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Abstract
Global-in-time existence and asymptotic decay of small so-

lutions to the Navier-Stokes-Fourier equations for a class of
viscous, heat-conductive fluids are shown. As this second-order
system is symmetric hyperbolic, existence and uniqueness on a
short time interval follow from work of Hughes, Kato and Mars-
den. In this paper it is proven that solutions which are close
to a homogeneous reference state can be extended globally and
decay to the reference state. The proof combines decay results
for the linearization with refined Kawashima-type estimates of
the nonlinear terms.

1. Introduction

In relativistic fluid dynamics, stresses in perfect fluids are described by the
inviscid energy-momentum tensor 1

Tαβ = (ρ+ p)uαuβ + pgαβ, (1.1)

where ρ and p are the internal energy and the pressure of the fluid, uα is
its 4-velocity. In this paper we will exclusively consider causal barotropic
fluids, a class defined by the property that there exists a one-to-one relation
between ρ and p,

p = p̂(ρ), (1.2)

with a smooth function p̂ : (0,∞) → (0,∞) that satisfies 0 < p̂′ < 1.
One way to describe the dynamics of dissipative barotropic fluids is via a
system2

∂

∂xβ

(
Tαβ + ∆Tαβ

)
= 0, α = 0, 1, 2, 3, (1.3)

of partial differential equations - the conservation laws of energy and
momentum -, in which the “dissipation tensor” ∆Tαβ is linear in the
gradients of the state variables determined by coefficients η, ζ of viscosity
and χ of heat conduction. Freistühler and Temple have recently proposed
a particular new way of choosing ∆Tαβ such that basic requirements,
notably of causality, are met; see [3] for this and also for a discussion of

1Greek indices run from 0 to 3 and are raised or lowered by contraction with gαβ , gαβ ,
where gαβ = diag(−1, 1, 1, 1) is the standard Minkowski metric; cf., e.g., [7], Sec. 2.5.

2We use the Einstein summation convention.
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the interesting history of the causality problem. According to [3], ∆Tαβ is
given as

−∆Tαβ = Bαβγδ(ψ)∂ψγ
∂xδ

,

where ψ denotes the so-called Godunov variables

ψγ = uγ
f

with f the Lichnerowicz index of the fluid. The key property of Godunov
variables is that in these, the first-order term of a system of conservation
laws, here

∂

∂xβ
Tαβ,

becomes symmetric hyperbolic [4].3 Now, the requirement that also

− ∂

∂xβ

(
∆Tαβ

)
should be symmetric hyberbolic when written in the same variables deter-
mines a set of coefficient fields Bαβγδ(ψ) which make (1.3) an element of a
class of systems that was introduced by Hughes, Kato and Marsden and
shown to be well-posed in Sobolev spaces [5]. As established in [3], the
requirements of equivariance (isotropicity) and other physical necessities
indeed make Bαβγδ(ψ) determined by the coefficients η, ζ, χ.

The purpose of this paper is to provide a global-in-time solution theory
of these relativistic Navier-Stokes-Fourier equations (1.3). To this end,
we analyze first the linearization of (1.3) at some homogeneous reference
state and then the nonlinear problem as a pertubation of the linear one,
both with techniques that were developed, or are simililar to techniques
developed, by Kawashima and co-authors notably in [6], [1].
To have a clear setting, we carry out the whole argument under the

additional assumption that the fluid is indeed thermobarotropic, which
means, in addition to (1.2), its internal energy is a function of temperature
alone

ρ = ρ̂(θ). (1.4)

In this case, the Lichnerowicz index is identical with the temperature,

f = θ, (1.5)
3See [2] for details and the history of the use of such variables in relativistic fluid
dynamics.
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and actual heat conduction can be an integrated part of a four-field theory,
see [2]. An important physical example of this is given by the case of
the pure radiation fluid [7], whose internal energy as function of particle
number, density and specific entropy is given by

ρ(n, s) = kn
4
3 s

4
3 .

The results of this paper extend to barotropic fluids that do not satisfy
(1.4), (1.5) - one just has to replace θ by f everywhere -, but then the
“χ-terms” attain the role of an “artificial heat conduction”. We plan to later
use this hyperbolic regularization for studying the “purely viscous” (χ = 0)
case via the limit χ ↓ 0.

2. Preliminaries and Main Result
We begin by introducing some notation. For p ∈ [1,∞] and somem ∈ N just
write Lp for Lp(R3,Rm). For s ∈ N0 we denote by Hs the L2-Sobolev-space
of order s, namely

Hs := {u ∈ L2 : ∀ α ∈ Nn0 (|α| ≤ s) : ‖∂αxu‖L2 <∞}

with norm

‖u‖s =

 ∑
0≤|α|≤s

‖∂αxu‖L2

 1
2

.

We just write ‖u‖ instead of ‖u‖0. For s, k ∈ N0 and U = (u1, u2) ∈ Hs×Hk

set
‖U‖s,k =

(
‖u1‖2s + ‖u2‖2k

) 1
2

and for U ∈ (Hs ×Hk) ∩ (Lp)2 set

‖U‖s,k,p = ‖U‖s,k + ‖U‖(Lp)2 .

For u ∈ Hs and integers 0 ≤ k ≤ s, ∂kx shall denote the vector in RN ,
N = m#{α ∈ Nn0 : |α| = k}, whose entries are the partial derivatives of u
of order k.
For u ∈ Hs, v ∈ H l−1 (0 ≤ l ≤ s) and α ∈ Nn0 , |α| ≤ s, set

[∂αx , u]v = ∂αx (uv)− u∂αx v.

For δ > 0 let φδ denote the Friedrichs mollifier and set

[φδ∗, u]v = φδ ∗ (uv)− u(φδ ∗ v).
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As stated in the introduction, the goal of this paper is to prove existence
and asymptotic decay of global-in-time solutions of (1.3) near homogeneous
reference states. First, writing (1.3) in Godunov variables gives

−Bαβγδ(ψ) ∂ψγ
∂xβ∂xδ

+ ∂

∂xβ
Tαβ(ψ)− ∂

∂xβ

(
Bαβγδ(ψ)

) ∂ψγ
∂xδ

= 0,

α = 0, 1, 2, 3. (2.1)

In our case of a thermobarotropic fluid the dissipation tensor and the
inviscid energy-momentum tensor are given by 4

Bαβγδ(ψ) = χθ2uαuγgβδ − σθuβuδΠαγ + ζ̃θΠαβΠγδ

+ ηθ(ΠαγΠβδ + ΠαδΠβγ − 2
3ΠαβΠγδ)

