Model Theory of Transseries

Matthias Aschenbrenner

UCLA

Overview

I. Transseries

II. Some Conjectures about Transseries
III. Recent Results
(joint with Lou van den Dries and Joris van der Hoeven)

I. Transseries

A reminder on Laurent series

The field $\mathbb{R}\left(\left(x^{-1}\right)\right)$ of (formal) Laurent series over \mathbb{R} in descending powers of x consists of all series

$$
f(x)=\underbrace{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x}_{\text {infinite part of } f}+a_{0}+\underbrace{a_{-1} x^{-1}+a_{-2} x^{-2}+\cdots}_{\text {infinitesimal part of } f}
$$

A reminder on Laurent series

The field $\mathbb{R}\left(\left(x^{-1}\right)\right)$ of (formal) Laurent series over \mathbb{R} in descending powers of x consists of all series

$$
f(x)=\underbrace{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x}_{\text {infinite part of } f}+a_{0}+\underbrace{a_{-1} x^{-1}+a_{-2} x^{-2}+\cdots}_{\text {infinitesimal part of } f}
$$

Its subring $\mathbb{R}\left[\left[x^{-1}\right]\right]$ consists of all such f with infinite part 0 .

A reminder on Laurent series

The field $\mathbb{R}\left(\left(x^{-1}\right)\right)$ of (formal) Laurent series over \mathbb{R} in descending powers of x consists of all series

$$
f(x)=\underbrace{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x}_{\text {infinite part of } f}+a_{0}+\underbrace{a_{-1} x^{-1}+a_{-2} x^{-2}+\cdots}_{\text {infinitesimal part of } f}
$$

Its subring $\mathbb{R}\left[\left[x^{-1}\right]\right]$ consists of all such f with infinite part 0 .
We differentiate Laurent series termwise so that $x^{\prime}=1$.

A reminder on Laurent series

The field $\mathbb{R}\left(\left(x^{-1}\right)\right)$ of (formal) Laurent series over \mathbb{R} in descending powers of x consists of all series

$$
f(x)=\underbrace{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x}_{\text {infinite part of } f}+a_{0}+\underbrace{a_{-1} x^{-1}+a_{-2} x^{-2}+\cdots}_{\text {infinitesimal part of } f}
$$

Its subring $\mathbb{R}\left[\left[x^{-1}\right]\right]$ consists of all such f with infinite part 0 .
We differentiate Laurent series termwise so that $x^{\prime}=1$.
Exponentiation for elements of $\mathbb{R}\left[\left[x^{-1}\right]\right]$ can be defined:

$$
\begin{aligned}
& \exp \left(a_{0}+a_{-1} x^{-1}+a_{-2} x^{-2}+\cdots\right) \\
& =e^{a_{0}} \sum_{n=0}^{\infty} \frac{1}{n!}\left(a_{-1} x^{-1}+a_{-2} x^{-2}+\cdots\right)^{n} \\
& =e^{a_{0}}\left(1+b_{1} x^{-1}+b_{2} x^{-2}+\cdots\right) \quad \text { for suitable } b_{1}, b_{2}, \ldots \in \mathbb{R}
\end{aligned}
$$

A reminder on Laurent series

Defects of $\mathbb{R}\left(\left(x^{-1}\right)\right)$

A reminder on Laurent series

Defects of $\mathbb{R}\left(\left(x^{-1}\right)\right)$

- There is no exponential function on all of $\mathbb{R}\left(\left(x^{-1}\right)\right)$.

A reminder on Laurent series

Defects of $\mathbb{R}\left(\left(x^{-1}\right)\right)$

- There is no exponential function on all of $\mathbb{R}\left(\left(x^{-1}\right)\right)$.
- x^{-1} has no antiderivative in $\mathbb{R}\left(\left(x^{-1}\right)\right)$.

A reminder on Laurent series

Defects of $\mathbb{R}\left(\left(x^{-1}\right)\right)$

- There is no exponential function on all of $\mathbb{R}\left(\left(x^{-1}\right)\right)$.
- x^{-1} has no antiderivative in $\mathbb{R}\left(\left(x^{-1}\right)\right)$.
- $\mathbb{R}\left(\left(x^{-1}\right)\right)$, as a differential field, existentially defines \mathbb{Z}.

Transseries

To remove these defects, one extends $\mathbb{R}\left(\left(x^{-1}\right)\right)$ to the field \mathbb{T} of transseries:

Transseries

To remove these defects, one extends $\mathbb{R}\left(\left(x^{-1}\right)\right)$ to the field \mathbb{T} of transseries: formal series of transmonomials, arranged from left to right in decreasing order, with real coefficients; e.g.:
$e^{e^{x}+e^{x / 2}+e^{x / 4}+\cdots-3 e^{x^{2}}+5 x^{\sqrt{2}}-(\log x)^{\pi}+1+x^{-1}+x^{-2}+\cdots+e^{-x} ~}$

Transseries

To remove these defects, one extends $\mathbb{R}\left(\left(x^{-1}\right)\right)$ to the field \mathbb{T} of transseries: formal series of transmonomials, arranged from left to right in decreasing order, with real coefficients; e.g.:
$e^{e^{x}+e^{x / 2}+e^{x / 4}+\cdots}-3 e^{x^{2}}+5 x^{\sqrt{2}}-(\log x)^{\pi}+1+x^{-1}+x^{-2}+\cdots+e^{-x}$.
There are many flavors of transseries. We deal here with one particular brand also known as logarithmic-exponential series.

Transseries

To remove these defects, one extends $\mathbb{R}\left(\left(x^{-1}\right)\right)$ to the field \mathbb{T} of transseries: formal series of transmonomials, arranged from left to right in decreasing order, with real coefficients; e.g.:
$e^{e^{x}+e^{x / 2}+e^{x / 4}+\cdots}-3 e^{x^{2}}+5 x^{\sqrt{2}}-(\log x)^{\pi}+1+x^{-1}+x^{-2}+\cdots+e^{-x}$.
There are many flavors of transseries. We deal here with one particular brand also known as logarithmic-exponential series.

The field \mathbb{T} has a somewhat lengthy inductive definition, a feature of which is that series like

$$
\frac{1}{x}+\frac{1}{\mathrm{e}^{x}}+\frac{1}{\mathrm{e}^{\mathrm{e}^{x}}}+\frac{1}{\mathrm{e}^{\mathrm{e}^{x}}}+\cdots, \quad \frac{1}{x}+\frac{1}{x \log x}+\frac{1}{x \log x \log \log x}+\cdots
$$

are excluded. (" \mathbb{T} is not spherically complete.")

