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Ladies and gentlemen, my talk will be on the complexity of bilinear
maps, the motivating example being matrix multiplication.



C

(
multiplication of
m ×m matrices

)

Complexity



By its complexity we mean the minimal number of arithmetic
operations sufficient to multiply two such (dense) matrices by an
arithmetical circuit, or, if we allow computation trees, the minimal
generic number.

I’ll use the field of complex numbers as ground field, since its
symbolic notation is conspicuous and well known. The main
results, however, are valid over any infinite field or any infinite class
of finite fields of a given characteristic. An exception is the
discussion around group algebras, where we have to restrict the
characteristic of the ground fields.

Our main concern is asymptotics. The complexity of the
multiplication of large matrices is controlled by the so-called
exponent ω of matrix multiplication:



Exponent

C

(
multiplication of
m ×m matrices

)
= mω + o(1)

Complexity



We have the following trivial estimates of ω.



Exponent

C

(
multiplication of
m ×m matrices

)
= mω + o(1)

Complexity

2 ≤ ω ≤ 3



No better lower bound than 2 is known, but the story of upper
bounds for ω is worth telling.

The exponent is an extremely important quantity: For example, it
controls the asymptotic complexity of almost all significant
computational tasks of linear algebra.

There is a standard strategy for reducing such a task to matrix
multiplication: You rewrite some classical algorithm as a recursive
procedure, where you recur to half size using a constant number of
matrix multiplications. This turns out to be sufficient.

The crucial problem for the other direction is to reduce matrix
multiplication to evaluating the determinant, i.e. m2 functions to
just one. It is solved by the following inequality:



Baur - S.:

C
(
f , ∂f /∂x1, . . . , ∂f /∂xn

)
≤ 4C (f )



The inequality has originally been designed to enlarge the scope of
the so-called geometric degree bound, which gives lower bounds of
order n log n to the complexity of many classical algebraic problems
of size n, but which yields only trivial results for the evaluation of a
single rational function.

Now, in order to obtain a lower bound for C (f ), you simply apply
the geometric degree bound to the left-hand side of the inequality,
and that usually works.

What are the first order derivatives of the determinant? The
minors of the matrix! Thus, if you apply the inequality to the
determinant and use Cramer’s rule, you get a reduction of matrix
inversion to a single evaluation of the determinant. Reducing
matrix multiplication to matrix inversion is a relatively easy matter.

After having discussed matrix multiplication, the principle character
of our story, let me now introduce the whole cast. It consists of all
bilinear maps between finite dimensional complex vector spaces.



b : U × V −→ W bilinear, concise



Conciseness is a harmless technical condition. It means that the
maps travel in economy class, i.e. they don’t have any unnecessary
space. Any bilinear map has a unique concise version.

Interesting bilinear maps are as numerous as sand on the beach,
just think of associative algebras or Lie-algebras or the structure
maps of their modules. Here are a few examples, which will
accompany us in the talk.



b : U × V −→ W bilinear, concise

Diagonal Map:

〈n〉 : u, v 7→ (u1v1, . . . , unvn)

p, q ∈ Cn



The diagonal map 〈n〉 is as good as n independent complex
number multiplications.



b : U × V −→ W bilinear, concise

Polynomial Multiplication Modulo F :

C[T ]/F : p, q 7→ p · q mod F

p, q ∈ C[T ]/F



b : U × V −→ W bilinear, concise

Group Algebra:

C[G ] : Linearize g , h 7→ g · h

g , h ∈ G



b : U × V −→ W bilinear, concise

General Matrix Multiplication:

〈k , l ,m〉: k
l

,

l

m

7→ k

m



Let me draw your attention to the Schönhage notation of this
map. In the following, when I will talk about matrix multiplication
without further comment, I will mean the multiplication of square
matrices.

Next, let us dicuss a few relations and operations among bilinear
maps.



Isomorphism:

a ' b



An isomorphism is of course given by three linear isomorphisms
compatible with the maps.



