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Abstract

Global-in-time existence and asymptotic decay of small so-
lutions to the Navier-Stokes-Fourier equations for a class of
viscous, heat-conductive fluids are shown. As this second-order
system is symmetric hyperbolic, existence and uniqueness on a
short time interval follow from work of Hughes, Kato and Mars-
den. In this paper it is proven that solutions which are close
to a homogeneous reference state can be extended globally and
decay to the reference state. The proof combines decay results
for the linearization with refined Kawashima-type estimates of
the nonlinear terms.

1. Introduction

In relativistic fluid dynamics, stresses in perfect fluids are described by the
inviscid energy-momentum tensor !

77 = (p+ p)uu’ + pg*’, (1.1)

where p and p are the internal energy and the pressure of the fluid, u® is
its 4-velocity. In this paper we will exclusively consider causal barotropic
fluids, a class defined by the property that there exists a one-to-one relation
between p and p,

p=p(p), (1.2)

with a smooth function p : (0,00) — (0,00) that satisfies 0 < p < 1.
One way to describe the dynamics of dissipative barotropic fluids is via a
system2

({gﬁ (T“ﬁ + AT”ﬁ) =0, a=0,1,2,3, (1.3)
of partial differential equations - the conservation laws of energy and
momentum -, in which the “dissipation tensor” AT®? is linear in the
gradients of the state variables determined by coefficients 7, ¢ of viscosity
and y of heat conduction. Freistiihler and Temple have recently proposed
a particular new way of choosing AT® such that basic requirements,
notably of causality, are met; see [3] for this and also for a discussion of

!Greek indices run from 0 to 3 and are raised or lowered by contraction with g%, 9o,
where g = diag(—1,1,1,1) is the standard Minkowski metric; cf., e.g., [7], Sec. 2.5.
2We use the Einstein summation convention.



the interesting history of the causality problem. According to [3], AT afb ig
given as

9y
_ATaB — Baﬁ'yé Y

where 1 denotes the so-called Godunov variables

_ Uy

9y ="

with f the Lichnerowicz index of the fluid. The key property of Godunov
variables is that in these, the first-order term of a system of conservation
laws, here

iTOé,B

oxB~ 7

becomes symmetric hyperbolic [4].3 Now, the requirement that also

0
~5 7 ( AT )
should be symmetric hyberbolic when written in the same variables deter-
mines a set of coefficient fields B*#7° (1)) which make (1.3) an element of a
class of systems that was introduced by Hughes, Kato and Marsden and
shown to be well-posed in Sobolev spaces [5]. As established in [3], the
requirements of equivariance (isotropicity) and other physical necessities
indeed make B (1)) determined by the coefficients 7, ¢, x.

The purpose of this paper is to provide a global-in-time solution theory
of these relativistic Navier-Stokes-Fourier equations (1.3). To this end,
we analyze first the linearization of (1.3) at some homogeneous reference
state and then the nonlinear problem as a pertubation of the linear one,
both with techniques that were developed, or are simililar to techniques
developed, by Kawashima and co-authors notably in [6], [1].

To have a clear setting, we carry out the whole argument under the
additional assumption that the fluid is indeed thermobarotropic, which
means, in addition to (1.2), its internal energy is a function of temperature
alone

p=p(0). (14)

In this case, the Lichnerowicz index is identical with the temperature,

f=0, (1.5)

3See [2] for details and the history of the use of such variables in relativistic fluid
dynamics.




and actual heat conduction can be an integrated part of a four-field theory,
see [2]. An important physical example of this is given by the case of
the pure radiation fluid [7], whose internal energy as function of particle
number, density and specific entropy is given by

p(n,s) = knss.

The results of this paper extend to barotropic fluids that do not satisfy
(1.4), (1.5) - one just has to replace 6 by f everywhere -, but then the
“x-terms” attain the role of an “artificial heat conduction”. We plan to later
use this hyperbolic regularization for studying the “purely viscous” (x = 0)
case via the limit x | 0.

2. Preliminaries and Main Result

We begin by introducing some notation. For p € [1, oo] and some m € N just
write LP for LP(R3,R™). For s € Ny we denote by H* the L?-Sobolev-space
of order s, namely

H? :={uce L>:Vac Ny (Jaf < s) 1 [|0Su|| 12 < oo}
with norm )
2
lulls ={ > l0gullrz] -
0<a<s

We just write ||u|| instead of ||ul|o. For s,k € Ngand U = (u1,ug) € H®x H*

set
1

10Nk = (w2 + uali?)?
and for U € (H® x H*) N (LP)? set
1Tl = 1Tl + 1T 1y

For u € H® and integers 0 < k < s, 9¥ shall denote the vector in RV,
N = m#{a € N : |a| = k}, whose entries are the partial derivatives of u
of order k.