+ σθ(uαuβgγδ − uαuδgγδ) + χθ2(uβuγgγδ − uγuδgγδ),

with σ = (4
3η + ζ)/(1 − c2

s) − c2
sχθ, ζ̃ = ζ + c2

sσ − c2
s(1 − c2

s)χθ, where
c2
s = p̂′(ρ) is the speed of sound (cf. [3]), and

∂

∂xβ
Tαβ = snθ2

[
uαgβγ + uβgαγ + uγgαβ + (3 + c−2

s )uαuβuγ
] ∂ψγ
∂xβ

,

with particle number n and specific entropy s. It was shown in [3] that (2.1)
is symmetric hyperbolic in the sense of Hughes-Kato-Marsden [5]. Thus,
using

Bαβγδ(ψ) ∂ψγ
∂xβ∂xδ

= B̃αβγδ(ψ) ∂ψγ
∂xβ∂xδ

with

B̃αβγδ(ψ) = 1
2
(
Bαβγδ(ψ) +Bαδγβ(ψ)

)
= χθ2uαuγgβδ − σθuβuδΠαγ + ζ̃θΠαβγδ + ηθ(ΠαγΠβδ + 1

3Παβγδ),

where
Παβγδ = 1

2(ΠαβΠγδ + ΠαδΠβγ),

we can write (2.1) as

A(ψ)ψtt −
3∑

i,j=1
Bij(ψ)ψxixj +

3∑
j=1

Dj(ψ)ψtxj + f(ψ,ψt, ∂xψ) = 0, (2.2)

4We use the standard projection Παβ = gαβ + uαuβ .
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where

A = (−B̃α0γ0)0≤α,γ≤3, Bij = (B̃αiγj)0≤α,γ≤3,

Dj = (−B̃α0γj)0≤α,γ≤3

are symmetric 4× 4 matrices, A(ψ) is positive definite,
∑3
i,j=1 ξiBij(ψ)ξj

is positive definite for arbitrary ξ ∈ R3 \ {0}, and

fα = ∂

∂xβ
Tαβ(ψ)− ∂

∂xβ

(
Bαβγδ(ψ)

) ∂ψγ
∂xδ

, α = 0, 1, 2, 3.

Throughout the paper we will consider the Cauchy problem associated
with (2.2):

Aψtt −
3∑

i,j=1
Bijψxixj +

3∑
j=1

Djψtxj + f = 0 on (0, T ]× R3, (2.3)

ψ(0) = 0ψ on R3, (2.4)
ψt(0) = 1ψ on R3, (2.5)

The main result is the following:

2.1 Theorem. Let s ≥ 3 and ψ̄ = (θ̄−1, 0, 0, 0, )t with a constant tempera-
ture θ̄ > 0. Then there exist δ0 > 0, C0 = C0(δ0) > 0 such that for all initial
data (0ψ, 1ψ1) ∈

(
Hs+1 ×Hs

)
∩
(
L1 × L1) satisfying ‖(0ψ−ψ̄, 1ψ)‖2s+1,s,1 <

δ0 there exists a unique solution ψ of the Cauchy problem (2.3)-(2.5) such
that

ψ − ψ̄ ∈
s⋂
j=1

Cj
(
[0,∞), Hs+1−j

)
.

ψ satisfies the decay estimates

‖(ψ(t)− ψ̄, ψt(t)‖2s+1,s +
∫ t

0
‖(ψ(τ)− ψ̄, ψt(τ))‖2s+1,sdτ

≤ C0‖(0ψ − ψ̄, 1ψ)‖2s+1,s, (2.6)

‖(ψ(t)− ψ̄, ψt(t))‖s,s−1 ≤ C0(1 + t)−
3
4 ‖(0ψ − ψ̄, 1ψ)‖s,s−1,1 (2.7)

for all t ∈ [0,∞).
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3. Decay Estimates for the Linearized System
In this section we study the linearization of (2.2) about a quiescent, isother-
mal reference state ψ̄ = u/θ̄, u = (1, 0, 0, 0)t, θ̄ > 0. The resulting equations
read

A(1)ψtt −
3∑

i,j=1
B

(1)
ij ψxixj + a(1)ψt +

3∑
j=1

b
(1)
j ψxj = 0, (3.1)

where
A(1) =

(
χθ̄2 0
0 σθ̄I3

)
,

B
(1)
ij =

(
χθ̄2δij 0

0 θ̄ηI3δij + 1
2 θ̄(ζ̃ + 1

3η)(ei ⊗ ej + ej ⊗ ei)

)
,

a(1) = nsθ̄2
(
c−2
s 0
0 I3

)
, b

(1)
j = nsθ̄2(ej ⊗ e0 + e0 ⊗ ej),

where n, s, χ, cs, η, ζ̃ are evaluated at the reference state. Note that no
mixed derivative ψtxj occurs here, as

B̃α0γj = B̃αjγ0 = 0

at the reference state. Multiplying (3.1) by (ns)−1θ̄−2 and setting χ̄ =
χ(ns)−1, η̄ = η(nsθ̄)−1, ζ̄ = ζ̃(nsθ̄)−1, σ̄ = σ(nsθ̄)−1, we arrive at the
equivalent system

A(2)ψtt −
3∑

i,j=1
B

(2)
ij ψxixj + a(2)ψt +

3∑
j=1

b
(2)
j ψxj = 0, (3.2)

where

A(2) =
(
χ̄ 0
0 σ̄I3

)
, B

(2)
ij =

(
χ̄δij 0

0 η̄I3δij + 1
2

(
ζ̄ + 1

3 η̄
)

(ei ⊗ ej + ej ⊗ ei)

)
,

a(2) =
(
c−2
s 0
0 I3

)
, b

(2)
j = ej ⊗ e0 + e0 ⊗ ej .

Finally, multiplying (3.2) by (A(2))−
1
2 and writing it in variables (A(2))

1
2ψ

gives

ψtt −
3∑

i,j=1
B̄ijψxixj + aψt +

3∑
j=1

bjψxj = 0, (3.3)
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where

B̄ij =
(
δij 0
0 σ̄−1

(
η̄I3δij + 1

2

(
ζ̄ + 1

3 η̄
)

(ei ⊗ ej + ej ⊗ ei)
)) ,

a =
(
c−2
s χ̄−1 0

0 σ̄−1I3

)
, bj = (χ̄σ̄)−

1
2 (ej ⊗ e0 + e0 ⊗ ej).