Working in \mathbb{T}

- Addition and multiplication in \mathbb{T} work as for Laurent series. An example of computing a multiplicative inverse in \mathbb{T} :

Working in \mathbb{T}

- Addition and multiplication in \mathbb{T} work as for Laurent series. An example of computing a multiplicative inverse in \mathbb{T} :

$$
\begin{aligned}
\frac{1}{x-x^{2} e^{-x}}=\frac{1}{x\left(1-x e^{-x}\right)} & =x^{-1}\left(1+x \mathrm{e}^{-x}+x^{2} \mathrm{e}^{-2 x}+\cdots\right) \\
& =x^{-1}+\mathrm{e}^{-x}+x \mathrm{e}^{-2 x}+\cdots
\end{aligned}
$$

Working in \mathbb{T}

- Addition and multiplication in \mathbb{T} work as for Laurent series. An example of computing a multiplicative inverse in \mathbb{T} :

$$
\begin{aligned}
\frac{1}{x-x^{2} \mathrm{e}^{-x}}=\frac{1}{x\left(1-x e^{-x}\right)} & =x^{-1}\left(1+x \mathrm{e}^{-x}+x^{2} \mathrm{e}^{-2 x}+\cdots\right) \\
& =x^{-1}+\mathrm{e}^{-x}+x \mathrm{e}^{-2 x}+\cdots
\end{aligned}
$$

- A nonzero transseries is declared positive if its leading coefficient is positive:

Working in \mathbb{T}

- Addition and multiplication in \mathbb{T} work as for Laurent series. An example of computing a multiplicative inverse in \mathbb{T} :

$$
\begin{aligned}
\frac{1}{x-x^{2} e^{-x}}=\frac{1}{x\left(1-x e^{-x}\right)} & =x^{-1}\left(1+x e^{-x}+x^{2} e^{-2 x}+\cdots\right) \\
& =x^{-1}+\mathrm{e}^{-x}+x e^{-2 x}+\cdots
\end{aligned}
$$

- A nonzero transseries is declared positive if its leading coefficient is positive:

$$
e^{-x \log x}-e^{-x^{2} \log x}-e^{-x^{3} \log x}-\cdots>0
$$

Working in \mathbb{T}

- Addition and multiplication in \mathbb{T} work as for Laurent series. An example of computing a multiplicative inverse in \mathbb{T} :

$$
\begin{aligned}
\frac{1}{x-x^{2} e^{-x}}=\frac{1}{x\left(1-x e^{-x}\right)} & =x^{-1}\left(1+x e^{-x}+x^{2} e^{-2 x}+\cdots\right) \\
& =x^{-1}+\mathrm{e}^{-x}+x e^{-2 x}+\cdots
\end{aligned}
$$

- A nonzero transseries is declared positive if its leading coefficient is positive:

$$
e^{-x \log x}-e^{-x^{2} \log x}-e^{-x^{3} \log x}-\cdots>0
$$

With this ordering, \mathbb{T} becomes an ordered field with

$$
\mathbb{R}<\cdots<\log \log x<\log x<x<\mathrm{e}^{x}<\mathrm{e}^{\mathrm{e}^{x}}<\cdots
$$

- We have an isomorphism

$$
f \mapsto \exp (f): \mathbb{T} \rightarrow \mathbb{T}^{>0}
$$

with inverse $g \mapsto \log (g)$:

Working in \mathbb{T}

- We have an isomorphism

$$
f \mapsto \exp (f): \mathbb{T} \rightarrow \mathbb{T}^{>0}
$$

with inverse $g \mapsto \log (g)$: for example,

$$
\begin{aligned}
\sinh & :=\frac{1}{2} e^{x}-\frac{1}{2} e^{-x} \in \mathbb{T}^{>0} \\
\exp (\sinh) & =\exp \left(\frac{1}{2} e^{x}\right) \cdot \exp \left(-\frac{1}{2} e^{-x}\right) \\
& =e^{\frac{1}{2} e^{x}} \cdot \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{1}{2} e^{-x}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}} e^{\frac{1}{2}} e^{x}-n x
\end{aligned},
$$

$$
\log (\sinh)=\log \left(\frac{e^{x}}{2}\left(1-e^{-2 x}\right)\right)=x-\log 2-\sum_{n=1}^{\infty} \frac{1}{n} e^{-2 n x}
$$

Working in \mathbb{T}

- We have an isomorphism

$$
f \mapsto \exp (f): \mathbb{T} \rightarrow \mathbb{T}^{>0}
$$

with inverse $g \mapsto \log (g)$: for example,

$$
\begin{aligned}
\sinh & :=\frac{1}{2} e^{x}-\frac{1}{2} e^{-x} \in \mathbb{T}^{>0} \\
\exp (\sinh) & =\exp \left(\frac{1}{2} e^{x}\right) \cdot \exp \left(-\frac{1}{2} e^{-x}\right) \\
& =e^{\frac{1}{2} e^{x}} \cdot \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{1}{2} e^{-x}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!2^{n}} e^{\frac{1}{2}} e^{x}-n x
\end{aligned}
$$

$$
\log (\sinh)=\log \left(\frac{e^{x}}{2}\left(1-e^{-2 x}\right)\right)=x-\log 2-\sum_{n=1}^{\infty} \frac{1}{n} e^{-2 n x}
$$

The structure $(\mathbb{T}, 0,1,+, \cdot, \leqslant, \exp)$ is well understood:

$$
(\mathbb{R}, \ldots, \exp) \preccurlyeq(\mathbb{T}, \ldots, \exp) .
$$

(Macintyre-Marker-van den Dries, 1990s)

Working in \mathbb{T}

- Each $f \in \mathbb{T}$ can be differentiated term by term (with $x^{\prime}=1$):

Working in \mathbb{T}

- Each $f \in \mathbb{T}$ can be differentiated term by term (with $x^{\prime}=1$):

$$
\left(\sum_{n=0}^{\infty} n!x^{-1-n} e^{x}\right)^{\prime}=\frac{e^{x}}{x}
$$

Working in \mathbb{T}

- Each $f \in \mathbb{T}$ can be differentiated term by term (with $x^{\prime}=1$):

$$
\left(\sum_{n=0}^{\infty} n!x^{-1-n} e^{x}\right)^{\prime}=\frac{e^{x}}{x}
$$

We obtain a derivation $f \mapsto f^{\prime}: \mathbb{T} \rightarrow \mathbb{T}$ on the field \mathbb{T} :

$$
(f+g)=f^{\prime}+g^{\prime}, \quad(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}
$$

Working in \mathbb{T}

- Each $f \in \mathbb{T}$ can be differentiated term by term (with $x^{\prime}=1$):

$$
\left(\sum_{n=0}^{\infty} n!x^{-1-n} e^{x}\right)^{\prime}=\frac{e^{x}}{x}
$$

We obtain a derivation $f \mapsto f^{\prime}: \mathbb{T} \rightarrow \mathbb{T}$ on the field \mathbb{T} :

$$
(f+g)=f^{\prime}+g^{\prime}, \quad(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}
$$

Its constant field is $\left\{f \in \mathbb{T}: f^{\prime}=0\right\}=\mathbb{R}$.

