothly on ψ ∈ Ω1 with A(ψ) > 0, Bij(ψ)ωiωj > 0
for all ω ∈ Sn−1, and f : Ω → RN a smooth function. Furthermore let
there exist a constant state ψ̄ ∈ Ω1, satisfying f(ψ̄, 0, 0) = 0 and

Dj(ψ̄) = 0, ∂ψf(ψ̄, 0, 0) = 0.

Then the linearization of (4.1) is given as

Āψtt − B̄ijψxixj + aψt + bjψxj = 0, (4.4)

where Ā = A(ψ̄), B̄ij = Bij(ψ̄), a = ∂ηf(ψ̄, 0, 0), and bj = ∂ζjf(ψ̄, 0, 0) (η
and ζj denoting the ψt and ∂xjψ components, respectively). W.l.o.g we
may suppose ψ̄ = 0 as otherwise we can consider the state variables ψ − ψ̄
and coefficients A(· + ψ̄) and so on. Following [12, 16] we consider the
functional

Ns(t)2 = sup
τ∈[0,T ]

‖(ψ(τ), ψt(τ))‖2s+1,1 +
∫ t

0
‖(ψ(τ), ψt(τ))‖2s+1,sdτ,

with s ∈ N, t ∈ [0, T ] and (ψ,ψt) ∈ Hs ×Hs+1 a solution to (4.1).
Now assume that solutions to the inhomogeneous version of (4.4) satisfy

the decay estimate Proposition 3.5 - where the decay rate 3/4 which
corresonds to 3 space dimensions is replaced by n/4 in the general case
of n space dimensions - and the energy estimate Proposition 3.6. Then
solutions to the nonlinear equations (4.1) satisfy the following decay and
energy estimates (cf. [18]).

4.1 Proposition. Let n ≥ 3, s ≥ [n/2] + 2. Then there exist constants
a1, δ1 = δ1(a1), C1 = C1(a1, δ1) > 0 such that the following holds: If
(0ψ, 1ψ) ∈ (Hs+1 ×Hs) ∩ (L1 × L1) with ‖(0ψ, 1ψ)‖s,s−1,1 ≤ δ1 and

ψ ∈
s⋂
j=0

Cj
(
[0, T ], Hs+1−j

)
is a solution to (4.1)-(4.3) satisfying Ns(T ) ≤ a1, then the decay estimate

‖(ψ(t), ψt(t))‖s,s−1 ≤ C1(1 + t)−
n
4 ‖(0ψ, 1ψ)‖s,s−1,1 (4.5)

holds for all t ∈ [0, T ].

4.2 Proposition. Let n ≥ 3, s ≥ [n/2] + 2. Then there exist con-
stants a2, C2 = C2(a2), c2 = c2(a2) > 0, such that the following holds:
If (0ψ, 1ψ) ∈ Hs+1 ×Hs and

ψ ∈
s⋂
j=0

Cj
(
[0, T ], Hs+1−j

)
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is a solution to (4.1)-(4.3) satisfying Ns(T ) ≤ a2, then the energy estimate

‖(ψ(t), ψt(t))‖2s+1,s +
∫ t

0
‖∂xψ(τ)‖2s + ‖ψt(τ)‖2sdτ

− c2

∫ t

0
‖ψ(τ)‖2sdτ ≤ C2

(
‖(0ψ, 1ψ)‖2s+1,s +Ns(t)3

)
(4.6)

holds for all t ∈ [0, T ].

Integrating (4.5) with respect to t and adding the resulting inequality to
(c2/2)(4.6) leads to the following result.

4.3 Proposition. In the situation of Proposition 4.1 there exist con-
stants a3(≤ min{a2, a1}), C3 = C3(a3, δ1) > 0 (δ1 being the constant
in Proposition 4.1), such that the the following holds: If (0ψ, 1ψ) ∈
(Hs+1 ×Hs) ∩ (L1 × L1) with ‖(0ψ, 1ψ)‖s,s−1,1 ≤ δ1 and

ψ ∈
s⋂
j=0

Cj
(
[0, T ], Hs+1−j

)
is a solution to (4.1)-(4.3) satisfying Ns(T ) ≤ a3, then the estimate

Ns(t)2 ≤ C2
3‖(0ψ, 1ψ)‖2s+1,s,1 (4.7)

holds for all t ∈ [0, T ].

Global existence and asymptotic decay of solutions to (4.1)-(4.3) near
ψ̄ follow from Propositions 4.1 and 4.3 as in similar considerations in [18]
by extending local solutions that exist due to the second-order symmetric
hyperbolicity [10]. We get the following result.

4.4 Theorem. Let n ≥ 3, s ≥ [n/2]+2. There exist δ0 > 0, C0 = C0(δ0) >
0 such that the following holds: Let (0ψ, 1ψ) ∈

(
Hs+1 ×Hs

)
∩
(
L1 × L1)

with ‖(0ψ, 1ψ)‖2s+1,s,1 < δ0. Then there exists a unique solution

ψ ∈
s⋂
j=0

Cj
(
[0,∞), Hs+1−j

)
to (4.1)-(4.3). Furthermore

‖(ψ(t), ψt(t))‖2s+1,s +
∫ t

0
‖(ψ(τ), ψt(τ))‖2s+1,sdτ ≤ C0‖(0ψ, 1ψ)‖2s+1,s,

‖(ψ(t), ψt(t))‖s,s−1 ≤ C0(1 + t)−
n
4 ‖(0ψ, 1ψ)‖s,s−1,1

for all t ∈ [0,∞).
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The results of this paper were obtained as part of the doctoral thesis
[19] the author wrote at the University of Konstanz under the supervision
of H. Freistühler.
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