The goal is to prove a decay estimate for the Cauchy problem associated
with (3.3):

ψtt −
3∑

i,j=1
B̄ijψxixj + aψt +

3∑
j=1

bjψxj = 0 on (0, T ]× R3, (3.4)

ψ(0) = 0ψ on R3, (3.5)
ψt(0) = 1ψ on R3. (3.6)

3.1 Proposition. For some s ∈ N0 let (0ψ, 1ψ) ∈ (Hs+1 × Hs) ∩ (L1)2

and (ψ(t), ψt(t)) ∈ Hs+1×Hs be a solution of (3.4)-(3.6). Then there exist
c, C > 0 such that for all integers 0 ≤ k ≤ s and all t ∈ [0, T ]

‖∂kxψ(t)‖1 + ‖∂kxψt(t)‖ ≤ C(1 + t)−
3
4−

k
2
(
‖0ψ‖L1 + ‖1ψ‖L1

)
+ Ce−ct

(
‖∂kx(0ψ)‖1 + ‖∂kx(1ψ)‖

)
. (3.7)

To prove Proposition 3.1 we consider (3.4)-(3.6) in Fourier space, i.e.

ψ̂tt + |ξ|2B(ξ̌)ψ̂ + aψ̂t − i|ξ|b(ξ̌)ψ̂ = 0 on (0, T ]× R3, (3.8)
ψ̂(0) = 0ψ̂(ξ) on R3, (3.9)
ψ̂t(0) = 1ψ̂(ξ) on R3, (3.10)

where ξ̌ = ξ/|ξ|,

B(ω) =
3∑

i,j=1
ωiB̄ijωj =

(
1 0
0 σ̄−1

(
η̄I3 +

(
ζ̄ + 1

3 η̄
)

(ω ⊗ ω)
)) ,

b(ω) =
3∑
j=1

bjωj = (χ̄σ̄)−
1
2

(
0 ωt

ω 0

)
, ω ∈ S2.

We get the following pointwise decay estimate.
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3.2 Lemma. In the situation of Proposition 3.1 there exist c, C > 0 such
that for (t, ξ) ∈ [0, T ]× Rn

(1 + |ξ|2)|ψ̂(t, ξ)|2 + |ψ̂t(t, ξ)|2

≤ C exp(−cρ(ξ)t)
(
(1 + |ξ|2)|0ψ̂(ξ)|2 + |1ψ̂(ξ)|2

)
, (3.11)

where ρ(ξ) = |ξ|2/(1 + |ξ|2).

Proof. Our goal is to arrive at an expression of the form

1
2
d

dt
E(t, ξ) + F (t, ξ) ≤ 0, (3.12)

where E(t, ξ) is uniformly equivalent to

E0(t, ξ) = (1 + |ξ|)2|ψ̂(t, ξ)|2 + |ψ̂t(t, ξ)|2

and F ≥ cρ(ξ)E0. Then (3.11) follows by Gronwall’s Lemma.
W.l.o.g. assume ξ = (|ξ|, 0, 0) (otherwise rotate the coordinate system).

Since (4/3)η̄ + ζ̄ = σ̄, (3.8) decomposes into the two uncoupled systems

wtt + |ξ|2w + ãwt − i|ξ|b̃w = 0, (3.13)
vtt + η̄σ̄−1|ξ|2v + σ̄−1vt = 0, (3.14)

where w = (ψ̂0, ψ̂1), v = (ψ̂2, ψ̂3),

ã =
(
χ̄−1c−2

s 0
0 σ̄−1

)
, b̃ = (χ̄σ̄)−

1
2

(
0 1
1 0

)
. (3.15)

Obviously, this allows us to prove estimate (3.11) for w and v independently.
First, consider (3.14), where the estimate is fairly easy to obtain. Take

the scalar product (in C2) of this equations with vt + 1/(2σ̄)v. The real
part reads

1
2
d

dt
E(2) + F (2) = 0,

where
E(2) = |vt|2 + η̄

σ̄
|ξ|2|v|2 + 1

2σ̄2 |v|
2 + 1

σ̄
<〈vt, v〉, (3.16)

and
F (2) = 1

2σ̄ |vt|
2 + η̄

2σ̄2 |ξ|
2|v|2. (3.17)

Since
|σ̄−1<〈vt, v〉| ≤

1
3σ̄2 |v|

2 + 3
4 |vt|

2,

9



E(2) is uniformly equivalent to E(2)
0 = |vt|2 + (1 + |ξ|2)|v|2 and as

|ξ|2 ≥ 1
2ρ(ξ)(1 + |ξ|2),

we have F (2) ≥ c1ρ(ξ)E(2)
0 for some c1 > 0.

Next, we study system (3.13). For notational purposes set a1 = χ̄−1c−1
s ,

a2 = σ̄−2 and b1 = (χ̄σ̄)−
1
2 . Now, take the scalar product of (3.13) with

ãwt. The real part of the resulting equation reads
1
2
d

dt

(
〈ãwt, wt〉+ |ξ|2〈ãw, w〉

)
+ |ãwt|2 + <〈−i|ξ|b̃w, ãwt〉 = 0. (3.18)

Taking the scalar product of (3.13) with −i|ξ|b̃w and considering the real
part gives

d

dt

(
<〈wt,−i|ξ|b̃w〉

)
+ <〈ãwt,−i|ξ|b̃w〉+ |ξ|2|b̃w|2 = 0. (3.19)

Then we take the scalar product of (3.13) with w. The real part is

1
2
d

dt
(〈ãw, w〉+ 2<〈wt, w〉)− |wt|2 + |ξ|2|w|2 = 0. (3.20)

Set
S = 1

2b1

(
0 a1 − a2

a2 − a1 0

)
.

Since iS is Hermitian,

<〈iSw,wt〉 = 1
2
d

dt
〈iSw,w〉

holds and we can write (3.20) as

1
2
d

dt
(〈ãw, w〉+ 2<〈wt, w〉+ 2|ξ|〈iSw,w〉)

− |wt|2 + |ξ|2|w|2 − 2<(|ξ|〈iSw,wt〉) = 0. (3.21)

Now, add (3.18)+(3.19)+α(3.21) (for some α > 0 to be determined later)
to obtain

1
2
d

dt
E(1) + F (1) = 0, (3.22)

where

E(1) = 〈ãwt, wt〉+ |ξ|2〈ãw, w〉+ 2<(〈wt,−i|ξ|b̃w〉)
+ α (〈ãw, w〉+ 2<〈wt, w〉+ 2|ξ|〈iSw,w〉)
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and

F (1) = |ãwt|2 − α|wt|2 − 2<(i|ξ|〈(ãb̃− S)w,wt〉) + |ξ|2|b̃w|2 + α|ξ|2|w|2.

for Proposition 3.1 First, show that E(1) is uniformly equivalent to E(1)
0 =

(1 + |ξ|2)|w|2 + |wt|2. Obviously, there exists C1 > 0 such that

E(1) ≤ C1E
(1)
0 .