Isomorphism:

a ' b

Direct Sum:

a ⊕ b



Computing the direct sum of a and b means computing a and b
concurrently.

The importance of this operation is illustrated on the one hand by
the Chinese Remainder Theorem, on the other by Wedderburn’s
Theorem, which identifies the class of direct sums of matrix
multiplications with the class of semisimple algebras, up to
isomorphism. In particular, by the Theorem of Maschke, any group
algebra is isomorphic to a direct sum of matrix multiplications.



Isomorphism:

a ' b

Direct Sum:

a ⊕ b

Tensor Product:

a ⊗ b



The tensor product of a and b is a map with a block
decomposition, such that each block is a scalar multiple of b, while
the superstructure of scalars is modeled after a.

Let us look at an example. The fact that a multiplication of
matrices of order 2m may be viewed as a 2 by 2 matrix
multiplication with coefficients that are not numbers but matrices
of order m, may be elegantly expressed in the language of
tensorproducts:



〈2m, 2m, 2m〉 ' 〈2, 2, 2〉 ⊗ 〈m,m,m〉

〈2N , 2N , 2N〉 ' 〈2, 2, 2〉⊗N



Disregarding gaps, large matrix multiplications may therefore be
viewed as high tensor powers of 2 by 2 matrix multiplication. This
fact has been decisive for the theory from its very beginning.

It also allows us to generalize the asymptotic point of view from
matrix multiplication, which is given to us as a sequence, to
arbitrary bilinear maps: Any such map is the first member of the
sequence of its tensor powers.

Next we come to the basic computational concept of bilinear
complexity.



Restriction:

a ≤ b

∃ α, β, γ linear a(u, v) = γb(αu, βv)

Gastinel



Roughly speaking, this means that a is a restriction of b, when a
can be computed by one call of b together with some linear work.

This concept is due to the French numerical analyst Noël Gastinel.
His definition is equivalent to a more symmetric notion of
restriction, that we use in research. His definition, however, is
easier to motivate, and I shall use it here.

If “restriction” is to have a computational meaning, why don’t we
count the linear work? One reason is that the linear work depends
on a choice of bases, and we want a notion that is independent of
such a choice. The second, and most important, reason is that
when we form high tensor powers of the maps for an a asymptotic
study, the linear work magically becomes negligible.

Restriction also has pleasant algebraic properties:



Restriction:

a ≤ b

∃ α, β, γ linear a(u, v) = γb(αu, βv)

Gastinel

≤ is a preorder

compatible with ⊕ and ⊗



Rank:

R(b) := min{r : b ≤ 〈r〉}



While “restriction” is a relative notion, “rank” is an absolute one.
The rank of a bilinear map b is the minimal number of complex
number multiplications, embodied by the diagonal map 〈r〉, that
suffices to compute b by restriction.

Rank inherits the virtues of restriction: It is an invariant of the
map, it is subadditive with respect to direct sum and
submultiplicative with respect to tensor product, and,
asymptotically, it is equivalent to complexity.

In particular we may replace complexity by rank in the definition of
the matrix exponent.



Rank:

R(b) := min{r : b ≤ 〈r〉}

R
(
〈m,m,m〉

)
= mω + o(1)



Suppose, we can prove that the rank of 2 by 2 matrix
multiplication is less or equal than 7. Using the submultiplicativity
and what we know about tensor powers of 2 by 2 matrix
multiplication, we conclude



Rank:

R(b) := min{r : b ≤ 〈r〉}

R
(
〈m,m,m〉

)
= mω + o(1)

R
(
〈2, 2, 2〉

)
≤ 7 =⇒ R

(〈
2N , 2N , 2N

〉)
≤ 7N

=⇒ 2ω ≤ 7



Of course, there is nothing special about 2 and 7, thus by the same
reasoning we obtain



R
(
〈m,m,m〉

)
≤ r =⇒ mω ≤ r



In this way a rank inequality for small maps leads to an inequality
for the asymptotic quantity ω.