Working in \mathbb{T}

- Each $f \in \mathbb{T}$ can be differentiated term by term (with $x^{\prime}=1$):

$$
\left(\sum_{n=0}^{\infty} n!x^{-1-n} e^{x}\right)^{\prime}=\frac{e^{x}}{x}
$$

We obtain a derivation $f \mapsto f^{\prime}: \mathbb{T} \rightarrow \mathbb{T}$ on the field \mathbb{T} :

$$
(f+g)=f^{\prime}+g^{\prime}, \quad(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}
$$

Its constant field is $\left\{f \in \mathbb{T}: f^{\prime}=0\right\}=\mathbb{R}$.

- The dominance relation on \mathbb{T} : for $0 \neq f, g \in \mathbb{T}$,

$$
f \preccurlyeq g \quad: \Longleftrightarrow \quad\left\{\begin{array}{l}
\text { (leading monomial of } f) \leqslant \\
\text { (leading monomial of } g) .
\end{array}\right.
$$

So for example

$$
e^{-x-x^{1 / 2}-x^{1 / 4}-\cdots} \prec-5 e^{-x / 2}-e^{-x}
$$

Origins and applications of transseries

Transseries

Origins and applications of transseries

Transseries ...

- were introduced independently by Écalle (Hilbert's 16th Problem) and by Dahn and Göring (Tarski's Problem on the ordered exponential field \mathbb{R}) in the 1980s;

Origins and applications of transseries

Transseries ...

- were introduced independently by Écalle (Hilbert's 16th Problem) and by DAhn and Göring (TARSKi's Problem on the ordered exponential field \mathbb{R}) in the 1980s;
- many non-oscillatory functions naturally occurring in analysis have an asymptotic expansion as transseries;

Origins and applications of transseries

Transseries ...

- were introduced independently by Écalle (Hilbert's 16th Problem) and by DAhn and Göring (TARSKi's Problem on the ordered exponential field \mathbb{R}) in the 1980s;
- many non-oscillatory functions naturally occurring in analysis have an asymptotic expansion as transseries;
- for example, functions definable in many (all?) exponentially bounded o-minimal expansions of the real field (like the ordered exponential field \mathbb{R}).

Origins and applications of transseries

Transseries ...

- were introduced independently by Écalle (Hilbert's 16th Problem) and by DAhn and Göring (TARSKi's Problem on the ordered exponential field \mathbb{R}) in the 1980s;
- many non-oscillatory functions naturally occurring in analysis have an asymptotic expansion as transseries;
- for example, functions definable in many (all?) exponentially bounded o-minimal expansions of the real field (like the ordered exponential field \mathbb{R}).

No function has presented itself in analysis the laws of whose increase, in so far as they can be stated at all, cannot be stated, so to say, in logarithmic-exponential terms.
(G. H. HARDY, Orders of Infinity, 1910.)

Transseries with analytic meaning

Convergent series in $\mathbb{R}\left(\left(x^{-1}\right)\right)$ define germs at $+\infty$ of real meromorphic functions: the ordered differential field of convergent Laurent series is isomorphic to a "Hardy field."

Transseries with analytic meaning

Convergent series in $\mathbb{R}\left(\left(x^{-1}\right)\right)$ define germs at $+\infty$ of real meromorphic functions: the ordered differential field of convergent Laurent series is isomorphic to a "Hardy field."

ÉCALLE defines the differential subfield $\mathbb{T}^{\text {as }}$ of accelero-summable transseries with their analytic counterparts, the analyzable functions.

Transseries with analytic meaning

Convergent series in $\mathbb{R}\left(\left(x^{-1}\right)\right)$ define germs at $+\infty$ of real meromorphic functions: the ordered differential field of convergent Laurent series is isomorphic to a "Hardy field."
Écalle defines the differential subfield $\mathbb{T}^{\text {as }}$ of accelero-summable transseries with their analytic counterparts, the analyzable functions.

Cette notion de fonction analysable représente probablement l'extension ultime de la notion de fonction analytique (réelle) et elle parait inclusive et stable á un degre inouï.
(J. Écalle, Introduction aux Fonctions Analysables et Preuve

Constructive de la Conjecture de Dulac, 1992.)

Transseries with analytic meaning

Convergent series in $\mathbb{R}\left(\left(x^{-1}\right)\right)$ define germs at $+\infty$ of real meromorphic functions: the ordered differential field of convergent Laurent series is isomorphic to a "Hardy field."

Écalle defines the differential subfield $\mathbb{T}^{\text {as }}$ of accelero-summable transseries with their analytic counterparts, the analyzable functions.

Cette notion de fonction analysable représente probablement l'extension ultime de la notion de fonction analytique (réelle) et elle parait inclusive et stable á un degre inouï.
(J. Écalle, Introduction aux Fonctions Analysables et Preuve

Constructive de la Conjecture de Dulac, 1992.)
Van der Hoeven shows that the differential subfield $\mathbb{T}^{\text {da }}$ of \mathbb{T} consisting of the differentially algebraic transseries has an analytic counterpart.

Transseries with analytic meaning

All this supports the intuition that \mathbb{T} (and $\mathbb{T}^{\text {as }}$) are universal domains for "asymptotic differential algebra."

Transseries with analytic meaning

All this supports the intuition that \mathbb{T} (and $\mathbb{T}^{\text {as }}$) are universal domains for "asymptotic differential algebra."
(In a similar way that large algebraically closed fields are universal domains for commutative algebra.)

Transseries with analytic meaning

All this supports the intuition that \mathbb{T} (and $\mathbb{T}^{\text {as }}$) are universal domains for "asymptotic differential algebra."
(In a similar way that large algebraically closed fields are universal domains for commutative algebra.)

This can be made precise using the language of model theory.

II. Some Conjectures about Transseries

The T-Conjecture

From now on, we view \mathbb{T} as a (model-theoretic) structure where we single out the primitives
$0,1,+, \cdot \partial$ (derivation), \leqslant (ordering), \preccurlyeq (dominance).