Forue€ H*, ve H™' (0<1<s)and a € NZ, |a] < s, set

[0%, ulv = 05 (uv) — udyw.
For § > 0 let ¢5 denote the Friedrichs mollifier and set

[Ps*, ulv = @5 * (uv) — u(Ps * v).



As stated in the introduction, the goal of this paper is to prove existence
and asymptotic decay of global-in-time solutions of (1.3) near homogeneous
reference states. First, writing (1.3) in Godunov variables gives

0, 0 0 oY

TaB v Baﬁwé A
0xP oz + Oxf (%) Oxf ( (1/1)> Oxd ’
a=0,1,2,3. (2.1)

_ Baﬁwé(w)

In our case of a thermobarotropic fluid the dissipation tensor and the
inviscid energy-momentum tensor are given by 4

B (1) = x0?uu" ¢* — oOuPul I 4 COTTPII
2
+ O (M7 4 TP — gHaﬁmé)
+0(uu’g" — uu’g") + X0 (uPu g7 — wu’g?),
with o = (%77 +0O)/(1=c2) —xb, ¢ = ¢+ Eo — A1 — 2)xb, where
c2 = p'(p) is the speed of sound (cf. [3]), and
0 - oy
WT‘M = snh? {u"‘gﬂ7 +uP g +u g™ + (34 2)uauﬁu7] 871:;’

with particle number n and specific entropy s. It was shown in [3] that (2.1)
is symmetric hyperbolic in the sense of Hughes-Kato-Marsden [5]. Thus,
using

oY - oY
BBV ()10 — BB ol
() 0xPOox® () 0xPozd
with

a6 L/ hapys adyB

B () = 5 (B (w) + B ()

= Xﬁzuo‘vﬂgﬁ‘s — cOuPUOTI + CNQH‘”/BV‘S + 77(9(1'10‘71'15‘S + %Haﬁw),

where

1oAY — E(Haﬂnvé + HCM&HBW)
2 )

we can write (2.1) as

3 3
AW)You — > Bij(@)ase; + > Dj(0) e, + f(U, 0, 0210) =0, (2.2)

i,j=1 j=1

4We use the standard projection I = g% 4 y%uf,



where

A= (=B*"cany<s, Bij = (B)ocaq<s

Dj = (—B*")g<aq<3

are symmetric 4 X 4 matrices, A(y) is positive definite, Zij:l &iBij (V)&
is positive definite for arbitrary ¢ € R3\ {0}, and

0

0 o
a_ Y maf v apys dPy _
1= 55T W) 55 (B (1)) ok a=0,1,2,3

Throughout the paper we will consider the Cauchy problem associated
with (2.2):

3 3
Aty — Y Bijtbwia; + Y Djthin; + f =0 on (0, T] x R?, (2.3)
ij=1 =1

$(0) = "¢ on R?, (2.4)
¥¢(0) = 14 on R3,

The main result is the following:

2.1 Theorem. Let s > 3 and ¢ = (9_*1, 0,0,0,) with a constant tempera-
ture @ > 0. Then there exist 5 > 0, Co = Co(dp) > 0 such that for all initial
data (", 1pr) € (S x H*) (L x LY) satisfying [[(C6—1, 10|21 0 <
do there exists a unique solution 1 of the Cauchy problem (2.3)-(2.5) such
that

V-1 € ﬂ ci ([o, oo),HsH—ﬂ') .

i=1

1 satisfies the decay estimates

_ t _
() = s tpe (D) [341,6 + /0 1 (7) =, e(7)) 341,007
< Coll("Y =, ") 3416, (2:6)

1) = B (@)llss—1 < Co(l+6) 7 C% =, ) lssm1n (27)

for allt € [0,00).



3. Decay Estimates for the Linearized System

In this section we study the linearization of (2.2) about a quiescent, isother-
mal reference state 1) = u/60, u = (1,0,0,0)¢, § > 0. The resulting equations
read
AWy, — Z B0, +aWy + Zb Y, =0, (3.1)
i,j=1

where

B _ X070;; B o 0
v 0 077[351‘]‘ + %9({ + %n)(ei Rej+e; & ei) ’
al) = nsh? (cs 0> , ) = nsh*(e; @ eg + e @ €j),

where n, s, x, ¢s, 1, C are evaluated at the reference state. Note that no
mixed derivative i, , oceurs here, as

B0 — B0 —

at the reference state. Multiplying (3.1) b
x(ns)™', 7 = n(nsd) ', ¢ = ((nsh) ™', &

equivalent system

y (ns)~ 1§_2 and setting y =
= U(nsﬁ) , we arrive at the

Q;Z)tt - Z B@J 171}1171x] +CL ¢t+zb ¢x] - 7 (32)

x O 9y [X0i 0
(0 gly) " i 0 7l +3(C+in) (ei@e;+e@e))

2
a(2):<c‘6 0), bg-z)zej@eo—i-eo@ej-

Finally, multiplying (3.2) by (A(z))_% and writing it in variables (A(Q))%w
gives

e — Z Bzﬂpxzx] + ayy + Z bﬂpx] =0, (3'3)

’J 1 -



where
By = (% \
v=\o &t (17[351-]-+ % (5 % >(€i®€j+€j®€i)) '

0_2)2_1 0 __\_1
a=<50 511, ) bj = (x0) 2(e; ®eg + eg @ ej).