Here the proper story about upper bounds for ω begins, and it may
be the right moment to show you in a little trailer how it has
evolved. Since it is a bit abstract I’ll illustrate it by another story:
the invention and technical development of bicycles.

I have taken that story and some of the bike pictures from the
English Wikipedia.



ω ≤ 3.00



We begin with a well known pedestrian: Carl Friedrich Gauss, who
lived from 1777 to 1855.



ω ≤ 3.00

ω < 2.81 rank



Here on the left is the first form of a bicycle, the Draisine, invented
by Karl von Drais in 1817. It has got a handlebar, but you have to
push off the ground in order to move.

There is a rumor that von Drais got into an argument with Gauss
about the best way to move and that he wrote a paper with the
title “Gaussian locomotion is not optimal”.



ω ≤ 3.00

ω < 2.81 rank ω < 2.78 P, BCLR border rank



In this Scottish invention on the right the driver’s feet don’t touch
the ground anymore; their movement is transmitted to the rear
wheel by some mechanism, which, to be sure, is not yet fully
developed.

This corresponds to the momentous notion of border rank,
introduced by Bini, Capovani, Lotti, Romani, who didn’t fully
develop the tools for handling their concept either and were able to
obtain just a slight improvement of the previous bound. This
improvement is even smaller than shown on the graph, since Pan
had obtained ω < 2.79 by a different method somewhat earlier.



ω ≤ 3.00

ω < 2.81 rank ω < 2.78 P, BCLR border rank

ω < 2.55 Sch direct sum



A much more efficient realization of the transmission from the feet
to the wheel is the pedal, invented by Michaux and Lallement in
France.

On the matrix side Schönhage’s analysis of the relation between
border rank and direct sum, formulated in his τ -Theorem,
produced a quantum jump in estimating ω.

By the way, the blue inequality signs in our graph are located
approximately true to scale, when time goes from left to right and
the height of the bounds from top to bottom, except that the
classical bound ω ≤ 3 has to be shifted to the left.



ω ≤ 3.00

ω < 2.81 rank ω < 2.78 P, BCLR border rank

ω < 2.55 Sch direct sum

ω < 2.50 CW



Once you have a bike with pedals at the front wheel, you can
increase its speed by expanding the wheel.

This is quite analogous to what Coppersmith and Winograd did in
their first joint paper: Whenever you have an algorithm of the kind
considered before, you can speed it up somewhat. (Here I have
omitted bounds by Pan and by Romani, that lie between those of
Schönhage and of Coppersmith-Winograd.)



ω ≤ 3.00

ω < 2.81 rank ω < 2.78 P, BCLR border rank

ω < 2.55 Sch direct sum

ω < 2.50 CW
ω < 2.48 laser



This speeding up was superseded by the next progress, the chain
transmission for bicycles, an English invention, and what I call the
laser method for matrix multiplication.

There are similarities here too: In both constructions you gain
speed by some kind of focussing, and both are parts of larger
technologies: Gear transmission on the one hand and the
asymptotic spectrum on the other.



ω ≤ 3.00

ω < 2.81 rank ω < 2.78 P, BCLR border rank

ω < 2.55 Sch direct sum

ω < 2.50 CW
ω < 2.48 laser

ω < 2.38 CW diagonal



The next invention brings us close to the present state of the art:
On the bicycle side we have the perfection of the chain
transmission by gearshift, a French development, on the matrix
side the perfection of the laser method by the Diagonal Theorem
of Coppersmith-Winograd.

A similarity here is that both inventions are technically brilliant.



There is a more recent approach to matrix multiplication, started
by Cohn and Umans and developed by them in collaboration with
Kleinberg and Szegedy, which uses groups and their
representations in a systematic way.

They draw level with Coppersmith-Winograd, and it is possible
that their approach will yield even better bounds in the future. In
any case it adds a new perspective to the old concepts.