For
M =

(
ã b̃

b̃ ã

)
and W = (wt,−i|ξ|w),

〈ãwt, wt〉+ |ξ|2〈ãw, w〉+ 2<(〈wt,−i|ξ|b̃w〉) = 〈MW,W 〉C4 .

It is easy to show that σ(M) = σ(ã+ b̃)∪ σ(ã− b̃). Furthermore cs ∈ (0, 1)
yields ã+ b̃ > 0, ã− b̃ > 0. Thus M is positive definite, i.e.

〈ãwt, wt〉+ |ξ|2〈ãw, w〉+ 2<(〈wt,−i|ξ|b̃w〉) ≥ C2(|wt|2 + |ξ|2|w|2)

for a C2 > 0. Furthermore, by Young’s inequality there exists C3 > 0 such
that

|2<〈wt, w〉+ 2i|ξ|〈Sw,w〉| ≤ d

2 |w|
2 + C3(|ξ|2|w|2 + |wt|2),

where d = min{a1, a2}. In conclusion

E(1) ≥ C2(|wt|2 + |ξ|2|w|2)− αC3(|ξ|2|w|2 + |wt|2) + α
d

2 |w|
2.

Hence, for α sufficiently small there exists C4 > 0 such that

E(1) ≥ C4E
(1)
0 .

Finally show F (1) ≥ cρ(ξ)E(1)
0 for α sufficiently small. To this end write

F (1) = F
(1)
1 + F

(1)
2 , where

F
(1)
1 = (a2

1 − α)|w1
t |2 + (b2

1 + α)|ξ|2|w2|2

− 2<
(
i|ξ|

(
a1b1 + α

a1 − a2
2b1

)
w2w̄1

t

)
,

F
(1)
2 = (a2

2 − α)|w2
t |2 + (b2

1 + α)|ξ|2|w1|2

− 2<
(
i|ξ|

(
a2b1 + α

a2 − a1
2b1

)
w1w̄2

t

)
.
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Since

(a2
1 − α)(b2

1 + α)−
(
a1b1 + α

a1 − a2
2b1

)2
= α(a1a2 − b2

1) +O(α2)

and a1a2 > b2
1 there exist c2 > 0 such that

F
(1)
1 ≥ αc2(|w1

t |2 + |ξ|2|w2|2)

for α sufficiently small. In the same way we get

F
(1)
2 ≥ αc2(|w2

t |2 + |ξ|2|w1|2).

Therefore
F (1) ≥ αc2(|wt|2 + |ξ|2|w|2) ≥ αc1

2 ρ(ξ)E(1)
0 ,

which finishes the proof.

Based on Lemma 3.2 the proof for Proposition 3.1 goes as [1, Proof of
Theorem 3.1].

Next consider the inhomogeneous initial-value problem

ψtt −
3∑

i,j=1
B̄ijψxixj + aψt +

n∑
j=1

bjψxj = h, on (0, T ]× R3, (3.23)

ψ(0) = 0ψ, on R3, (3.24)
ψt(0) = 1ψ, on R3. (3.25)

for some h : [0, T ]× R3 → R4. We get the following results:

3.3 Proposition. Let s be a non-negative integer,
(0ψ, 1ψ) ∈ (Hs+1 × Hs) ∩ (L1)2 and h ∈ C([0, T ], Hs ∩ L1). Then the
solution ψ of (3.23)-(3.25) satisfies

‖∂kxψ(t)‖1 + ‖∂kxψt(t)‖ ≤ C(1 + t)−
3
4−

k
2 (‖0ψ‖L1 + ‖1ψ‖L1)

+ Ce−ct(‖∂kx(0ψ)‖1 + ‖∂kx(1ψ)‖)

+ C

∫ t

0
(1 + t− τ)−3/4−k/2‖h(τ)‖L1

+ C exp(−c(t− τ))‖∂kxh(τ)‖dτ (3.26)

for all t ∈ [0, T ] and 0 ≤ k ≤ s.
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Proof. For t ∈ [0, T ] let T (t) be the linear operator which maps (0ψ, 1ψ)
to the solution (ψ(t)), ψt(t)) of the homogeneous IVP (3.4)-(3.6) at time t.
By Duhamel’s principle the solution of (3.23)-(3.25) is given by

(ψ(t), ψt(t)) = T (t)(0ψ, 1ψ) +
∫ t

0
T (t− τ)(0, h(τ))dτ.

Hence the assertion is an immediate consequence of Proposition 3.1.

3.4 Proposition. Let s be a non-negative integer. There exist C1, C2 > 0
such that for all (0ψ, 1ψ) ∈ Hs+1 ×Hs and h ∈ C([0, T ], Hs) the solution
ψ of (3.23)-(3.25) satisfies

C1
(
‖∂αxψ(t)‖21 + ‖∂αxψt(t)‖2

)
+ C1

∫ t

0
‖∂αx ∂xψ(τ)‖2 + ‖∂αxψt(τ)‖2dτ

≤ C2
(
‖∂αx (0ψ)‖21 + ‖∂αx (1ψ)‖2

)
+
∫ t

0
C2‖∂αxψ(τ)‖2 +

(
∂αxh(τ), a2∂

α
xψ(τ) + ∂αxψt(τ)

)
L2
dτ (3.27)

for all t ∈ [0, T ] and α ∈ N3
0, |α| = s

Proof. Consider (3.23) in Fourier space, i.e.

ψ̂tt + |ξ|2B(ξ̌)ψ̂ + aψ̂t − i|ξ|b(ξ̌)ψ̂ = ĥ

We proceed similarly as in the proof of Lemma 3.2. Again w.l.o.g. assume
ξ = (|ξ|, 0, 0), then (3.23) reads

wtt + |ξ|2w + ãwt − i|ξ|b̃w = (ĥ0, ĥ1)t, (3.28)
vtt + η̄σ̄−1|ξ|2v + σ̄−1vt = (ĥ2, ĥ3)t, (3.29)

where w = (ψ̂0, ψ̂1), v = (ψ̂2, ψ̂3), ã, b̃ are given by (3.15). First, take the
scalar product of (3.29) with vt + 1/(2σ̄)v and consider the real part

1
2
d

dt
E(2) + F (2) = <

〈
(ĥ2, ĥ3)t, vt + 1

2σ̄ v
〉

(3.30)

where E(2), F (2) are given by (3.16), (3.17). Since E(2) is uniformly equiva-
lent to |vt|2 + (1 + |ξ|2)|v|2 and F 2 ≥ c(|vt|2 + |ξ|2|v|2), integrating (3.30)
leads to

C1
(
|vt|2 + (1 + |ξ|2)|v|2

)
+ C1

∫ t

0
|vt|2 + |ξ|2|v|2dτ

≤ C2
(
|vt(0)|2 + (1 + |ξ|2)|v(0)|2

)
+
∫ t

0
<
〈

(ĥ2, ĥ3)t, vt + 1
2σ̄ v

〉
dτ.

