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I. Transseries



A reminder on Laurent series

The field R((x−1)) of (formal) Laurent series over R in
descending powers of x consists of all series

f (x) = anxn + an−1xn−1 + · · ·+ a1x︸ ︷︷ ︸
infinite part of f

+a0+a−1x−1 + a−2x−2 + · · ·︸ ︷︷ ︸
infinitesimal part of f

Its subring R[[x−1]] consists of all such f with infinite part 0.

We differentiate Laurent series termwise so that x ′ = 1.

Exponentiation for elements of R[[x−1]] can be defined:

exp(a0 + a−1x−1 + a−2x−2 + · · · )

= ea0

∞∑
n=0

1
n!

(a−1x−1 + a−2x−2 + · · · )n

= ea0(1 + b1x−1 + b2x−2 + · · · ) for suitable b1,b2, . . . ∈ R.
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A reminder on Laurent series

Defects of R((x−1))

• There is no exponential function on all of R((x−1)).
• x−1 has no antiderivative in R((x−1)).
• R((x−1)), as a differential field, existentially defines Z.
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Transseries

To remove these defects, one extends R((x−1)) to the field T of
transseries:

formal series of transmonomials, arranged from
left to right in decreasing order, with real coefficients; e.g.:

ee
x+ex/2+ex/4+···−3ex2

+5x
√

2−(log x)π+1+x−1+x−2+· · ·+e−x .

There are many flavors of transseries. We deal here with one
particular brand also known as logarithmic-exponential series.

The field T has a somewhat lengthy inductive definition, a
feature of which is that series like

1
x + 1

ex + 1
eex + 1

eee
x + · · · , 1

x + 1
x log x + 1

x log x log log x + · · ·

are excluded. (“T is not spherically complete.”)
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Working in T

• Addition and multiplication in T work as for Laurent series.
An example of computing a multiplicative inverse in T:

1
x − x2e−x =

1
x(1− xe−x )

= x−1(1 + xe−x + x2e−2x + · · · )

= x−1 + e−x + xe−2x + · · ·

• A nonzero transseries is declared positive if its leading
coefficient is positive:

e−x log x − e−x2 log x − e−x3 log x − · · · > 0

With this ordering, T becomes an ordered field with

R < · · · < log log x < log x < x < ex < ee
x
< · · · .
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Working in T

• We have an isomorphism

f 7→ exp(f ) : T→ T>0

with inverse g 7→ log(g):

for example,

sinh := 1
2e

x − 1
2e
−x ∈ T>0

exp(sinh) = exp
(1

2e
x) · exp

(
−1

2e
−x)

= e
1
2e

x ·
∞∑

n=0

1
n!

(
−1

2e
−x)n

=
∞∑

n=0

(−1)n

n!2n e
1
2e

x−nx ,

log(sinh) = log
(
ex

2

(
1− e−2x)) = x − log 2−

∞∑
n=1

1
ne
−2nx .

The structure (T,0,1,+, · ,6,exp) is well understood:

(R, . . . ,exp) 4 (T, . . . ,exp).

(MACINTYRE-MARKER-VAN DEN DRIES, 1990s)
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Working in T

• Each f ∈ T can be differentiated term by term (with x ′ = 1):

( ∞∑
n=0

n!x−1−nex

)′
=

ex

x
.

We obtain a derivation f 7→ f ′ : T→ T on the field T:

(f + g) = f ′ + g′, (f · g)′ = f ′ · g + f · g′.

Its constant field is {f ∈ T : f ′ = 0} = R.

• The dominance relation on T: for 0 6= f ,g ∈ T,

f 4 g :⇐⇒
{

(leading monomial of f ) 6
(leading monomial of g).

So for example

e−x−x1/2−x1/4−··· ≺ −5e−x/2 − e−x .
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Origins and applications of transseries

Transseries . . .

• were introduced independently by ÉCALLE (HILBERT’s
16th Problem) and by DAHN and GÖRING (TARSKI’s
Problem on the ordered exponential field R) in the 1980s;

• many non-oscillatory functions naturally occurring in
analysis have an asymptotic expansion as transseries;

• for example, functions definable in many (all?)
exponentially bounded o-minimal expansions of the real
field (like the ordered exponential field R).

No function has presented itself in analysis the laws of whose
increase, in so far as they can be stated at all, cannot be stated,
so to say, in logarithmic-exponential terms.
(G. H. HARDY, Orders of Infinity, 1910.)
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Transseries with analytic meaning

Convergent series in R((x−1)) define germs at +∞ of real
meromorphic functions: the ordered differential field of
convergent Laurent series is isomorphic to a “Hardy field.”