The T-Conjecture

From now on, we view \mathbb{T} as a (model-theoretic) structure where we single out the primitives
$0,1,+, \cdot \partial$ (derivation), \leqslant (ordering), \preccurlyeq (dominance).

The \mathbb{T}-Conjecture

\mathbb{T} is model complete.

The T-Conjecture

From now on, we view \mathbb{T} as a (model-theoretic) structure where we single out the primitives
$0,1,+, \cdot \partial$ (derivation), \leqslant (ordering), \preccurlyeq (dominance).

The T-Conjecture

\mathbb{T} is model complete.
(The inclusion of \preccurlyeq is necessary.)
This can be expressed geometrically in terms of systems of algebraic differential (in)equations. (Similar to Gabrielov's "theorem of the complement" for real subanalytic sets.)

The \mathbb{T}-Conjecture

Define a d-algebraic set in \mathbb{T}^{n} to be a zero set

$$
\left\{y \in \mathbb{T}^{n}: P_{1}(y)=\cdots=P_{m}(y)=0\right\}
$$

of some d-polynomials

$$
P_{i}\left(Y_{1}, \ldots, Y_{n}\right)=p_{i}\left(Y_{1}, \ldots, Y_{n}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}, Y_{1}^{\prime \prime}, \ldots, Y_{n}^{\prime \prime}, \ldots\right)
$$

over \mathbb{T}.

The \mathbb{T}-Conjecture

Define a d-algebraic set in \mathbb{T}^{n} to be a zero set

$$
\left\{y \in \mathbb{T}^{n}: P_{1}(y)=\cdots=P_{m}(y)=0\right\}
$$

of some d-polynomials

$$
P_{i}\left(Y_{1}, \ldots, Y_{n}\right)=p_{i}\left(Y_{1}, \ldots, Y_{n}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}, Y_{1}^{\prime \prime}, \ldots, Y_{n}^{\prime \prime}, \ldots\right)
$$

over \mathbb{T}. Define an H-algebraic set in \mathbb{T}^{n} to be the intersection of a d-algebraic set in \mathbb{T}^{n} with a set of the form

$$
\left\{\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{T}^{n}: y_{i} \prec 1 \text { for all } i \in I\right\} \quad \text { where } I \subseteq\{1, \ldots, n\}
$$

The T-Conjecture

Define a d-algebraic set in \mathbb{T}^{n} to be a zero set

$$
\left\{y \in \mathbb{T}^{n}: P_{1}(y)=\cdots=P_{m}(y)=0\right\}
$$

of some d-polynomials

$$
P_{i}\left(Y_{1}, \ldots, Y_{n}\right)=p_{i}\left(Y_{1}, \ldots, Y_{n}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}, Y_{1}^{\prime \prime}, \ldots, Y_{n}^{\prime \prime}, \ldots\right)
$$

over \mathbb{T}. Define an H-algebraic set in \mathbb{T}^{n} to be the intersection of a d-algebraic set in \mathbb{T}^{n} with a set of the form

$$
\left\{\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{T}^{n}: y_{i} \prec 1 \text { for all } i \in I\right\} \quad \text { where } I \subseteq\{1, \ldots, n\}
$$

The image of an H-algebraic set in \mathbb{T}^{n}, for some $n \geqslant m$, under the natural projection $\mathbb{T}^{n} \rightarrow \mathbb{T}^{m}$ is called sub- H-algebraic.

The T-Conjecture

Define a d-algebraic set in \mathbb{T}^{n} to be a zero set

$$
\left\{y \in \mathbb{T}^{n}: P_{1}(y)=\cdots=P_{m}(y)=0\right\}
$$

of some d-polynomials

$$
P_{i}\left(Y_{1}, \ldots, Y_{n}\right)=p_{i}\left(Y_{1}, \ldots, Y_{n}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}, Y_{1}^{\prime \prime}, \ldots, Y_{n}^{\prime \prime}, \ldots\right)
$$

over \mathbb{T}. Define an H-algebraic set in \mathbb{T}^{n} to be the intersection of a d-algebraic set in \mathbb{T}^{n} with a set of the form

$$
\left\{\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{T}^{n}: y_{i} \prec 1 \text { for all } i \in I\right\} \quad \text { where } I \subseteq\{1, \ldots, n\}
$$

The image of an H-algebraic set in \mathbb{T}^{n}, for some $n \geqslant m$, under the natural projection $\mathbb{T}^{n} \rightarrow \mathbb{T}^{m}$ is called sub- H-algebraic.
Model completeness of \mathbb{T} means (almost): the complement of any sub- H-algebraic set in \mathbb{T}^{m} is again sub- H-algebraic.

The T-Conjecture

Some related conjectures

(1) \mathbb{T} is o-minimal at $+\infty$: if $X \subseteq \mathbb{T}$ is sub- H-algebraic, then there is some $f \in \mathbb{T}$ with $(f,+\infty) \subseteq X$ or $(f,+\infty) \cap X=\emptyset$.
(2) All sub- H-algebraic subsets of $\mathbb{R}^{n} \subseteq \mathbb{T}^{n}$ are semialgebraic.
(3) T has NIP (the Non/ndependenceProperty of SHELAH).

The T-Conjecture

Some related conjectures

(1) \mathbb{T} is 0 -minimal at $+\infty$: if $X \subseteq \mathbb{T}$ is sub- H-algebraic, then there is some $f \in \mathbb{T}$ with $(f,+\infty) \subseteq X$ or $(f,+\infty) \cap X=\emptyset$.
(2) All sub- H-algebraic subsets of $\mathbb{R}^{n} \subseteq \mathbb{T}^{n}$ are semialgebraic.
(3) T has NIP (the Non/ndependenceProperty of SHELAH).

An instance of $(1$: if P is a one-variable d-polynomial over \mathbb{T}, then there is some $f \in \mathbb{T}$ and $\sigma \in\{ \pm 1\}$ with $\operatorname{sign} P(y)=\sigma$ for all $y>f$. (Related to old theorems of Borel, HARDY, ...)

The \mathbb{T}-Conjecture

Some related conjectures

(1) \mathbb{T} is o-minimal at $+\infty$: if $X \subseteq \mathbb{T}$ is sub- H-algebraic, then there is some $f \in \mathbb{T}$ with $(f,+\infty) \subseteq X$ or $(f,+\infty) \cap X=\emptyset$.
(2) All sub- H-algebraic subsets of $\mathbb{R}^{n} \subseteq \mathbb{T}^{n}$ are semialgebraic.
(3) \mathbb{T} has NIP (the Non/ndependenceProperty of SHELAH).