ω ≤ 3.00

ω < 2.81 rank ω < 2.78 P, BCLR border rank

ω < 2.55 Sch direct sum

ω < 2.50 CW
ω < 2.48 laser

ω < 2.38 CW diagonalCUKS groups



Our bicycle counterpart of their construction is the recumbent
byke, which, as I understand, competes with the classical byke for
speed records.

There is no new inequality yet for the group approach, so I can put
the recumbent bike into the lower left corner.

You see: The overall construction of the recumbent bike looks
rather different from that of the traditional one, but many of the
details are similar. The same is true on the matrix side.

Last year the world record of Coppersmith-Winograd has been
broken by Williams (and also by Stothers, but I haven’t seen his
paper yet). Unfortunately I have no more bicycles, so I will use a
different parable.





The wren is a little bird living in bushes and hedges. In German
the female bird is called Zaunkönigin, which in literal translation
means hedge queen.

Once upon a time the birds wanted to choose a king or queen and
decided that whoever could fly higher than all the other birds
should be their king or queen. As had been expected, the eagle
won the contest.

Or, did he really? When the eagle, quite exhausted from
surpassing the other birds, began to descend again, there was this
little bird, who had hidden herself in the feathers of the eagle, and
who started with fresh strength to fly a bit higher than the eagle
had. “I’m the queen”, she said, and she was right. And that’s why
she is called Zaunkönigin in German.



Williams ω < 2.373

CW

ω < 2.376



Here you see the eagle with his two wings Coppersmith and
Winograd, and the Zaunkönigin Vassilevska Williams, who is
now the queen of our story.



Let us return to the technical part of the talk. Of the major
inventions I’ll skip border rank completely, although it is very
important for obtaining initial constructions, and for balance I’ll
not discuss the laser method either.

The last technical slide has been this one:



R
(
〈m,m,m〉

)
≤ r =⇒ mω ≤ r



By the definition of rank, this is equivalent to



〈m,m,m〉 ≤ 〈r〉 =⇒ mω ≤ r



〈m,m,m〉 ≤ 〈r〉 =⇒ mω ≤ r

Schönhage’s τ-Theorem:⊕
i〈mi ,mi ,mi〉 ≤ 〈r〉 =⇒

∑
i m

ω
i ≤ r



Schönhage’s τ -Theorem differs from this simple implication by
taking into account direct sums, but unlike its predecessor the
τ -Theorem is not trivial and Schönhage had to introduce a novel
recursion technique to prove it.

Now let us simplify our notation and our thoughts and shift the
focus from individual bilinear maps to their isomorphism classes.



The isomorphism classes of bilinear maps

form a commutative semiring:

a + b := a ⊕ b

a · b := a ⊗ b



A commutative semiring is an algebraic structure modeled after
the natural numbers N, so that the rules of calculation you are
used from there are valid here too.

In the following I will continue to speak of bilinear maps even
though I will usually mean their isomorphism classes.

Most of the time we will be discussing interesting subsemirings of
the semiring of all bilinear maps, such as the semiring of semisimple
algebras, i.e. of all direct sums of matrix multiplications.

The smallest semiring of bilinear maps consists of the diagonal
maps. It is isomorphic to the semiring N of natural numbers, the
number n corresponding to the class of the diagonal map of length
n.



The isomorphism classes of bilinear maps

form a commutative semiring:

a + b := a ⊕ b

a · b := a ⊗ b

≤ is a partial order

compatible with + and ·



Restriction induces a partial order in the semiring of bilinear maps,
compatible with addition and multiplication.

Since we are interested in asymptotics, we need an asymptotic
analogue of restriction. Since we interpret asymptotics in terms of
high tensor powers, we are led to this definition.



Asymptotic Restriction:

a . b ⇐⇒ aN ≤ bN+o(N)



Thus, a is an asymptotic restriction of b, when high tensor powers
of a are restrictions of slightly higher tensor powers of b. Clearly
restriction implies asymptotic restriction.

Asymptotic restriction has many useful properties, the most
important being the validity of the following central result.