ÉCALLE defines the differential subfield Tas of
accelero-summable transseries with their analytic
counterparts, the analyzable functions.

Cette notion de fonction analysable représente probablement
l’extension ultime de la notion de fonction analytique (réelle) et
elle parait inclusive et stable á un degre inouï.
(J. ÉCALLE, Introduction aux Fonctions Analysables et Preuve
Constructive de la Conjecture de Dulac, 1992.)

VAN DER HOEVEN shows that the differential subfield Tda of T
consisting of the differentially algebraic transseries has an
analytic counterpart.
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Transseries with analytic meaning

All this supports the intuition that T (and Tas) are universal
domains for “asymptotic differential algebra.”

(In a similar way that large algebraically closed fields are
universal domains for commutative algebra.)

This can be made precise using the language of model theory.
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II. Some Conjectures about Transseries



The T-Conjecture

From now on, we view T as a (model-theoretic) structure where
we single out the primitives

0, 1, +, · , ∂ (derivation), 6 (ordering), 4 (dominance).

The T-Conjecture

T is model complete.

(The inclusion of 4 is necessary.)

This can be expressed geometrically in terms of systems of
algebraic differential (in)equations. (Similar to GABRIELOV’s
“theorem of the complement” for real subanalytic sets.)
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The T-Conjecture

Define a d-algebraic set in Tn to be a zero set{
y ∈ Tn : P1(y) = · · · = Pm(y) = 0

}
of some d-polynomials

Pi(Y1, . . . ,Yn) = pi
(
Y1, . . . ,Yn, Y ′1, . . . ,Y

′
n, Y ′′1 , . . . ,Y

′′
n , . . .

)
over T.

Define an H-algebraic set in Tn to be the intersection
of a d-algebraic set in Tn with a set of the form{

(y1, . . . , yn) ∈ Tn : yi ≺ 1 for all i ∈ I
}

where I ⊆ {1, . . . ,n}.

The image of an H-algebraic set in Tn, for some n > m, under
the natural projection Tn → Tm is called sub-H-algebraic.
Model completeness of T means (almost): the complement of
any sub-H-algebraic set in Tm is again sub-H-algebraic.
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The T-Conjecture

Some related conjectures

1 T is o-minimal at +∞: if X ⊆ T is sub-H-algebraic, then
there is some f ∈ T with (f ,+∞) ⊆ X or (f ,+∞) ∩ X = ∅.

2 All sub-H-algebraic subsets of Rn ⊆ Tn are semialgebraic.
3 T has NIP (the NonIndependenceProperty of SHELAH).

An instance of 1 : if P is a one-variable d-polynomial over T,
then there is some f ∈ T and σ ∈ {±1} with sign P(y) = σ for
all y > f . (Related to old theorems of BOREL, HARDY, . . . )

An illustration of 2 : the set of (c0, . . . , cn) ∈ Rn+1 such that

c0y + c1y ′ + · · ·+ cny (n) = 0, 0 6= y ≺ 1

has a solution in T is a semialgebraic subset of Rn+1.
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The T-Conjecture

A (slightly misleading) sample use of 3 :

Let Y = (Y1, . . . ,Yn) be a tuple of distinct d-indeterminates.

Call an m-tuple σ = (σ1, . . . , σm) of elements of {4,�} an
asymptotic condition, and say that d-polynomials P1, . . . ,Pm
in Y over T realize σ if there is some a ∈ Tn such that

P1(a)σ1 1, . . . , Pm(a)σm 1.

Fix d ,n, r ∈ N. Then the number of asymptotic conditions
σ ∈ {4,�}m which can be realized by some d-polynomials
P1, . . . ,Pm in Y over T of degree at most d and order at most r
grows only polynomially with m.
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The T-Conjecture

ABRAHAM ROBINSON taught us how to prove model
completeness results algebraically: develop an extension
theory for structures with the same basic universal properties
as the structure of interest (which is T in our case).

This strategy can be employed to analyze the logical properties
of the classical fields C, R, Qp, C((t)), . . .

We want to do something similar for T.

For this we introduce the class of H-fields (H: HARDY,
HAUSDORFF, HAHN, BOREL), defined to share some basic
properties with T.
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H-Fields

H-fields are ordered differential fields in which the ordering and
derivation interact in a certain nice way.

First, some notations:

Let K be an ordered differential field with constant field C.