An instance of $(1$: if P is a one-variable d-polynomial over \mathbb{T}, then there is some $f \in \mathbb{T}$ and $\sigma \in\{ \pm 1\}$ with $\operatorname{sign} P(y)=\sigma$ for all $y>f$. (Related to old theorems of Borel, HARDY, ...)
An illustration of (2): the set of $\left(c_{0}, \ldots, c_{n}\right) \in \mathbb{R}^{n+1}$ such that

$$
c_{0} y+c_{1} y^{\prime}+\cdots+c_{n} y^{(n)}=0, \quad 0 \neq y \prec 1
$$

has a solution in \mathbb{T} is a semialgebraic subset of \mathbb{R}^{n+1}.

The T-Conjecture

A (slightly misleading) sample use of (3)
Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ be a tuple of distinct d-indeterminates.
Call an m-tuple $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ of elements of $\{\preccurlyeq, \succ\}$ an asymptotic condition, and say that d-polynomials P_{1}, \ldots, P_{m} in Y over \mathbb{T} realize σ if there is some $a \in \mathbb{T}^{n}$ such that

$$
P_{1}(a) \sigma_{1} 1, \ldots, P_{m}(a) \sigma_{m} 1
$$

The T-Conjecture

A (slightly misleading) sample use of (3)
Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ be a tuple of distinct d-indeterminates.
Call an m-tuple $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ of elements of $\{\preccurlyeq, \succ\}$ an asymptotic condition, and say that d-polynomials P_{1}, \ldots, P_{m} in Y over \mathbb{T} realize σ if there is some $a \in \mathbb{T}^{n}$ such that

$$
P_{1}(a) \sigma_{1} 1, \ldots, P_{m}(a) \sigma_{m} 1 .
$$

Fix $d, n, r \in \mathbb{N}$. Then the number of asymptotic conditions $\sigma \in\{\preccurlyeq, \succ\}^{m}$ which can be realized by some d-polynomials P_{1}, \ldots, P_{m} in Y over \mathbb{T} of degree at most d and order at most r grows only polynomially with m.

The T-Conjecture

Abraham Robinson taught us how to prove model completeness results algebraically: develop an extension theory for structures with the same basic universal properties as the structure of interest (which is \mathbb{T} in our case).

The T-Conjecture

Abraham Robinson taught us how to prove model completeness results algebraically: develop an extension theory for structures with the same basic universal properties as the structure of interest (which is \mathbb{T} in our case).

This strategy can be employed to analyze the logical properties of the classical fields $\mathbb{C}, \mathbb{R}, \mathbb{Q}_{p}, \mathbb{C}((t)), \ldots$

The T-Conjecture

Abraham Robinson taught us how to prove model completeness results algebraically: develop an extension theory for structures with the same basic universal properties as the structure of interest (which is \mathbb{T} in our case).

This strategy can be employed to analyze the logical properties of the classical fields $\mathbb{C}, \mathbb{R}, \mathbb{Q}_{p}, \mathbb{C}((t)), \ldots$

We want to do something similar for \mathbb{T}.

The T-Conjecture

AbRaHAM Robinson taught us how to prove model completeness results algebraically: develop an extension theory for structures with the same basic universal properties as the structure of interest (which is \mathbb{T} in our case).

This strategy can be employed to analyze the logical properties of the classical fields $\mathbb{C}, \mathbb{R}, \mathbb{Q}_{p}, \mathbb{C}((t)), \ldots$

We want to do something similar for \mathbb{T}.
For this we introduce the class of H-fields (H : HARDY, HAUSDORFF, HAHN, BOREL), defined to share some basic properties with \mathbb{T}.

H-Fields

H-fields are ordered differential fields in which the ordering and derivation interact in a certain nice way.

H-Fields

H-fields are ordered differential fields in which the ordering and derivation interact in a certain nice way. First, some notations:

H-Fields

H-fields are ordered differential fields in which the ordering and derivation interact in a certain nice way. First, some notations:

Let K be an ordered differential field with constant field C.

H-Fields

H-fields are ordered differential fields in which the ordering and derivation interact in a certain nice way. First, some notations:

Let K be an ordered differential field with constant field C.
Just like \mathbb{T}, such a K comes with a dominance relation:

$$
f \preccurlyeq g \quad: \Longleftrightarrow \quad \exists c \in C^{>0}:|f| \leqslant c|g| \quad \text { " } g \text { dominates } f "
$$

H-fields are ordered differential fields in which the ordering and derivation interact in a certain nice way. First, some notations:

Let K be an ordered differential field with constant field C.
Just like \mathbb{T}, such a K comes with a dominance relation:

$$
f \preccurlyeq g \quad: \Longleftrightarrow \quad \exists c \in C^{>0}:|f| \leqslant c|g| \quad \text { " } g \text { dominates } f \text { " }
$$

We also use:
$f \asymp g \quad: \Longleftrightarrow \quad f \preccurlyeq g \& g \preccurlyeq f$
$f \prec g \quad: \Longleftrightarrow \quad f \preccurlyeq g \& g \npreceq f$
$\Longleftrightarrow \quad \forall c \in C^{>0}:|f| \leqslant c|g| \quad$ " g strictly dominates f "
$f \sim g \quad: \Longleftrightarrow f-g \prec g \quad$ "asymptotic equivalence"

H-Fields

Definition

We call K an H-field provided that
(H1) $f \succ 1 \Rightarrow f^{\dagger}>0$;
(H2) $f \asymp 1 \Rightarrow f \sim c$ for some $c \in C^{\times}$;
(H3) $f \prec 1 \Rightarrow f^{\prime} \prec 1$.

H-Fields

Definition

We call K an H-field provided that

$$
(\mathrm{H} 1) f \succ 1 \Rightarrow f^{\dagger}>0
$$

(H2) $f \asymp 1 \Rightarrow f \sim c$ for some $c \in C^{\times}$;
(H3) $f \prec 1 \Rightarrow f^{\prime} \prec 1$.

Examples

Every ordered differential subfield $K \supseteq \mathbb{R}$ of \mathbb{T} is an H-field.
(For example, $K=\mathbb{R}\left(\left(x^{-1}\right)\right)$.)