Spectral Theorem:

For any semiring S of bilinear maps there are

a compact space ∆

a homomorphism Φ : S −→ C+(∆)

such that Φ(S) separates points and such that

a . b ⇐⇒ Φ(a) ≤ Φ(b)



C+(∆) denotes the semiring of nonnegative continuous real valued
functions on the compact space ∆. Thus, the last line of the
Spectral Theorem says that the asymptotic restriction relation of
bilinear maps is faithfully reflected by the pointwise order relation
of the corresponding spectral functions.

Given the semiring S of bilinear maps, the pair (∆,Φ) is essentially
unique and will be called the Asymptotic Spectrum of S.



The proof reduces the Spectral Theorem to a classical
representation theorem for a certain class of ordered rings, due
essentially to Kadison, but the reduction is not trivial.

As Peter Bürgisser has shown, no such theorem holds when
asymptotic restriction is replaced by restriction.

Given a semiring of bilinear maps, by the Spectral Theorem it
suffices to compute its asymptotic spectrum (∆,Φ) in order to
understand asymptotic restriction. But what about asymptotic
complexity, for example the exponent of matrix multiplication?



max Φ(b) = min
{
r : Φ(b) ≤ r

}
= min

{
r : b . r

}
= min

{
r : bN ≤ rN+o(N)

}



Here we have used the Spectral Theorem and the definition of
asymptotic restriction. (The difficulty that this reasoning presumes
that r is a natural number is easily removed by replacing Φ(b) ≤ r
by the equivalent Φ(b)N ≤ rN and rounding the right hand side.)

Thus, the maximum of the spectral function of b tells us, how
many complex number multiplications are needed to compute high
tensor powers of b by restriction. This last qualification may even
be omitted. Let us call max Φ(b) the price of b.



price of b := max Φ(b)

value of b := min Φ(b)



As a counterpart to the price we have the value of b, which tells
us, how many complex number multiplications may be computed
from high tensor powers of b by restriction.

Value is always less or equal than price and, as in real life, the ratio
may be arbitrarily small. (Look at 〈m, 1, 1〉.)



Exponent of a bilinear map:

ω(b) := log max Φ(b)



Taking the (binary) logarithm of the price, we obtain a quantity
that has the same relation to the map b as the classical matrix
exponent has to matrix multiplication of order two. Naturally, we
call it the exponent of b.

In particular we have



Exponent of a bilinear map:

ω(b) := log max Φ(b)

ω
(
〈2, 2, 2〉

)
= ω



It is time to discuss some concrete asymptotic spectra.



Logarithmic Imbedding:

∆(b1, . . . , bq) ⊂ Rq

Φ(bi ) = 2τi



As a straightforward consequence of the Spectral Theorem we have
a natural imbedding of ∆(b1, . . . , bq), the asymptotic spectrum of
the semiring generated by b1, . . . , bq, into real q-space, such that
the spectral function of bi is the exponential function 2τi , where τi
denotes the i-th coordinate function of Rq restricted to the
asymptotic spectrum.

In particular, for 2 by 2 matrix multiplication we have this:



Logarithmic Imbedding:

∆(b1, . . . , bq) ⊂ Rq

Φ(bi ) = 2τi

∆
(
〈2, 2, 2〉

)
⊂ R

Φ
(
〈2, 2, 2〉

)
= 2τ



Since large matrix multiplications are wedged between high tensor
powers of 〈2, 2, 2〉, it is easy to see that ∆

(
〈2, 2, 2〉

)
actually serves

as an asymptotic spectrum for all semisimple algebras in such a
way that the spectral function of matrix multiplication of order m
is the exponential function mτ , restricted to the hitherto unknown
∆
(
〈2, 2, 2〉

)
.



Logarithmic Imbedding:

∆(b1, . . . , bq) ⊂ Rq

Φ(bi ) = 2τi

Square Matrices:

∆m = ∆
(
〈2, 2, 2〉

)
⊂ R

Φ
(
〈m,m,m〉

)
= mτ



Therefore we will call ∆
〈
2, 2, 2〉

)
the matrix spectrum and will

denote it by ∆m.