Just like T, such a K comes with a dominance relation:

f 4 g :⇐⇒ ∃c ∈ C>0 : |f | 6 c|g| “g dominates f ”

We also use:

f � g :⇐⇒ f 4 g & g 4 f
f ≺ g :⇐⇒ f 4 g & g 64 f

⇐⇒ ∀c ∈ C>0 : |f | 6 c|g| “g strictly dominates f ”
f ∼ g :⇐⇒ f − g ≺ g “asymptotic equivalence”
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H-Fields

Definition
We call K an H-field provided that

(H1) f � 1 ⇒ f † > 0;
(H2) f � 1 ⇒ f ∼ c for some c ∈ C×;
(H3) f ≺ 1 ⇒ f ′ ≺ 1.

Examples

Every ordered differential subfield K ⊇ R of T is an H-field.
(For example, K = R((x−1)).)

H-fields are part of the (more flexible) category of
“differential-valued fields” of ROSENLICHT (1980s).
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H-Fields

T-Conjecture (more precise version)

Th(T) is the model companion of the theory of H-fields:

T-Conjecture + “H-fields are exactly the ordered differential
fields embeddable into ultrapowers of T.”

This suggests an approach to a proof:

Study the extension theory of H-fields.

Encouraged by some initial positive results, in 1998 VAN DEN

DRIES and myself, later (∼2000) joined by VAN DER HOEVEN,
embarked on carrying out this program, which we brought to a
successful conclusion last year.
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H-Fields

Besides being a real closed H-field, T is Liouville closed:

We call a real closed H-field K Liouville closed if

∀f ,g ∃y
[
y 6= 0 & y ′ + fy = g

]
.

A Liouville closure of an H-field K is a minimal Liouville
closed H-field extension of K .

Theorem (A.-VAN DEN DRIES, 2002)

Every H-field has exactly one or exactly two Liouville closures.

So we can’t expect to have quantifier elimination for Th(T) in
the language described above.

What can go wrong when forming Liouville closures may be
seen from the asymptotic couple of K .
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Asymptotic Couples

Let K be an H-field.

We have the equivalence relation � on K× = K \ {0}.

Its equivalence classes vf are elements of an ordered abelian
group Γ := v(K×):

vf + vg = v(fg), vf > vg ⇐⇒ f 4 g.

The map f 7→ vf : K× → Γ is a (Krull) valuation.

Example

For K = T: (Γ,+,6) ∼= (group of transmonomials, · ,<).
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Asymptotic Couples

The derivation ∂ of K induces a map

γ = vg 7→ γ′ = v(g′) : Γ 6= := Γ \ {0} → Γ.

The pair consisting of Γ and the map γ 7→ γ† := γ′ − γ is called
the asymptotic couple of K . Always (Γ6=)† < (Γ>)′ .

Γ ↑

→ Γ
◦

γ′

γ† = γ′ − γ



Asymptotic Couples

The derivation ∂ of K induces a map

γ = vg 7→ γ′ = v(g′) : Γ 6= := Γ \ {0} → Γ.

The pair consisting of Γ and the map γ 7→ γ† := γ′ − γ is called
the asymptotic couple of K .

Always (Γ6=)† < (Γ>)′ .

Γ ↑

→ Γ
◦

γ′

γ† = γ′ − γ



Asymptotic Couples

The derivation ∂ of K induces a map

γ = vg 7→ γ′ = v(g′) : Γ 6= := Γ \ {0} → Γ.

The pair consisting of Γ and the map γ 7→ γ† := γ′ − γ is called
the asymptotic couple of K . Always (Γ6=)† < (Γ>)′ .

Γ ↑

→ Γ
◦

γ′

γ† = γ′ − γ



Asymptotic Couples

Exactly one of the following statements holds:

1 (Γ6=)† < γ < (Γ>)′ for a (necessarily unique) γ.

We call such γ a gap in K .

2 (Γ6=)† has a largest element.

We say that K is grounded.

3 (Γ6=)† has no supremum; equivalently: Γ = (Γ 6=)′.

We say that K has asymptotic integration.
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1 K = C;
2 K = R((x−1));
3 K = T (or any other Liouville closed K ).



Asymptotic Couples

Exactly one of the following statements holds:

1 (Γ6=)† < γ < (Γ>)′ for a (necessarily unique) γ.
We call such γ a gap in K .

2 (Γ6=)† has a largest element.
We say that K is grounded.

3 (Γ6=)† has no supremum; equivalently: Γ = (Γ 6=)′.
We say that K has asymptotic integration.