H-Fields

Definition

We call K an H-field provided that

$$
\begin{aligned}
& (\mathrm{H} 1) f \succ 1 \Rightarrow f^{\dagger}>0 ; \\
& (\mathrm{H} 2) f \asymp 1 \Rightarrow f \sim c \text { for some } c \in C^{\times} ; \\
& (\mathrm{H} 3) f \prec 1 \Rightarrow f^{\prime} \prec 1 .
\end{aligned}
$$

Examples

Every ordered differential subfield $K \supseteq \mathbb{R}$ of \mathbb{T} is an H-field.
(For example, $K=\mathbb{R}\left(\left(x^{-1}\right)\right)$.)

H -fields are part of the (more flexible) category of "differential-valued fields" of ROSENLICHT (1980s).

H-Fields

\mathbb{T}-Conjecture (more precise version)

$\mathrm{Th}(\mathbb{T})$ is the model companion of the theory of H-fields:
\mathbb{T}-Conjecture + "H-fields are exactly the ordered differential fields embeddable into ultrapowers of \mathbb{T}."

H-Fields

\mathbb{T}-Conjecture (more precise version)

$\mathrm{Th}(\mathbb{T})$ is the model companion of the theory of H-fields:
\mathbb{T}-Conjecture + " H-fields are exactly the ordered differential fields embeddable into ultrapowers of \mathbb{T}."

This suggests an approach to a proof:

H-Fields

\mathbb{T}-Conjecture (more precise version)

$\mathrm{Th}(\mathbb{T})$ is the model companion of the theory of H-fields:
\mathbb{T}-Conjecture + " H-fields are exactly the ordered differential fields embeddable into ultrapowers of \mathbb{T}."

This suggests an approach to a proof:
Study the extension theory of H -fields.

\mathbb{T}-Conjecture (more precise version)

$\mathrm{Th}(\mathbb{T})$ is the model companion of the theory of H-fields:
\mathbb{T}-Conjecture + " H -fields are exactly the ordered differential fields embeddable into ultrapowers of \mathbb{T}."

This suggests an approach to a proof:
Study the extension theory of H -fields.
Encouraged by some initial positive results, in 1998 VAN DEN Dries and myself, later (~ 2000) joined by van der Hoeven, embarked on carrying out this program, which we brought to a successful conclusion last year.

Besides being a real closed H-field, \mathbb{T} is Liouville closed:
We call a real closed H-field K Liouville closed if

$$
\forall f, g \exists y\left[y \neq 0 \& y^{\prime}+f y=g\right]
$$

A Liouville closure of an H-field K is a minimal Liouville closed H-field extension of K.

Besides being a real closed H-field, \mathbb{T} is Liouville closed:
We call a real closed H-field K Liouville closed if

$$
\forall f, g \exists y\left[y \neq 0 \& y^{\prime}+f y=g\right]
$$

A Liouville closure of an H-field K is a minimal Liouville closed H-field extension of K.

Theorem (A.-VAN DEN DRIES, 2002)

Every H-field has exactly one or exactly two Liouville closures.

Besides being a real closed H-field, \mathbb{T} is Liouville closed:
We call a real closed H-field K Liouville closed if

$$
\forall f, g \exists y\left[y \neq 0 \& y^{\prime}+f y=g\right]
$$

A Liouville closure of an H-field K is a minimal Liouville closed H-field extension of K.

Theorem (A.-VAN DEN DRIES, 2002)

Every H-field has exactly one or exactly two Liouville closures.
So we can't expect to have quantifier elimination for $\operatorname{Th}(\mathbb{T})$ in the language described above.

Besides being a real closed H-field, \mathbb{T} is Liouville closed:
We call a real closed H-field K Liouville closed if

$$
\forall f, g \exists y\left[y \neq 0 \& y^{\prime}+f y=g\right]
$$

A Liouville closure of an H-field K is a minimal Liouville closed H-field extension of K.

Theorem (A.-VAN DEN DRIES, 2002)

Every H-field has exactly one or exactly two Liouville closures.
So we can't expect to have quantifier elimination for $\operatorname{Th}(\mathbb{T})$ in the language described above.

What can go wrong when forming Liouville closures may be seen from the asymptotic couple of K.

Asymptotic Couples

Let K be an H-field.

Asymptotic Couples

Let K be an H -field.
We have the equivalence relation \asymp on $K^{\times}=K \backslash\{0\}$.

Asymptotic Couples

Let K be an H-field.
We have the equivalence relation \asymp on $K^{\times}=K \backslash\{0\}$.
Its equivalence classes $v f$ are elements of an ordered abelian group $\Gamma:=v\left(K^{\times}\right)$:

$$
v f+v g=v(f g), \quad v f \geqslant v g \Longleftrightarrow f \preccurlyeq g .
$$

Asymptotic Couples

Let K be an H-field.
We have the equivalence relation \asymp on $K^{\times}=K \backslash\{0\}$.
Its equivalence classes $v f$ are elements of an ordered abelian group $\Gamma:=v\left(K^{\times}\right)$:

$$
v f+v g=v(f g), \quad v f \geqslant v g \Longleftrightarrow f \preccurlyeq g .
$$

The map $f \mapsto v f: K^{\times} \rightarrow \Gamma$ is a (Krull) valuation.

Asymptotic Couples

Let K be an H-field.
We have the equivalence relation \asymp on $K^{\times}=K \backslash\{0\}$.
Its equivalence classes $v f$ are elements of an ordered abelian group $\Gamma:=v\left(K^{\times}\right)$:

$$
v f+v g=v(f g), \quad v f \geqslant v g \Longleftrightarrow f \preccurlyeq g .
$$

The map $f \mapsto v f: K^{\times} \rightarrow \Gamma$ is a (Krull) valuation.

Example

For $K=\mathbb{T}: \quad(\Gamma,+, \leqslant) \cong($ group of transmonomials, $\cdot, \succcurlyeq)$.

Asymptotic Couples

The derivation ∂ of K induces a map

$$
\gamma=v g \mapsto \gamma^{\prime}=v\left(g^{\prime}\right): \quad \Gamma^{\neq}:=\Gamma \backslash\{0\} \rightarrow \Gamma .
$$

Asymptotic Couples

The derivation ∂ of K induces a map

$$
\gamma=v g \mapsto \gamma^{\prime}=v\left(g^{\prime}\right): \quad \Gamma^{\neq}:=\Gamma \backslash\{0\} \rightarrow \Gamma .
$$

The pair consisting of Γ and the map $\gamma \mapsto \gamma^{\dagger}:=\gamma^{\prime}-\gamma$ is called the asymptotic couple of K.