The goal is to prove a decay estimate for the Cauchy problem associated
with (3.3):

3 3
Y — Y Bijtwa, + athy + Y bjthy, =0 on (0,7] x R?, (3.4)
i,j=1 j=1
1(0) = %) on R3, (3.5)
¥(0) = "4 on R, (3.6)

3.1 Proposition. For some s € Ny let (“,1) € (H*1 x H®) N (L)?
and ((t),v4(t)) € H x H® be a solution of (3.4)-(3.6). Then there exist
¢,C > 0 such that for all integers 0 < k < s and allt € [0,T]

3_k
2

o5 @)l + keIl < CO+ 7172 (11000 + 1Ml )
+Ce (05w + 195 w)) . (3.7)
3.

To prove Proposition 3.1 we consider (3.4)-(3.6) in Fourier space, i.e.

Yu + [EPB(E) + arhy — il¢[b(€)1h = 0 on (0,T] x R?, (3.8)
(0) = q,zi( £€) on R?, 3.9
D1 (0) = 4)(€) on R?, (3.10)

where € = £/[¢],

éﬂw®wﬁ’
3

:Z 1(2 uat),wESz.

We get the followmg pointwise decay estimate.

3. 1 0
=2 wiBywi= | 51 (ks + (C+

2,j=1

t\)



3.2 Lemma. In the situation of Proposition 3.1 there exist ¢,C > 0 such
that for (t,&) € [0,T] x R™
(1+ [P, O + it )P
< Cexp(-ep(©)0) (L+ PP + " F). (B1D)

where p(§) = [€17/(1 + [§]?).

Proof. Our goal is to arrive at an expression of the form

1d
§%E(tv‘5) + F(t7€> < Oa (312)

where E(t,¢) is uniformly equivalent to

Eo(t, &) = (1+ €[00, O + [du(t, )

and F' > ¢p(§)Ep. Then (3.11) follows by Gronwall’s Lemma.
W.lo.g. assume § = (|¢],0,0) (otherwise rotate the coordinate system).
Since (4/3)n+ ¢ = &, (3.8) decomposes into the two uncoupled systems

wyy + |€]Pw + aw, — il¢|bw = 0, (3.13)
vy + 06 EPo + 5y = 0, (3.14)
where w = (¢, ¥1), v = (b2, 3),
1.2
= _ [ X "G 0 . 01
a= ( 0 61> , b= (xo0) 2 <1 O) . (3.15)

Obviously, this allows us to prove estimate (3.11) for w and v independently.
First, consider (3.14), where the estimate is fairly easy to obtain. Take
the scalar product (in C2) of this equations with v; + 1/(25)v. The real

part reads
1d

—2E@ L@ —p
2dt * ’
where _ 1 1
E® = |u,|* + g\€|2\v!2 + ﬁ]vﬁ + g%@t,v% (3.16)
and _
2) _ 1 2 n 2112
F = o= fuel” + o5 €™ (3.17)
Since
1 2, 3 |2
’O’ §R<Ut,v>| S @‘U’ + 1|'Ut’ )



E® is uniformly equivalent to E((]Q) = |v¢|* + (1 + |¢]?)|v|* and as

€17 >

PO +[EP),

N

we have F(2) > clp(f)E(()Q) for some ¢; > 0.

Next, we study system (3.13). For notational purposes set a; = )Z_lcs_l,
az =62 and by = ()25)_%. Now, take the scalar product of (3.13) with
aws. The real part of the resulting equation reads

%% (<C~l’wt,wt> + \§|2<aw,w>) + |awy |* + R(—i|¢|bw, dwy) = 0. (3.18)

Taking the scalar product of (3.13) with —i|¢|bw and considering the real
part gives

d

= (R, —ilé[bw) ) + Rlawr, —if¢[bw) + [ bw]? = 0. (3.19)
Then we take the scalar product of (3.13) with w. The real part is
1d
23 ((aw, w) + 2R (ws, w)) — |we? + |€]2|w|* = 0. (3.20)

Set

Since ¢S is Hermitian,
. 1d,.
R(iSw, wy) = §£<15w,w)
holds and we can write (3.20) as

%% ((aw, w) 4 2R(wg, w) + 2[¢[(iSw, w))

= [wel? + (€[ w]* — 2R(|€|(iSw, we)) = 0. (3.21)