(3.31)
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Next, take the scalar product of (3.28) with wt + (ã/2)w. The real part
reads

1
2
d

dt
E(1) + F (1) = <〈(ĥ0, ĥ1)t, wt + 1

2 ãw〉, (3.32)

where
E(1) = |wt|2 + |ξ|2|w|2 + 1

2 |ãw|
2 + <〈ãwt, w〉

and

F (1) = 1
2〈ãwt, wt〉+ <〈−i|ξ|b̃w, wt〉+ 1

2 |ξ|
2〈ãw, w〉 − 1

2<〈i|ξ|b̃w, ãw〉.

Using Young’s inequality it is easy to see that E(1) is uniformly equivalent
to |wt|2 + (1 + |ξ|2)|w|2. Furthermore

F (1) = 1
2〈MW,W 〉C4 −

1
2<〈i|ξ|b̃w, ãw〉,

where
M =

(
ã b̃

b̃ ã

)
and W = (wt,−i|ξ|w). As M is positive definite (see proof of Lemma 3.2)
there exists c1, c2 > 0 such that

F (1) ≥ c1(|wt|2 + |ξ|2|w|2)− c2|ξ||w||w| ≥
c1
2 (|wt|2 + |ξ|2|w|2)− c2

2
2c1
|w|2.

Thus integrating (3.32) leads to

C1
(
|wt|2 + (1 + |ξ|2)|w|2

)
+ C1

∫ t

0
|wt|2 + |ξ|2|w|2dτ

≤ C2
(
|wt(0)|2 + (1 + |ξ|2)|w(0)|2

)
+
∫ t

0
C2|w|2+<〈(ĥ0, ĥ1)t, wt+

ã

2w〉dτ.

(3.33)

Adding (3.31) and (3.33) gives

C1
(
|ψ̂t|2 + (1 + |ξ|2)|ψ̂|2

)
+ C1

∫ t

0
|ψ̂t|2 + |ξ|2|ψ̂|2dτ

≤ C2
(
|1ψ̂|2 + (1 + |ξ|2)|0ψ̂|2

)
+
∫ t

0
C2|ψ̂|2 + <〈ĥ, ψ̂t + a

2 ψ̂〉dτ. (3.34)

Finally the assertion follows by multiplying (3.34) with ξ2α for α ∈ Nn0 ,
|α| = s, integrating with respect to ξ, and using Plancherel’s identity.
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4. Global Existence and Asymptotic Decay of Small
Solutions

The goal of this section is to prove Theorem 2.1. We will proceed as follows:
First we show a decay estimate for all but the highest order derivatives of a
solution, Proposition 4.1, and then an energy estimate for the derivatives of
highest order, Proposition 4.3. Then Theorem 2.1 follows from combining
the two, Proposition 4.4.

As in Section 3 fix θ̄ > 0, multiply (2.2) by (n(θ̄)s(θ̄))−1θ̄−2(A(2))−
1
2 and

change the variables to (A(2))
1
2ψ such that the linearization at (θ̄−1, 0, 0, 0)

is given by (3.3). In addition, consider ψ− ψ̄ with ψ̄ = (θ̄−1, 0, 0, 0) instead
of ψ, 0ψ − ψ̄ instead of 0ψ, A(·+ ψ̄) instead of A(·) and so on, such that
the rest state is shifted from (θ̄−1, 0, 0, 0) to (0, 0, 0, 0). In the following,
when (2.2) or (2.3)-(2.5) are mentioned, we actually mean these modified
equations.
Write U = (ψ,ψt) and U0 = (0ψ, 1ψ) for a solution to (2.3)-(2.5) and

the initial values, respectively. Let s ≥ s0 + 1 (s0 = [3/2] + 1), T > 0,
U0 ∈ Hs+1 ×Hs, and ψ satisfy

ψ ∈
s⋂
j=0

Cj
(
[0, T ], Hs+1−j

)
. (4.1)

For 0 ≤ t ≤ t1 ≤ T define

Ns(t, t1)2 = sup
τ∈[t,t1]

‖U(τ)‖2s+1,s +
∫ t1

t
‖U(τ)‖2s+1,sdτ.

We write Ns(t) instead of Ns(0, t). Furthermore assume that Ns(T ) ≤ a0
for an a0 > 0. Since s ≥ s0, Hs ↪→ L∞ is a continuous embedding.
Hence Ns(T ) ≤ a0 implies that (ψ,ψt, ∂xψ) takes values in a closed ball
B(0, r) ⊂ R4 × R4 × R12 for some r > 0.

First we prove the decay estimate. To this end it is convenient to rewrite
(2.3) as - cf. (3.3) -

ψtt −
3∑

i,j=1
B̄ijψxixj + aψt +

3∑
j=1

bjψxj = h(ψ,ψt, ∂xψ, ∂2
xψ, ∂xψt), (4.2)

15



where

h(ψ,ψt, ∂xψ, ∂2
xψ, ∂xψt) =

3∑
i,j=1

(
A(ψ)−1Bij(ψ)− B̄ij

)
ψxixj

−
3∑
j=1

A(ψ)−1Dj(ψ)ψtxj

−A(ψ)−1f(ψ,ψt, ∂xψ) + aψt +
3∑
j=1

bjψxj . (4.3)

4.1 Proposition. There exist constants a1(≤ a0), δ1 = δ1(a1), C1 =
C1(a1, δ1) > 0 such that the following holds: If ‖U0‖2s,s−1,1 ≤ δ1 and
Ns(T )2 ≤ a1 for a solution ψ of (2.3)-(2.5) satisfying (4.1), then

‖U(t)‖s,s−1 ≤ C1(1 + t)−
3
4 ‖U0‖s,s−1,1 (t ∈ [0, T ]). (4.4)

Proof. Let t ∈ [0, T ] and ψ be a solution to (2.3)-(2.5). Since Bij(0) = B̄ij ,
Dj(0) = 0 and

aψt +
3∑
j=1

bjψxj = Df(0)(ψ,ψt, ∂xψ),

Lemmas A.1, A.2 show that there exist C, c > 0 (c ≤ a0) such that
h(t) ∈ Hs−1 ∩ L1 and