But how does it look like?



Logarithmic Imbedding:

∆(b1, . . . , bq) ⊂ Rq

Φ(bi ) = 2τi

Square Matrices:

∆m = ∆
(
〈2, 2, 2〉

)
⊂ R

Φ
(
〈m,m,m〉

)
= mτ

ω = log max Φ
(
〈2, 2, 2〉

)
= max∆m

τ = max ∆m ∈ ∆m



This line of reasoning shows that ω is a point of the matrix
spectrum. Already such a small amount of information yields a
two-line-proof of the τ -Theorem.



∑
i〈mi ,mi ,mi〉 . r =⇒

∑
i m
τ
i ≤ r on ∆m

=⇒
∑

i m
ω
i ≤ r

Schönhage’s τ-Theorem:⊕
i〈mi ,mi ,mi〉 . 〈r〉 =⇒

∑
i m

ω
i ≤ r



Since mτi is the spectral function of 〈mi ,mi ,mi 〉, the first line is
actually an equivalence by the Spectral Theorem.

We seem to have generalized the original τ -Theorem by weakening
its hypothesis, but actually this is what Schönhage proves.

So far we have only used that ω is a point of the matrix spectrum.
In fact, we know more, namely that it is the largest point. This
immediately yields the converse of the τ -Theorem.



∑
i〈mi ,mi ,mi〉 . r ⇐⇒

∑
i m
τ
i ≤ r on ∆m

⇐⇒
∑

i m
ω
i ≤ r

Schönhage’s τ-Theorem with converse:⊕
i〈mi ,mi ,mi〉 . 〈r〉 ⇐⇒

∑
i m

ω
i ≤ r



I can see no proof of this converse without using the Spectral
Theorem.

In recent years group theoretic methods have lead to asymptotic
restrictions, whose right hand sides aren’t diagonals anymore, but
group algebras. So they look like the left hand sides, although they
are mor special.

The reasoning that leads to Schönhage’s τ -Theorem generalizes
immediately.



⊕
i〈mi ,mi ,mi〉 .

⊕
j〈nj , nj , nj〉

=⇒
∑

j nτj −
∑

i m
τ
i ≥ 0 on ∆m

=⇒
∑

j nωj −
∑

i m
ω
i ≥ 0



But unlike r −
∑

i m τ
i the function

∑
j nτj −

∑
i m τ

i is not
necessarily decreasing, so we don’t get a converse. The situation is
even worse.



⊕
i〈mi ,mi ,mi〉 .

⊕
j〈nj , nj , nj〉

=⇒
∑

j nτj −
∑

i m
τ
i ≥ 0 on ∆m

=⇒
∑

j nωj −
∑

i m
ω
i ≥ 0

The set of all

1

N

(∑
j

nτj −
∑

i

m τ
i

)
is dense in C(∆m)



Let’s call a spectral difference any difference of two spectral
functions, not necessarily one that comes from an asymptotic
restriction. Then this says that you can approximate arbitrary
continuous functions on the matrix spectrum by rescaled spectral
differences. Actually this is true for any asymptotic spectrum as a
consequence of the Stone-Weierstrass-Theorem.





So there are spectral differences that look like this after rescaling.
For all we know such a spectral difference might come from an
asymptotic restriction, which would mean that it is nonnegative on
the matrix spectrum. This fact would give a lot of information on
the matrix spectrum, but no upper bound for ω, since at the
Williams bound the function happens to be nonnegative, so ω
could coincide with this bound, and if you had no previous
knowledge, ω could even be equal to 3.

Let us visualize in contrast the traditional situation, where the
spectral differences are decreasing and the matrix spectrum, in
particular ω, has to lie to the left of their zero.





In the general case we obviously need more information on the
matrix spectrum. We cannot expect to know this spectrum
completely, since we don’t know its right endpoint ω. The
following theorem makes the best of this situation.