Now, add (3.18)+(3.19)4«(3.21) (for some a > 0 to be determined later)

to obtain
1d

: th@) +FM =y, (3.22)

where

EW = (aws, wy) + (€% (@w, w) + 2R((w;, —i|¢|bw))
+ a ((aw, w) + 2R(wy, w) + 2[€[(1Sw, w))

10



and
FO = Jaw|? — afwy|? — 2R(i[¢]((ab — S)w, wy)) + |€]2[bw]* + af¢|*w]?.

for Proposition 3.1 First, show that EW) is uniformly equivalent to E(()l) =
(14 |€]%)|w|? + |w¢]?. Obviously, there exists C; > 0 such that

EW < B,
For

and W = (wy, —i|¢|w),
(awg, wy) + €12 (@w, w) + 2R((wy, —il€|bw)) = (MW, W)ca.

It is easy to show that o(M) = o(a + b) Uo(a — b). Furthermore ¢, € (0,1)
yields @+ b > 0, @ — b > 0. Thus M is positive definite, i.e.

(@we, we) + €% (@w, w) + 2R((wy, —i[¢[bw)) > Cajwl* + [€*[w]?)

for a C'y > 0. Furthermore, by Young’s inequality there exists C3 > 0 such
that

. d
[2%(wp, w) + 2i[¢[(Sw, w)| < Slwl* + Co(|€F*w]* + w]?),
where d = min{ai, az}. In conclusion
d
EW > Co(lwel® + €2 |w]?) — aC3(|&*w]® + [we|?) + agwl?.
Hence, for « sufficiently small there exists Cy > 0 such that
EW > c,EV.

Finally show F() > ¢p(¢ )E((]l) for a sufficiently small. To this end write
FO) = Fl(l) + FQ(I), where

FY = (a3 — a)|w}]? + (0% + )| |w?]?

— 2R <z|§| <a1b1 +at— a2) w2w%) ,
2by
1
FiY = (a3 — a)[w? + (0% + )¢ 2w ?

— 2% <Z’§‘ (agbl + Oza22;1a1) 'lUl’LT)tQ) .

11



Since

a1 — a9
2by

2 2 _ 2 _ 12 2
(a7 — a)(b] + ) (albl + « ) alajaz — b7) + O(a”)

and ajas > b% there exist co > 0 such that
1 12 2, 212
PV > aca(jwf? + §w?P?)
for « sufficiently small. In the same way we get
1 212 20, 12
B > aco(jwf? + ¢l ).

Therefore

C
FO > acs(fwn]? + 6P [w]?) > o p(§) B,

which finishes the proof. O

Based on Lemma 3.2 the proof for Proposition 3.1 goes as [1, Proof of
Theorem 3.1].
Next consider the inhomogeneous initial-value problem

3 n
Y — Y Bijtea, +athy + Y bjthy, =h, on (0,T] x R®,  (3.23)
i,j=1 j=1
¥(0) = %), on R3, (3.24)
¥¢(0) = 14p, on R3, (3.25)

for some h : [0,7] x R3 — R*. We get the following results:

3.3 Proposition. Let s be a non-negative integer,
(O, ) € (H* x H®) N (LY)? and h € C([0,T], H* N L'). Then the
solution v of (3.23)-(3.25) satisfies

|05w (Bl + 05wl < CO+HTT5( 1 + "6 1)
+Ce™(loy w)llL + 197 ()l
+ c/t(1 +t—7) A2 R ()|
0
+ Cexp(—c(t — )| 0¥n(r)||dr  (3.26)

for allt € [0,T]) and 0 < k < 's.

12



Proof. For t € [0,T] let T(t) be the linear operator which maps (%1, 1)
to the solution (¢(t)),¢+(t)) of the homogeneous IVP (3.4)-(3.6) at time ¢.
By Duhamel’s principle the solution of (3.23)-(3.25) is given by

t
(W(t),(®) = TOCw. ) + [ Tl =)0, h(r))ir
Hence the assertion is an immediate consequence of Proposition 3.1. [

3.4 Proposition. Let s be a non-negative integer. There exist C1,Cy >0
such that for all (°,%) € H* x HS and h € C([0,T), H®) the solution
¥ of (3.23)-(3.25) satisfies

t
C (102001 + 102040 12) + €1 [ o20u(mI + o2 2
< G (192w + oz (*)I1?)
t a
+ [ calozul + (o). GoRutn) + dwnln)) dr (321)

for allt €[0,T] and a € N3, |a| = s
Proof. Consider (3.23) in Fourier space, i.e.
Yu + €2 BE)Y + arhy — i€]b(E)d = h
We proceed similarly as in the proof of Lemma 3.2. Again w.l.o.g. assume
€ =(]£],0,0), then (3.23) reads
wy + €20 + aw, — il¢]bw = (A%, k)Y, (3.28)
vy + 7oL EPPv + e = (B2, B3)Y, (3.29)
where w = (ﬁo,iﬁl), v = (1&2,@3), a,b are given by (3.15). First, take the
scalar product of (3.29) with v; + 1/(20)v and consider the real part
%%E(Z) + @ =% <(iL2, B3 vp + 2161)> (3.30)

where E?), F?) are given by (3.16), (3.17). Since E?) is uniformly equiva-
lent to |v]? + (1 + [£]?)|v|? and F? > c(|ve|? + |€]?|v]?), integrating (3.30)
leads to

t
Cu (ju? + (1 +16DNE) + C [l + (€ oldr

< Ca (JolOF + (1 +EPRO)) + [ #2590+ 50

(3.31)