‖h(t)‖s−1 ≤ C‖ψ(t)‖s−1
(
‖∂2

xψ(t)‖s−1 + ‖∂xψt(t)‖s−1
)

+ C‖(ψ(t), ψt(t), ∂xψ(t))‖2s−1

≤ C‖U(t)‖s+1,s‖U(t)‖s,s−1,

‖h(t)‖L1 ≤ C‖U(t)‖22,1,

if Ns(T ) ≤ c, which we will assume throughout this proof. Proposition 3.3
yields

‖U(t)‖s,s−1 ≤ C(1 + t)−
3
4 ‖U0‖s,s−1,1

+ C

∫ t

0
exp(−c(t− τ))‖h(τ)‖s−1 + (1 + t− τ)−

3
4 ‖h(τ)‖L1dτ,
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which leads to

‖U(t)‖s−1,s ≤ C(1 + t)−
3
4 ‖U0‖s,s−1,1

+ C sup
τ∈[0,t]

‖U(τ)‖s+1,s

∫ t

0
exp(−c(t− τ))‖U(τ)‖s,s−1dτ

+ C

∫ t

0
(1 + t− τ)−

3
4 ‖U(τ)‖2s,s−1dτ.

Multiplying with (1 + t)
3
4 gives

(1 + t)
3
4 ‖U(t)‖s,s−1 ≤ C‖U0‖s,s−1,1

+ CNs(t)µ1(t) sup
τ∈[0,t]

(1 + τ)
3
4 ‖U(τ)‖s,s−1

+ Cµ2(t) sup
τ∈[0,t]

(1 + τ)
3
2 ‖U(τ)‖2s,s−1,

where

µ1(t) = (1 + t)
3
4

∫ t

0
exp(−c(t− τ))(1 + τ)−

3
4dτ

µ2(t) = (1 + t)
3
4

∫ t

0
(1 + t− τ)−

3
4 (1 + τ)−

3
2dτ.

Since µ1, µ2 are bounded functions on [0,∞), we get

sup
τ∈[0,t]

(1 + τ)
3
4 ‖U(τ)‖s,s−1 ≤ C‖U0‖s,s−1,1

+ CNs(t) sup
τ∈[0,t]

(1 + τ)
3
4 ‖U(τ)‖s,s−1

+ C sup
τ∈[0,t]

(1 + τ)
3
2 ‖U(τ)‖2s,s−1.

We can deduce from this equation that there in fact exists a1 > 0 (a1 ≤ c),
δ1 > 0 and C1 > 0, such that

sup
τ∈[0,t]

(1 + τ)
3
4 ‖U(τ)‖s,s−1 ≤ C1‖U0‖s,s−1,1,

whenever Ns(T )2 ≤ a1 and ‖U0‖2s,s−1,1 ≤ δ1.

4.2 Corollary. In the situation of Proposition 4.1 there exists a C2 =
C2(a1, δ1) > 0 such that

Ns−1(T )2 ≤ C2‖U0‖2s,s−1,1 (4.5)

whenever Ns(T )2 ≤ a1 and ‖U0‖2s,s−1,1 ≤ δ1.
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Proof. The function t 7→ (1+ t)−
3
4 is square-integrable on [0,∞). Therefore

the assertion is a direct consequence of Proposition 4.1.

Now it is convenient to write (2.3) as

ψtt −
3∑

i,j=1
B̄ijψxixj + aψt +

3∑
j=1

bjψxj = L(ψ)ψ + h2(ψ,ψt, ∂xψ), (4.6)

where

L(ψ)ψ = (I −A(ψ))ψtt −
3∑

i,j=1
(B̄ij −Bij(ψ))ψxixj −

3∑
j=1

Dj(ψ)ψtxj ,

h2(ψ,ψt, ∂xψ) = aψt +
3∑
j=1

bjψxj − f(ψ,ψt, ∂xψ).

4.3 Proposition. There exist constants a2(≤ a0) and c3, C3 = C3(a2) > 0
such that the following holds: If Ns(T )2 ≤ a2 for a solution ψ of (2.3)-(2.5)
satisfying (4.1), then

‖∂sxψ(t)‖21 + ‖∂sxψt(t)‖2 +
∫ t

0
‖∂s+1

x ψ(τ)‖2 + ‖∂sxψt(τ)‖2dτ

− c3

∫ t

0
‖∂sxψ(τ)‖2dτ ≤ C3

(
‖U0‖2s,s+1 +Ns(t)3

)
(t ∈ [0, T ]). (4.7)

Proof. We prove the result in two steps.
Step 1: Let U0 = (0ψ, 1ψ) ∈ Hs+1 ×Hs and

ψ ∈
s⋂
j=0

Cj
(
[0, T ], Hs+2−j

)
(4.8)

be a solution to (2.3)-(2.5). By Lemma A.2 there exists a c > 0 such
that I − A(ψ), B̄ij − Bij(ψ), Dj(ψ) ∈ Hs+1 provided Ns(T ) ≤ c. We will
assume this throughout the proof. Then due to (4.8) and [6, Lemma 2.3]
L(ψ)ψ ∈ Hs. Lemma A.2 yields h2 ∈ Hs. Thus we can conclude by
Proposition 3.4 that

C1
(
‖∂αxψ(t)‖21 + ‖∂αxψt(t)‖2

)
+ C1

∫ t

0
‖∂αx ∂xψ(τ)‖2 + ‖∂αxψt(τ)‖2dτ

≤ C2
(
‖∂αx (0ψ)‖21 + ‖∂αx (1ψ)‖2

)
+ C2

∫ t

0
‖∂αxψ(τ)‖2dτ

+
∫ t

0

(
∂αx (L(ψ(τ))ψ(τ) + h2(τ)), ∂αxψt(τ) + a

2∂
α
xψ(τ)

)
L2
dτ (4.9)
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for all α ∈ N3
0, |α| = s. First obviously∣∣∣∣(∂αxh2, ∂

α
xψt + a

2∂
α
xψ

)
L2

∣∣∣∣ ≤ C‖h2‖s‖U‖s (4.10)

and integrating by parts gives∣∣∣∣(∂αx (L(ψ)ψ), a2∂
α
xψ

)
L2

∣∣∣∣ ≤ C‖L(ψ)ψ‖s−1‖ψ‖s+1

≤ C‖I −A(ψ)‖s‖ψtt‖s−1‖ψ‖s+1

+ C
3∑

i,j=1
‖B̄ij −Bij(ψ)‖s‖∂2

xψ‖s−1‖ψ‖s+1

+ C
3∑
j=1
‖Dj(ψ)‖s‖∂xψt‖s−1‖ψ‖s+1.