Theorem:

∆m = [ 2, ω ]



First look at the endpoints: We know that mτ is the spectral
function of 〈m,m,m〉. So its price is mω, its value m2. Unlike the
cynic, who according to Oscar Wilde knows the price of everything
and the value of nothing, we know the value of 〈m,m,m〉 exactly,
while our knowledge of its price is handicapped by our ignorance
about ω.

The hardest part of the proof is to show that the whole interval
belongs to the matrix spectrum. But this fact has important
consequences.



Theorem:

∆m = [ 2, ω ]

General τ -Theorem:⊕
i〈mi ,mi ,mi〉 .

⊕
j〈nj , nj , nj〉

⇐⇒ ∀τ ∈ [2, ω]
∑

j

n τj −
∑

i

m τ
i ≥ 0



These two theorems are in fact equivalent, by the Spectral
Theorem.





Looking again at our artificial example, we would suddenly get an
extremely good bound on ω from the assumption that this spectral
difference comes from an asymptotic restriction and is therefore
nonnegative on the matrix spectrum [ 2, ω ].

Now let us turn to the group theoretic methods in the light of the
previous discussion.



Quotient of S ⊂ G :

Q(S) := {st−1 : s, t ∈ S}



Cohn, Umans:

〈
m,m,m

〉
≤cu C[G ]

if and only if

there are S1, S2, S3 ⊂ G of size m

such that for any qκ ∈ Q(Sκ)

q1q2q3 = 1 =⇒ q1 = q2 = q3 = 1.



A few years ago Cohn and Umans obtained this lovely result and
thus started the group theoretic approach to ω.

The condition is easy to understand when the subsets are in fact
subgroups. Then it simply says that a product of three elements,
one from each subgroup, is never equal to the unit element except
in the trivial case.

When this condition is satisfied then 〈m,m,m〉 is a restriction of
the group algebra C[G ] in a particularly simple, combinatorial way,
which I indicate by the Cohn-Umans-subscript.

Unfortunately, the corresponding spectral differences are still
traditional in the sense that they have at most one zero and are
positive to the left and negative to the right of it, so that the
immediate generalisation of Schönhage’s τ -Theorem suffices.



Cohn-Umans spectral differences

∑
j nτj −mτ

are traditional





Of course this does not mean that the method is not suitable for
proving, say, ω = 2. It just means that the method does not make
use of the additional degrees of freedom offered by a dense supply
of spectral differences.

There is a second paper by Cohn and Umans in collaboration with
Kleinberg and Szegedy, that allows you to locate direct sums of
matrix multiplications in a group algebra.



Cohn, Kleinberg, Szegedy, Umans

characterize⊕
i

〈
mi ,mi ,mi

〉
≤cu C[G ]



The above characterization is straightforward if you start from
Cohn-Umans.

But the four authors succeed in reproving classical results including
Coppersmith-Winograd using wreath products of groups in a very
clever way.

Nevertheless, their use of the characterization is still traditional.
Perhaps this is the reason why they do not surpass the classical
bounds.

Actually, spectral differences of the form encountered here may be
nontraditional.



CKSU spectral differences

∑
j

nτj︸ ︷︷ ︸
group algebra

−
∑

i m
τ
i

may be non-traditional !



Here is an example of such a spectral difference



(
24τ + 28

)︸ ︷︷ ︸
C[21+8]

−
(
6 · 23τ + 5 · 22τ + 2τ + 1

)

extra special group



which looks like a probe:





Suppose, you could prove, for example by a combinatorial
restriction of the Cohn-Umans type, that this function is
nonnegative on the matrix spectrum. Since it is negative just on a
tiny interval, the direct information on the matrix spectrum would
be minuscule. Nevertheless, the general τ -Theorem would give you
a new bound on ω.