Asymptotic Couples

The derivation ∂ of K induces a map

$$
\gamma=v g \mapsto \gamma^{\prime}=v\left(g^{\prime}\right): \quad \Gamma^{\neq}:=\Gamma \backslash\{0\} \rightarrow \Gamma .
$$

The pair consisting of Γ and the map $\gamma \mapsto \gamma^{\dagger}:=\gamma^{\prime}-\gamma$ is called the asymptotic couple of K. Always $\left(\Gamma^{\neq}\right)^{\dagger}<\left(\Gamma^{>}\right)^{\prime}$.

Asymptotic Couples

Exactly one of the following statements holds:

Asymptotic Couples

Exactly one of the following statements holds:
(1) $\left(\Gamma^{\neq}\right)^{\dagger}<\gamma<\left(\Gamma^{>}\right)^{\prime}$ for a (necessarily unique) γ.

Asymptotic Couples

Exactly one of the following statements holds:
(1) $\left(\Gamma^{\neq}\right)^{\dagger}<\gamma<\left(\Gamma^{>}\right)^{\prime}$ for a (necessarily unique) γ.
(2) $\left(\Gamma^{\neq}\right)^{\dagger}$ has a largest element.

Asymptotic Couples

Exactly one of the following statements holds:
(1) $\left(\Gamma^{\neq}\right)^{\dagger}<\gamma<\left(\Gamma^{>}\right)^{\prime}$ for a (necessarily unique) γ.
(2) $\left(\Gamma^{\neq}\right)^{\dagger}$ has a largest element.
(3) $\left(\Gamma^{\neq}\right)^{\dagger}$ has no supremum; equivalently: $\Gamma=\left(\Gamma^{\neq}\right)^{\prime}$.

Asymptotic Couples

Exactly one of the following statements holds:
(1) $\left(\Gamma^{\neq}\right)^{\dagger}<\gamma<\left(\Gamma^{>}\right)^{\prime}$ for a (necessarily unique) γ. We call such γ a gap in K.
(2) $\left(\Gamma^{\neq}\right)^{\dagger}$ has a largest element.
(3) $\left(\Gamma^{\neq}\right)^{\dagger}$ has no supremum; equivalently: $\Gamma=\left(\Gamma^{\neq}\right)^{\prime}$.

Asymptotic Couples

Exactly one of the following statements holds:
(1) $\left(\Gamma^{\neq}\right)^{\dagger}<\gamma<\left(\Gamma^{>}\right)^{\prime}$ for a (necessarily unique) γ. We call such γ a gap in K.
(2) $\left(\Gamma^{\neq}\right)^{\dagger}$ has a largest element. We say that K is grounded.
(3) $\left(\Gamma^{\neq}\right)^{\dagger}$ has no supremum; equivalently: $\Gamma=\left(\Gamma^{\neq}\right)^{\prime}$.

Asymptotic Couples

Exactly one of the following statements holds:
(1) $\left(\Gamma^{\neq}\right)^{\dagger}<\gamma<\left(\Gamma^{>}\right)^{\prime}$ for a (necessarily unique) γ. We call such γ a gap in K.
(2) $\left(\Gamma^{\neq}\right)^{\dagger}$ has a largest element. We say that K is grounded.
(3) $\left(\Gamma^{\neq}\right)^{\dagger}$ has no supremum; equivalently: $\Gamma=\left(\Gamma^{\neq}\right)^{\prime}$. We say that K has asymptotic integration.

Asymptotic Couples

Exactly one of the following statements holds:
(1) $\left(\Gamma^{\neq}\right)^{\dagger}<\gamma<\left(\Gamma^{>}\right)^{\prime}$ for a (necessarily unique) γ. We call such γ a gap in K.
(2) $\left(\Gamma^{\neq}\right)^{\dagger}$ has a largest element. We say that K is grounded.
(3) $\left(\Gamma^{\neq}\right)^{\dagger}$ has no supremum; equivalently: $\Gamma=\left(\Gamma^{\neq}\right)^{\prime}$. We say that K has asymptotic integration.

Examples

(1) $K=C$;
(2) $K=\mathbb{R}\left(\left(x^{-1}\right)\right)$;
(3) $K=\mathbb{T}$ (or any other Liouville closed K).

Asymptotic Couples

Exactly one of the following statements holds:
(1) $\left(\Gamma^{\neq}\right)^{\dagger}<\gamma<\left(\Gamma^{>}\right)^{\prime}$ for a (necessarily unique) γ. We call such γ a gap in K.
(2) $\left(\Gamma^{\neq}\right)^{\dagger}$ has a largest element. We say that K is grounded.
(3) $\left(\Gamma^{\neq}\right)^{\dagger}$ has no supremum; equivalently: $\Gamma=\left(\Gamma^{\neq}\right)^{\prime}$.

We say that K has asymptotic integration.

In (1) we have two Liouville closures: if $\gamma=v g$, then we have a choice when adjoining $\int g$: make it $\succ 1$ or $\prec 1$.
In 2 we have one Liouville closure: if $v g=\max \left(\Gamma^{\neq}\right)^{\dagger}$, then
$\int g \succ 1$ in each Liouville closure of K.
In (3) we may have one or two Liouville closures.
III. Recent Results

Present state of knowledge

The conjectures stated before (and more) turned out to be true!

Present state of knowledge

The conjectures stated before (and more) turned out to be true!

Main Theorem

The following statements axiomatize a complete theory: K is
(1) a Liouville closed H-field;
(2) ω-free [to be explained];
(3) newtonian [to be explained].

Moreover, \mathbb{T} is a model of these axioms.

Present state of knowledge

The conjectures stated before (and more) turned out to be true!

Main Theorem

The following statements axiomatize a complete theory: K is
(1) a Liouville closed H-field;
(2) ω-free [to be explained];
(3) newtonian [to be explained].

Moreover, \mathbb{T} is a model of these axioms.

Corollary

\mathbb{T} is decidable; in particular: there is an algorithm which, given d-polynomials P_{1}, \ldots, P_{m} in Y_{1}, \ldots, Y_{m} over $\mathbb{Z}[x]$, decides whether $P_{1}(y)=\cdots=P_{m}(y)=0$ for some $y \in \mathbb{T}^{n}$.

Present state of knowledge

The proof of the main theorem yields something stronger:

Present state of knowledge

The proof of the main theorem yields something stronger:
\mathbb{T} has quantifier elimination, after also introducing primitives for multiplicative inversion and the predicates Λ, Ω, interpreted as follows, with $\ell_{0}=x, \ell_{n+1}=\log \ell_{n}$:
$\Lambda(f) \Longleftrightarrow f<\lambda_{n}:=\frac{1}{\ell_{0}}+\frac{1}{\ell_{0} \ell_{1}}+\cdots+\frac{1}{\ell_{0} \ell_{1} \cdots \ell_{n}}$, for some n
$\Omega(f) \Longleftrightarrow f<\omega_{n}:=\frac{1}{\ell_{0}^{2}}+\frac{1}{\left(\ell_{0} \ell_{1}\right)^{2}}+\cdots+\frac{1}{\left(\ell_{0} \ell_{1} \cdots \ell_{n}\right)^{2}}$, for some n.