13



Next, take the scalar product of (3.28) with w; + (a/2)w. The real part
reads

1d 20 5 1
1ad om0y, poy 0 71yt Za .32
S 2B + R(K, BN wp + Saw), (3-32)
where 1
B = fuor? 4 ¢ ol + Slaw]? + R(aw, )
and

1 . 1 - Los i~
FO) = G, wn) + R(=il€ b, wi) + 262w, w) — SR(IElbw, aw).

Using Young’s inequality it is easy to see that E(!) is uniformly equivalent
to Jwe|? + (1 + |€]*)|w|?. Furthermore

O — %<‘]\4I/V7 Whes — %§R<ﬂ§]l~)w,&w>,

(i)

and W = (wy, —i|€|w). As M is positive definite (see proof of Lemma 3.2)
there exists ¢1, co > 0 such that

where

2

C C
FO 2 ea(funf + Jghel?) = calglulluwl = G(urf? + 2 = 52wl
Thus integrating (3.32) leads to
t
Ca (jurf? + (L+ [P wl?) + o [ fusl? + fePhuar
t PN a
< G (O + (1 +EDwOF)+ [ ColuHRUR B wit ).
(3.33)

Adding (3.31) and (3.33) gives
A A t A A
Co ([ + (L +EPIE) +Ca [ (i + e Par
A A t A A A A
< o ("R + (1 +1ERIODE) + [ Caldl® + Rifs 4+ Sddr. (330
0

Finally the assertion follows by multiplying (3.34) with £2¢ for a € NZ,
|a| = s, integrating with respect to &, and using Plancherel’s identity. [J

14



4. Global Existence and Asymptotic Decay of Small
Solutions

The goal of this section is to prove Theorem 2.1. We will proceed as follows:
First we show a decay estimate for all but the highest order derivatives of a
solution, Proposition 4.1, and then an energy estimate for the derivatives of
highest order, Proposition 4.3. Then Theorem 2.1 follows from combining
the two, Proposition 4.4.

As in Section 3 fix > 0, multiply (2.2) by (n(é)s(é))_lé_Q(A(Q))fé and
change the variables to (A(Q))%@D such that the linearization at (61,0,0,0)
is given by (3.3). In addition, consider 1) — v with ¢ = (1,0,0,0) instead
of 1, %1p — 1) instead of %4, A(- + 1)) instead of A(-) and so on, such that
the rest state is shifted from (A~1,0,0,0) to (0,0,0,0). In the following,
when (2.2) or (2.3)-(2.5) are mentioned, we actually mean these modified
equations.

Write U = (¢,1) and Uy = (°, 1)) for a solution to (2.3)-(2.5) and
the initial values, respectively. Let s > so + 1 (so = [3/2] + 1), T" > 0,
Up € H5t! x H*, and 1) satisfy

b e ﬂ i ([0,7), H*17). (4.1)

J=0

For 0 <t <ty <T define

t1
Noftot)? = sup U e+ [ 102

Te[tytl]

We write Ns(t) instead of N;(0,t). Furthermore assume that Ng(T') < ag
for an ag > 0. Since s > sg, H® — L* is a continuous embedding.
Hence N5(T') < ag implies that (v, 1, 0,1) takes values in a closed ball
B(0,7) C R* x R* x R'? for some r > 0.

First we prove the decay estimate. To this end it is convenient to rewrite
(2.3) as - cf. (3.3) -

3 3
Y — Y Bijthaa, + athe + > i, = (1,1, 0p1p, 0iah, Opthy),  (4.2)
1

ij=1 j=

15



where

3

B, o, O, O, D) = 3 (AW) ' Bis(¥) = B ) Y,
ij=1
3
= 2 AW) T D; ()b,
j=1
3
— A@W) T (b, 0p) + atby + D bjtbg,. (4.3)

j=1

4.1 Proposition. There exist constants a1(< ag), 61 = d1(aq), C1 =
C1(a1,61) > 0 such that the following holds: If |Up||?,_ 11 < 61 and

s,5—1,

N(T)? < ay for a solution 1 of (2.3)-(2.5) satisfying (4.1), then

HU(t)Hs,s—l < 01(1 + t)_%HUOHs,s—LI (t S [0, T]) (4'4)