(
24τ + 28

)︸ ︷︷ ︸
C[21+8]

−
(
6 · 23τ + 5 · 22τ + 2τ + 1

)
≥ 0

on [2, ω] would imply

ω < 2.323



A rather modest improvement of the Williams bound, you may say.
But it is easy to produce much sharper hypothetical bounds by
similar probes using more complicated groups.

An advice for those of you who may want to investigate this:
Don’t get stuck with this particular example, which I made up for
the talk. A computer search using the known character tables of
groups may lead to many promising spectral differences. The rest
is combinatorics.



Now let us take a quick look at the asymptotic spectrum ∆gm of
general matrix multiplication. It has a natural (logarithmic)
imbedding into the unit cube of real 3-space, where it contains the
full triangle displayed here:







The first use of the laser method implies that the general matrix
spectrum is wedged between the triangle and the umbrella
(approximately).

Coppersmith-Winograd would give a better umbrella, but the
calculations are more difficult.





The affine linear bound shown here comes from Coppersmith’s
“Rapid Multiplication of Rectangular Matrices”. Near the corners
it is better than any other known bound.

Finally, we have the following



Theorem:

∆gm is star shaped with respect to the triangle

conv
{

(0, 1, 1), (1, 0, 1), (1, 1, 0)
}



This means that if the general matrix spectrum is the world you
live in, you can see the whole triangle from everywhere.

At the end of the talk let us return to the discussion of more
general asymptotic spectra ∆(b1, . . . , bq).

In the same way as a linear map is represented by a matrix, when
bases have been chosen for the vector spaces involved, a bilinear
map is represented by a 3-dimensional array. A map is called
oblique, when for a suitable choice of bases the support of the
array (consisting of the places with nonzero entry) is an antichain
with respect to the product order of the array.

The oblique maps form a semiring, containing all the examples of
maps we consider in this talk.



Standard 2-simplex:

Θ = {θ = (θ1, θ2, θ3) : θi ≥ 0,
∑

i θi = 1}



Logarithmmic Support Function of b 6= 0:

σb : Θ −→ R

σb(θ) := max
{ ∑3

i=1 θiH(Pi ) : P prob. on supp(b)
}

Pi = i -th marginal of P

H = entropy function



The logarithmic support function of a bilinear map is a real valued
function on the standard 2-simplex, that in general depends on the
chosen bases. It can be proved that for oblique maps (and
antichain supports) it does not.

Given oblique bilinear maps b1, . . . , bq, their logarithmic support
functions combine to form a well defined map from the standard
2-simplex to real q-space:



Minimal Simplex of b1, . . . , bq:

σ : Θ −→ Rq

σ(θ) :=
(
σb1

(θ), . . . , σbq
(θ)
)



Thus the image of the minimal simplex of oblique maps b1, . . . , bq

is a compact subset of Rq, as is the asymptoric spectrum of
b1, . . . , bq under the logarithmic imbedding. How are these two
sets related to each other?



Theorem:

Let b1, . . . , bq be oblique. Then

σ(Θ) ⊂ ∆(b1, . . . , bq)



It may well be that we always have equality here. This would imply
ω = 2.

An indication in this direction follows from the Diagonal Theorem
of Coppersmith-Winograd. When the bilinear maps b1, . . . , bq

satisfy a somewhat sharper condition than just obliqueness (as do
all the examples of bilinear maps we have seen in this talk), then
σ(Θ) contains all minimal points of ∆(b1, . . . , bq) with respect to
the product order of Rq.

These results have many applications. Here is one.



Theorem:

If F =
∏

i (T − εi )
ni then

∆
(
C[T ]/F

)
= log

[∑
i z(ni ),

∑
i ni

]
where

z(n) = ζn−1
ζ−1 · ζ

−2(n−1)/3

1
ζ−1 −

n
ζn−1 = n−1

3



Research Projects that may be feasable:

Prove ω < 3 by a nontraditional restriction

Prove that ∆(b) is an interval for any oblique b

Prove that σ(Θ) contains all minimal points
of ∆(b1, . . . , bq) for arbitrary oblique b1, . . . , bq