(4.11)

Next write

∂αx (L(ψ)ψ) = L(ψ)∂αxψ + [∂αx , (I −A(ψ))]ψtt

−
3∑

i,j=1
[∂αx , (B̄ij −Bij(ψ))]ψxixj −

3∑
j=1

[∂αx , Dj(ψ)]ψtxj .

Since I −A(ψ), B̄ij −Bij(ψ), Dj(ψ) ∈ Hs, [6, Lemma 2.5(i)] yields

‖[∂αx , (I −A(ψ))]ψtt‖ ≤ C‖∂xA(ψ)‖s−1‖ψtt‖s−1

‖[∂αx , (B̄ij −Bij(ψ))]ψxixj‖ ≤ C‖∂xBij(ψ)‖s−1‖ψxixj‖s−1

‖[∂αx , Dj(ψ)]ψtxj‖ ≤ C‖∂xDj(ψ)‖s−1‖ψtxj‖s−1.

(4.12)

Furthermore integration by parts and the symmetry of A,Bij and Dj give∫ t

0
(L(ψ)∂αxψ, ∂αxψt)L2 dτ

≤ C
∫ t

0
‖∂tA‖L∞‖∂αx (∂xψ,ψt)‖2dτ

+

 3∑
i,j=1
‖∂tBij‖L∞ + ‖∂xBij‖L∞ +

3∑
j=1
‖∂xDj‖L∞

 ‖∂αx (∂xψ,ψt)‖2dτ

+ C

‖I −A‖L∞ +
3∑

i,j=1
‖B̄ij −Bij‖L∞

 ‖∂αx (∂xψ,ψt)‖2

+ C‖∂αx (∂x0ψ, 1ψ)‖2. (4.13)
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In conclusion, (4.9) and the estimates (4.10), (4.11), (4.12) (4.13) lead to

‖∂αxψ(t)‖21 + ‖∂αxψt(t)‖2 +
∫ t

0
‖∂αx ∂xψ(τ)‖2 + ‖∂αxψt(τ)‖2dτ

− c
∫ t

0
‖∂αxψ(τ)‖2dτ

≤ C‖U0‖2s+1,s + C

∫ t

0
‖h2(ψ)‖s‖U‖s+1,s +R1(ψ)‖U‖2s+1,sdτ

+ C

∫ t

0
‖I −A(ψ)‖s‖ψtt‖s−1‖U‖s+1,sdτ

+ CR2(ψ)‖U(t)‖2s+1,s, (4.14)

where

R1(ψ) = ‖∂tA(ψ)‖s + ‖I −A(ψ)‖s

+
3∑

i,j=1
‖∂tBij(ψ)‖s + ‖B̄ij −Bij(ψ)‖s +

3∑
j=1
‖Dj(ψ)‖s

and

R2(ψ) = ‖I −A(ψ)‖s +
3∑

i,j=1
‖B̄ij −Bij(ψ)‖s.

Step 2: Now let ψ be a solution to (2.3)-(2.5) satisfying (4.1). For δ > 0
set ψδ = φδ ∗ ψ. Applying φδ∗ to (4.6) yields

ψδtt −
3∑

i,j=1
B̄ijψ

δ
xixj + aψδt +

3∑
j=1

bjψ
δ
xj = L(ψ)ψδ +Rδ(ψ) + hδ2,

where hδ = φδ ∗ h2 and

Rδ(ψ) = [φδ∗, (I −A(ψ))]ψtt −
n∑

i,j=1
[φδ∗, B̄ij −Bij(ψ)]ψxixj

−
3∑
j=1

[φδ∗, Dj(ψ)]ψtxj .
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Due to [6, Lemma 2.5 (ii)] Rδ(ψ) ∈ Hs. Hence L(ψ)ψδ +Rδ(ψ) + hδ2 ∈ Hs.
Thus proceeding as in step 1 yields

‖∂αxψδ(t)‖21 + ‖∂αxψδt (t)‖2 +
∫ t

0
‖∂αx ∂xψδ(τ)‖2 + ‖∂αxψδt (τ)‖2dτ

− c
∫ t

0
‖∂αxψδ(τ)‖2dτ

≤ C‖U δ0‖2s+1,s

+C
∫ t

0
‖hδ2‖s‖U δ‖s+1,s+R1(ψ)‖U δ‖2s+1,s+‖I−A(ψ)‖s‖ψδtt‖s−1‖U δ‖s+1,sdτ

+ C

∫ t

0
‖Rδ(ψ)‖s‖U δ‖s+1,sdτ + CR2(ψ)‖U δ(t)‖2s+1,s.

It is easy to see that U δ → U and hδ2 → h2 in L∞
(
[0, T ], Hs+1 ×Hs

)
and in L2([0, T ], Hs), respectively, as δ → 0. Furthermore Rδ(ψ) → 0 in
L2([0, T ], Hs) as δ → 0 due to [6, Lemma 2.5(ii)]. Hence we get (4.14) for
ψ satisfying (4.1).

Furthermore by Lemma A.1 and

‖h2‖s ≤ C‖U‖2s+1,s.

and by Lemma A.2

R1(ψ) +R2(ψ) ≤ C‖U‖s+1,s

for Ns(T ) sufficiently small. Finally, since ψ satisfies (2.3),

‖ψtt‖s−1 ≤ C(‖∂2
xψ‖s−1 + ‖∂xψt‖s−1 + ‖f(ψ,ψt, ∂xψ)‖s−1) ≤ C‖U‖s+1,s

holds for Ns(T ) sufficiently small. Therefore we can deduce from (4.14)
that

‖∂αxψ(t)‖21 + ‖∂αxψt(t)‖2 +
∫ t

0
‖∂αx ∂xψ(τ)‖2 + ‖∂αxψt(τ)‖2dτ

− c
∫ t

0
‖∂αxψ(τ)‖2dτ

≤ C‖U0‖2s+1,s + C‖U(t)‖3s+1,s + C

∫ t

0
‖U(τ)‖3s+1,sdτ.

The assertion is an immediate consequence of this inequality.
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4.4 Proposition. In the situation of Proposition 4.1 there exist constants
a3(≤ min{a2, a1}), C4 = C4(a3, δ1) > 0 (δ1 being the constant in Propo-
sition 4.1) such that the the following holds: If ‖U0‖2s,s−1,1 ≤ δ1 and
Ns(T )2 ≤ a3 for a solution ψ of (2.3)-(2.5) satisfying (4.1), then

Ns(t)2 ≤ C2
4‖U0‖2s+1,s,1 (t ∈ [0, T ]). (4.15)

Proof. This follows directly by adding (4.5)+ε(4.7) for ε sufficiently small.