Proof. Let t € [0,T] and 1 be a solution to (2.3)-(2.5). Since B;;(0) = Byj,
D](O) =0 and

3
ay + Y bjthe; = Df(0)(¥, ¥y, But)),

=1

Lemmas A.1, A.2 show that there exist C,c > 0 (¢ < ap) such that
h(t) € H*~1 N L' and

11(0)llaer < CloE) s (10200) lams + 10st(1) 1o
O W (8). (). D012
< UM iU
1)l < CNU )34,

s,5—1»

t)
t)

if Ng(T') < ¢, which we will assume throughout this proof. Proposition 3.3
yields

3
U@ ]ls,s-1 < O+ )73 Uolls,5-1,1

* C/ot exp(—c(t — T | ls1 + (1 +t = 7) 73| h(7)|| prdr,

16



which leads to

t
+C sup ||U(T)||s+1,s/ exp(—c(t — 7))|U(7)|s,s—1d7
T€[0,t] 0

3
IU@)|s-1,s < C(L+1)75[[Uolls,s-1.1

t
+ C/ (1t — )3 U)]2,_dr.
0
Multiplying with (1 + t)% gives

(1+0)T[|U(t)

s,5—1 < CHUOHs,s—l,l

+ CN,(t)p (t) s?p]u + ) U 5,51
T€[0,t

3
+ Cua(t) sup (1+7)2|U(7)[I2 -1,
T€[0,]

where

]

p(t) = (1+1) /Ot exp(—c(t — 7))(1 + 1)~ idr

]

po(t) = (1+1) /Ot(l tt—7)1(147)" 2dr.

Since p1, o are bounded functions on [0, 00), we get
3
Sl[lp](l + 1)U ls,s-1 < CllUol[s,5-1.1
T7€[0,t

+ CON,(t) sup (1+7)TU(7)||s.5-1
T€[0,¢]

+C sup (1+7)2|U())2s.
T€[0,t]

We can deduce from this equation that there in fact exists a; > 0 (a1 < ¢),
01 > 0 and Cy > 0, such that

sup (1+7)1||U(7)
T€[0,t]

s,5—1 S Cl ||UO||S,571,17

whenever Ng(T')? < a; and HU0||§78_171 < 4. O

4.2 Corollary. In the situation of Proposition 4.1 there exists a Co =
Cy(ay,01) > 0 such that

No-1(T)* < Co||UolZ 514 (4.5)

whenever Ng(T)? < ay and ||U0||§78_1,1 < 1.
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Proof. The function ¢ — (1 —l—t)_% is square-integrable on [0, c0). Therefore
the assertion is a direct consequence of Proposition 4.1. ]

Now it is convenient to write (2.3) as

3 3
Ui — > Bijthaye, + athr + > bjtba; = L)1 + ho(vh, ¢y, 0:1),  (4.6)

ij=1 j=1
where
3
LWW = (I - A(@Z))th - Z (Blj 1] d}mm] Z D ¢txja
ij—=1

3
h2(¢, 1/}757 8x¢) = m/’t + Z bijJ - f(i/% ¢t7 aﬂ/’)
j=1
4.3 Proposition. There exist constants az(< ag) and c3,C3 = Cs(az) >0
such that the following holds: If Ns(T)? < ay for a solution v of (2.3)-(2.5)
satisfying (4.1), then

13 (E)1IF + (|95 (t ||2+/ 05 ()1 + (19500 ()P d7

~ s /0 |03 (n)|Pdr < Cs (I[To]12,551 + Ns(®)?) (£ € [0,T]). (4.7)

Proof. We prove the result in two steps.
Step 1: Let Uy = (“¢, 1) € H**! x H® and

ve (¢ ([o,1], B++*) (4.8)

j=0
be a solution to (2.3)-(2.5). By Lemma A.2 there exists a ¢ > 0 such
that I — A(¢), Bij — Bi;j(¥), Dj(v) € H*™! provided Ny(T) < ¢. We will
assume this throughout the proof. Then due to (4.8) and [6, Lemma 2.3]

L(¢)y € H5. Lemma A.2 yields hy € H°. Thus we can conclude by
Proposition 3.4 that

€1 (192w + 1920()%) + €1 [ 020,02 + 5w (r) 2dr
< Gy (192w + oz (")]1?)
¢ o 2
+Co [opu)Par
+ [ (@) + ha(r).o2n(n) + §or0n) ) dr (@9)
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for all o € N}, |a| = s. First obviously

(oehs, 050+ 5020 | < Clal. U, (4.10)