In 1 we have two Liouville closures: if γ = vg, then we have a
choice when adjoining

∫
g: make it � 1 or ≺ 1.

In 2 we have one Liouville closure: if vg = max(Γ6=)†, then∫
g � 1 in each Liouville closure of K .

In 3 we may have one or two Liouville closures.



III. Recent Results



Present state of knowledge

The conjectures stated before (and more) turned out to be true!

Main Theorem
The following statements axiomatize a complete theory: K is

1 a Liouville closed H-field;
2 ω-free [to be explained];
3 newtonian [to be explained].

Moreover, T is a model of these axioms.

Corollary

T is decidable; in particular: there is an algorithm which, given
d-polynomials P1, . . . ,Pm in Y1, . . . ,Ym over Z[x ], decides
whether P1(y) = · · · = Pm(y) = 0 for some y ∈ Tn.
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T is decidable; in particular: there is an algorithm which, given
d-polynomials P1, . . . ,Pm in Y1, . . . ,Ym over Z[x ], decides
whether P1(y) = · · · = Pm(y) = 0 for some y ∈ Tn.



Present state of knowledge

The proof of the main theorem yields something stronger:

T has quantifier elimination, after also introducing primitives for
multiplicative inversion and the predicates Λ, Ω, interpreted as
follows, with `0 = x , `n+1 = log `n:

Λ(f ) ⇐⇒ f < λn := 1
`0

+ 1
`0`1

+ · · ·+ 1
`0`1···`n , for some n

Ω(f ) ⇐⇒ f < ωn := 1
`20

+ 1
(`0`1)2 + · · ·+ 1

(`0`1···`n)2 , for some n.

Remarks

• ωn = ω(λn) where ω(z) := −2z ′ − z2 (related to the
Schwarzian derivative);

• (ωn) also appears in classical non-oscillation theorems for
2nd order linear differential equations.
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ω-freeness

(ωn) has no “pseudolimit” in T: there are no f ∈ T with

f = 1
`20

+ 1
(`0`1)2 + 1

(`0`1`2)2 + · · ·+ 1
(`0`1···`n)2 + · · ·+ smaller terms.

This fact about T translates into ∀∃-statements about H-fields:

Definition
An H-field K with asymptotic integration is ω-free if

∀f ∃g
[
1 ≺ g & f−ω(−g††) < (g†)2] (here a† := a′/a for a 6= 0).

ω-freeness is amazingly robust, and prevents deviant behavior:
if K is ω-free, then
• every d-algebraic H-field extension of K is still ω-free;
• K has only one Liouville closure; . . .

Caveat: there are Liouville closed H-fields which are not ω-free!
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Newtonianity

Newtonian says that certain kinds of d-polynomials in one
variable over K have a zero y 4 1 in K .

The definition involves compositional conjugation:
• replacing the derivation ∂ of K by φ−1

∂ (φ ∈ K×) yields a
new ordered differential field K φ, and

• rewriting a d-polynomial P over K in terms of φ−1
∂ yields a

d-polynomial Pφ over K φ such that Pφ(y) = P(y) for all y .
For example,

Y φ = Y , (Y ′)φ = φY ′, (Y ′′)φ = φ2Y ′′ + φ′Y ′, . . .

Only use “admissible” φ: those for which K φ is again an H-field.

The operation P 7→ Pφ on d-polynomials can be studied using
Lie-theoretic methods.
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Newtonianity

Theorem (∼ 2009)

Suppose K is ω-free and P 6= 0. Then there exists a nonzero
NP ∈ C[Y ](Y ′)N so that for all sufficiently small admissible φ:

Pφ ∼ d · NP , d = dφ ∈ K×.

Definition
An ω-free H-field K is newtonian if every d-polynomial P 6= 0 in
one variable over K with deg NP = 1 has a zero y 4 1 in K .

The newtonian condition makes it possible to develop a Newton
diagram method for d-polynomials.
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Newtonianity

Theorem (sample application of Newton diagrams)

Every odd-degree d-polynomial over a real closed ω-free
newtonian H-field has a zero.

Some basic facts that go into the proof of our main theorem:

• Any real closed ω-free H-field has a unique newtonization.
• Any ω-free H-field has a unique Newton-Liouville closure.
• No ω-free newtonian Liouville closed H-field has a proper

d-algebraic H-field extension with the same constant field.

Corollary

Tda =
(
Newton-Liouville closure of R(`0, `1, . . . )

)
4 T.
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What’s next?

. . . see Lou’s talk.