Finally we turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Let T1 > 0, δ2 > 0 such that for all U0 = (ψ0, ψ1) ∈
Hs+1 ×Hs, where ‖U0‖2s+1,s < δ2, there exists a solution U = (ψ,ψt) of
the Cauchy problem (2.3)-(2.5) with

ψ ∈
s⋂
j=1

Cj
(
[0, T1], Hs+1−j

)
.

This is possible due to [5, Theorem III]. Furthermore let a3, δ1 and C4 be
the constants in Proposition 4.4. Choose 0 < ε < a3/(2(1 + T1)). Due to
[5, Ibid.] there exists δ3 > 0, (δ3 ≤ δ2) such that for all U0 = (ψ0, ψ1) ∈
Hs+1 ×Hs, where ‖U0‖2s+1,s < δ3, the solution U of (2.3)-(2.5) satisfies

sup
t∈[0,T1]

‖U(t)‖2s+1,s < ε.

Now set δ0 = min{δ1, δ3, δ3/C4, a3/(2C4)} and choose any U0 ∈
(
Hs+1 ×Hs

)
∩(

L1 × L1) for which ‖U0‖2s+1,s,1 < δ0. Since δ0 ≤ δ3, we have

Ns(T1)2 < ε+ T1ε <
a3
2 .

Hence by Proposition 4.4 and ‖U0‖2s+1,s,1 < δ1

Ns(T1)2 ≤ C4‖U0‖2s+1,s < C4δ0 ≤ δ3. (4.16)

Furthermore due to Proposition 4.1, (2.7) holds for all t ∈ [0, T1]. In
particular (4.16) yields

‖U(T1)‖2s+1,s < δ3. (4.17)

Thus we can solve (2.3) on [T1, 2T1] with initial values (ψ(T1), ψt(T1)) and
get

Ns(T1, 2T1)2 ≤ ε+ T1ε <
a3
2 .
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Now extend the solution (ψ,ψt) continuously on [0, 2T1]. We can conclude

Ns(2T1)2 ≤ Ns(T1)2 +Ns(T1, 2T1)2 <
a3
2 + a3

2 = a3.

Since we have already assumed ‖U0‖2s+1,s,1 < δ1, Propositions 4.4 and 4.1
yield

Ns(2T1) ≤ C4δ0 (4.18)

and (2.7) holds for all t ∈ [0, 2T1]. Due to (4.18) we can repeat the former
argument to obtain a solution on [0, 3T1] and further repetition proves the
assertion.

A. Appendix
A.1 Lemma. Let n,N ∈ N, s ≥ s0 := [n2 ]+1 and F ∈ C∞(RN ), F (0) = 0.
Then there exist δ > 0, C = C(δ) > 0 such that for all u ∈ Hs with ‖u‖s ≤ δ,
F (u)− ∂uF (0) ∈ Hs and

‖F (u)− ∂uF (0)u‖s ≤ C‖u‖2s.

Proof. Since s ≥ s0, there exists a C1 > 0 such that

‖u‖L∞ ≤ C1‖u‖s

for all u ∈ Hs. Furthermore due to F (0) = 0 there exist δ1 > 0, C2 =
C2(δ1) > 0 such that

|F (y)− ∂yF (0)y| ≤ C2|y|2.

for all y ∈ RN with |y| ≤ δ1. Now let u ∈ Hs such that ‖u‖s ≤ δ1/C1 (i.e.
‖u‖L∞ ≤ δ1). Then

‖F (u)− ∂uF (0)u‖ ≤ C2‖u‖L∞‖u‖ ≤ C1C2‖u‖2s. (A.1)

Furthermore for α ∈ Nn0 with 1 ≤ |α| = j ≤ s we get

∂αxF (u) = ∂uF (u)∂αxu+R,

where

R =
∑

1≤|β|<j

(
α

β

)
∂βxu ∂

α−β
x F (u).
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Since ∂xu ∈ Hs−1 and ‖u‖L∞ ≤ δ1, we get ∂xF (u) ∈ Hs−1 and

‖∂xF (u)‖s−1C3‖∂xu‖s−1

for a C3 = C3(δ2) > 0 by [6, Lemma 2.4 ]. Therefore [6, Lemma 2.3] yields

‖R‖ ≤ C4‖∂xu‖s−1‖∂xF (u)‖s−1 ≤ C3C4‖∂xu‖2s−1

for a C4 > 0. On the other hand there exist δ2 > 0, C5 = C5(δ2) > 0, such
that

|∂yF (y)− ∂yF (0)| ≤ C5|y|
for all y ∈ RN with |y| ≤ δ2. Assuming ‖u‖s ≤ δ2/C1 entails

‖∂αx (F (u)− ∂uF (0))‖ ≤ ‖(∂uF (u)− ∂uF (0))∂αxu‖+ ‖R‖
≤ ‖∂uF (u)− ∂uF (0)‖L∞‖u‖s + C3C4‖∂xu‖s−1

≤ max{C3C4, C5}‖u‖2s.

Since α was arbitrary, this estimate together with (A.1) yield the assertion
for δ = min{δ1, δ2}/C1.

A.2 Lemma. Let n,N ∈ N, s ≥ s0 and F ∈ C∞(RN ,RN×N ). Then there
exist δ > 0, C = C(δ) > 0 such that for all u ∈ Hs(Rn,RN ) with ‖u‖s ≤ δ,
(F (u)− F (0))u ∈ Hs and

‖(F (u)− F (0))u‖s ≤ C‖u‖2s.

Proof. First note that there exist δ1 > 0, C1 = C1(δ1) > 0 such that

|F (y)− F (0)| ≤ C1|y|

for all y ∈ RN , |y| ≤ δ1 as well as C2 > 0 such that

‖v‖L∞ ≤ C2‖v‖s

for all v ∈ Hs. Now let u ∈ Hs, ‖u‖s ≤ δ1/C2. Then

‖F (u)− F (0)‖ ≤ C1‖u‖s

holds. On the other hand by [6, Lemma 2.4] ∂xF (u) ∈ Hs−1 and

‖∂xF (u)‖s−1 ≤ C3‖∂xu‖s−1

for a C3 = C3(δ1) > 0. Hence F (u)− F (0) ∈ Hs and

‖F (u)− F (0)‖s ≤ C4‖u‖s

for ‖u‖s ≤ δ = δ1/C2. Now the assertion follows from [6, Lemma 2.4].
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