L2

and integrating by parts gives

(oo 020) | < CIL@lerlon
< I~ Aol s

L2

3
+C > 1Bij — Bij()|lsl 039 [l s—1 e ]l s

ij=1
+ Ci 1D ()5l 0xbells—1[[¥]]s+1-
"~ (4.11)
Next write
95 (L()) = L(¥)074 + (05, (1 — A(¥))][vou
- 23: 02, (Bij — Bij(¥))|¥a,a; — 23:[33? , Dj(¥)[¢ta -

i,j=1 j=1
Since I — A(¢), Bij — Bij(¥), D;(¥) € H*, [6, Lemma 2.5(i)] yields
102, (I = AWDIeell < Cll0x AW)lls—1ll2ells—1
1105, (Bij — Bij ()| a,a; | < Cll02Bij ()l s—1[[¢zia;]ls—1 (4.12)
1105, Dj()]thta;1| < CllOw Dy () ls—1l[tPt; [ s-1-

Furthermore integration by parts and the symmetry of A, B;; and D; give

t
/O (L)%, 0%9,) 2 dr

t
<C [ 10l 192 @) | Par

3 3
+ (Z 10 Bijl| oo + 102 Bijll Lo + ||<9:cDjHLoo) 10 (021p,40y) || dr

ij=1 j=1
3 —
+C [ IT = Al + > 1Bij — Bijllze | 105 (a1, v0)|?

,j=1

+C|05 (8", )| (4.13)

19



In conclusion, (4.9) and the estimates (4.10), (4.11), (4.12) (4.13) lead to

t
2201} + 102001 + [ 0500 (I + o) ar
t
—c [ lopu)tar
t
< Ol 1,0 +C [ Mo s+ Ra ()02

t
+C /0 1T = AW s beellsmt U 551,507
+ OR () [U) 240, (4.14)

where

Ri(¢) = 19 A(¢ )||s+HI A(D)|ls

+ Z 10:Bij(¥)||s + || Bij — Bij (¥)]ls + Z 1D ()

3,7=1
and

Ro(¢) = I = A(@)]s + Z 1Bi; — Bij (¥)]s-

i,j=1

Step 2: Now let ¢ be a solution to (2.3)-(2.5) satisfying (4.1). For 6 > 0
set 1% = ¢s * 1. Applying ¢s* to (4.6) yields

3 3
Yo — Y B, + ey + > b = L)y’ + RO(¥) + hs,
i,j=1 j=1
where h® = ¢g * hy and

R () = [¢sx, (I — A(¥))]thy — z”: (¢5%, Bij — Bij(¥)]ts; @

i.j=1

3
Z ¢5* D wtxj'
7j=1
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Due to [6, Lemma 2.5 (ii)] R°(y)) € H®. Hence L(v))° + R%(¢) + h$ € H°.
Thus proceeding as in step 1 yields

t
103w (@)1 + 195w ()] +/0 10500 (1)II* + |05 w7 (7) || dr

t
—c [ oz )| ar
< CIUS 1341,

+C/ RSN 10° 1,5+ B @)U N2 41,6+ 1T =A@ sl s |1U° | s1,507

+C [IR@I0 srsr + CRDIT Ol

It is easy to see that U° — U and h} — hg in L ([0,T], H**! x H®)
and in L?([0,T], H®), respectively, as 6 — 0. Furthermore R%(¢)) — 0 in
L%([0,T], H%) as 6 — 0 due to [6, Lemma 2.5(ii)]. Hence we get (4.14) for
¥ satisfying (4.1).

Furthermore by Lemma A.1 and

halls < CIUIZ,1 o
and by Lemma A.2
Ri(¢) + Ro(¢) < Cl|U][s41,

for Ns(T) sufficiently small. Finally, since 1 satisfies (2.3),

[beells—1 < CUR2PNs—1 + [0ctbells—1 + 1 (@, 86, 0et0)|s-1) < CllU 541,

holds for N(T') sufficiently small. Therefore we can deduce from (4.14)
that

t
105 ()11 + 105 (2)]]? +/0 102 0:() 1 + (|05 e (7)|[Pdr
t
—c [ lozu)Par
< C||U0Hs+1s+CHU s+1s+c/ ”U ||s+1s

The assertion is an immediate consequence of this inequality. O
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4.4 Proposition. In the situation of Proposition 4.1 there exist constants
a3(< min{ag, a1}), Cy = Cy(as,01) > 0 (01 being the constant in Propo-
sition 4.1) such that the the following holds: If |Uol2, ,, < 01 and
Ny(T)? < as for a solution ¢ of (2.3)-(2.5) satisfying (4.1), then

Ny(t)* < CilIUoll21 61 (¢ €[0,T]). (4.15)

Proof. This follows directly by adding (4.5)+¢(4.7) for € sufficiently small.
O

Finally we turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Let T > 0,2 > 0 such that for all Uy = (¢, 91) €
H*t! x H®, where ||U0H§+1,8 < dg, there exists a solution U = (¢,1,) of
the Cauchy problem (2.3)-(2.5) with

b e ﬂ ci ([O,Tl],HS+1—J') .

J=1

This is possible due to [5, Theorem III]. Furthermore let a3, §; and Cy be
the constants in Proposition 4.4. Choose 0 < € < a3/(2(1+T1)). Due to
[5, Ibid.] there exists d3 > 0, (d3 < d2) such that for all Uy = (¢, 91) €
Ht! x H®, where [|Ugl|2,, , < 83, the solution U of (2.3)-(2.5) satisfies

sup [|U()]3 11, <e.
t€[0,T1]

Now set dg = min{dy, 83, 93/C4, as/(2C4)} and choose any Uy € (H*! x H*)N
(L' x L") for which ||Upl|2,, ., < do. Since §y < d3, we have

Ny(T1)? < e+ Tie < %

Hence by Proposition 4.4 and [|[Up||2,; ,; < 61
NS(T1)2 < C4||U0H§+1,s < 0450 < (53. (4.16)

Furthermore due to Proposition 4.1, (2.7) holds for all t € [0,71]. In
particular (4.16) yields
IU(T1)I[341,6 < 0. (4.17)

Thus we can solve (2.3) on [T, 27}] with initial values (¢(T1),¢(71)) and
get

N(Ty,2T1)* < e+ Tie < %.
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Now extend the solution (¢, ;) continuously on [0, 271]. We can conclude

a a
N,(2T1)* < Ny(Th)? + Ns(Th, 2Th)? < ?3 + ?3 = ag.

Since we have already assumed [[Up||Z,; ., < &1, Propositions 4.4 and 4.1
yield
Ns(2T1) < Cydo (4.18)

and (2.7) holds for all ¢ € [0,271]. Due to (4.18) we can repeat the former
argument to obtain a solution on [0,37}] and further repetition proves the
assertion. I
A. Appendix
A.1 Lemma. Letn,N €N, s > 59 := [3]+1 and F € C*(R"), F(0) = 0.
Then there exist § > 0, C' = C(d) > 0 such that for allu € H® with ||ul|s < 4,
F(u) —0,F(0) € H® and

|7 (u) = 0uF (0)ulls < Clul.
Proof. Since s > sg, there exists a C1 > 0 such that

lull oo < Crllulls

for all w € H*. Furthermore due to F'(0) = 0 there exist §; > 0, Cy =
C3(d1) > 0 such that

|F(y) — 0,F(0)y| < Calyl|*.

for all y € RY with |y| < 6;. Now let u € H® such that |lul|s < §1/C; (i.e.
llu||ree < 01). Then

1F(w) = 8uF (0)u]| < Callul| po<|ull < C1Co]lullz. (A1)
Furthermore for a € Nj with 1 < |a| = j < s we get
08 F(u) = 8, F(u)Cu + R,

where

R= Y <g>aﬁu 82 B F (u).

1<|B8l<y
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Since O,u € H*™ and ||ul|p~ < 01, we get 0, F(u) € H*! and
102 F (u) || s—1C5|Ozul|s—1
for a C3 = C3(d2) > 0 by [6, Lemma 2.4 |. Therefore [6, Lemma 2.3] yields
IRl < Cullosulls—1[|0: F (u)]ls-1 < C3C4]|pulli_4

for a C4 > 0. On the other hand there exist do > 0, C5 = C5(d2) > 0, such
that
|0y F(y) — 9y F(0)| < Csy|

for all y € RY with |y| < d3. Assuming |lu|s < 62/C1 entails

07 (F(u) — 0, F(0))|| < [[(9uF'(u) — 0uF(0)) 07 ull + || R
< ||0uF (u) — 0uF(0)|| < [Julls + C3C4|0rulls—1
S maX{C’304,C5}HuH§.

Since o was arbitrary, this estimate together with (A.1) yield the assertion
for § = min{dy,d2}/C4. O

A.2 Lemma. Letn,N € N, s > sg and F € C®°(RY,R¥*N). Then there
exist 6 > 0, C = C(8) > 0 such that for all u € H5(R™,RN) with |jul|s; <6,
(F(u) — F(0))u € H® and

1(F () = F(0))ulls < Clul3.
Proof. First note that there exist §; > 0, C1 = C1(d1) > 0 such that
[F(y) — F(0)] < Cily
for all y € RV, |y| < 6; as well as Cy > 0 such that
[v][zee < Cafjv]]s
for all v € H®. Now let u € H®, ||lul]|s < 61/Ca. Then
[1F(u) = FO)[| < Culfulls
holds. On the other hand by [6, Lemma 2.4] 9, F(u) € H*~! and
10:F(u)|s—1 < C3|0zulls—1
for a C3 = C3(d1) > 0. Hence F(u) — F(0) € H® and
[1F(u) = F(0)[ls < Cal[ulls

for |Ju|ls < § = 01/Cy. Now the assertion follows from [6, Lemma 2.4]. O
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