Present state of knowledge

The proof of the main theorem yields something stronger:
\mathbb{T} has quantifier elimination, after also introducing primitives for multiplicative inversion and the predicates Λ, Ω, interpreted as follows, with $\ell_{0}=x, \ell_{n+1}=\log \ell_{n}$:

$$
\begin{aligned}
& \Lambda(f) \Longleftrightarrow f<\lambda_{n}:=\frac{1}{\ell_{0}}+\frac{1}{\ell_{0} \ell_{1}}+\cdots+\frac{1}{\ell_{0} \ell_{1} \cdots \ell_{n}}, \text { for some } n \\
& \Omega(f) \Longleftrightarrow f<\omega_{n}:=\frac{1}{\ell_{0}^{2}}+\frac{1}{\left(\ell_{0} \ell_{1}\right)^{2}}+\cdots+\frac{1}{\left(\ell_{0} \ell_{1} \cdots \ell_{n}\right)^{2}}, \text { for some } n .
\end{aligned}
$$

Remarks

Present state of knowledge

The proof of the main theorem yields something stronger:
\mathbb{T} has quantifier elimination, after also introducing primitives for multiplicative inversion and the predicates Λ, Ω, interpreted as follows, with $\ell_{0}=x, \ell_{n+1}=\log \ell_{n}$:

$$
\begin{aligned}
& \Lambda(f) \Longleftrightarrow f<\lambda_{n}:=\frac{1}{\ell_{0}}+\frac{1}{\ell_{0} \ell_{1}}+\cdots+\frac{1}{\ell_{0} \ell_{1} \cdots \ell_{n}}, \text { for some } n \\
& \Omega(f) \Longleftrightarrow f<\omega_{n}:=\frac{1}{\ell_{0}^{2}}+\frac{1}{\left(\ell_{0} \ell_{1}\right)^{2}}+\cdots+\frac{1}{\left(\ell_{0} \ell_{1} \cdots \ell_{n}\right)^{2}}, \text { for some } n .
\end{aligned}
$$

Remarks

- $\omega_{n}=\omega\left(\lambda_{n}\right)$ where $\omega(z):=-2 z^{\prime}-z^{2}$ (related to the Schwarzian derivative);

Present state of knowledge

The proof of the main theorem yields something stronger:
\mathbb{T} has quantifier elimination, after also introducing primitives for multiplicative inversion and the predicates Λ, Ω, interpreted as follows, with $\ell_{0}=x, \ell_{n+1}=\log \ell_{n}$:

$$
\begin{aligned}
& \Lambda(f) \Longleftrightarrow f<\lambda_{n}:=\frac{1}{\ell_{0}}+\frac{1}{\ell_{0} \ell_{1}}+\cdots+\frac{1}{\ell_{0} \ell_{1} \cdots \ell_{n}}, \text { for some } n \\
& \Omega(f) \Longleftrightarrow f<\omega_{n}:=\frac{1}{\ell_{0}^{2}}+\frac{1}{\left(\ell_{0} \ell_{1}\right)^{2}}+\cdots+\frac{1}{\left(\ell_{0} \ell_{1} \cdots \ell_{n}\right)^{2}}, \text { for some } n .
\end{aligned}
$$

Remarks

- $\omega_{n}=\omega\left(\lambda_{n}\right)$ where $\omega(z):=-2 z^{\prime}-z^{2}$ (related to the Schwarzian derivative);
- $\left(\omega_{n}\right)$ also appears in classical non-oscillation theorems for 2nd order linear differential equations.

ω-freeness

$\left(\omega_{n}\right)$ has no "pseudolimit" in \mathbb{T} : there are no $f \in \mathbb{T}$ with
$f=\frac{1}{\ell_{0}^{2}}+\frac{1}{\left(\ell_{0} \ell_{1}\right)^{2}}+\frac{1}{\left(\ell_{0} \ell_{1} \ell_{2}\right)^{2}}+\cdots+\frac{1}{\left(\ell_{0} \ell_{1} \cdots \ell_{n}\right)^{2}}+\cdots+$ smaller terms.
This fact about \mathbb{T} translates into $\forall \exists$-statements about H -fields:
$\left(\omega_{n}\right)$ has no "pseudolimit" in \mathbb{T} : there are no $f \in \mathbb{T}$ with
$f=\frac{1}{\ell_{0}^{2}}+\frac{1}{\left(\ell_{0} \ell_{1}\right)^{2}}+\frac{1}{\left(\ell_{0} \ell_{1} \ell_{2}\right)^{2}}+\cdots+\frac{1}{\left(\ell_{0} \ell_{1} \cdots \ell_{n}\right)^{2}}+\cdots+$ smaller terms.
This fact about \mathbb{T} translates into $\forall \exists$-statements about H-fields:

Definition

An H-field K with asymptotic integration is ω-free if

$$
\forall f \exists g\left[1 \prec g \& f-\omega\left(-g^{\dagger \dagger}\right) \succcurlyeq\left(g^{\dagger}\right)^{2}\right] \quad \text { (here } a^{\dagger}:=a^{\prime} / a \text { for } a \neq 0 \text {). }
$$

$\left(\omega_{n}\right)$ has no "pseudolimit" in \mathbb{T} : there are no $f \in \mathbb{T}$ with
$f=\frac{1}{\ell_{0}^{2}}+\frac{1}{\left(\ell_{0} \ell_{1}\right)^{2}}+\frac{1}{\left(\ell_{0} \ell_{1} \ell_{2}\right)^{2}}+\cdots+\frac{1}{\left(\ell_{0} \ell_{1} \cdots \ell_{n}\right)^{2}}+\cdots+$ smaller terms.
This fact about \mathbb{T} translates into $\forall \exists$-statements about H-fields:

Definition

An H-field K with asymptotic integration is ω-free if
$\forall f \exists g\left[1 \prec g \& f-\omega\left(-g^{\dagger \dagger}\right) \succcurlyeq\left(g^{\dagger}\right)^{2}\right] \quad$ (here $a^{\dagger}:=a^{\prime} / a$ for $a \neq 0$).
ω-freeness is amazingly robust, and prevents deviant behavior: if K is ω-free, then

- every d-algebraic H-field extension of K is still ω-free;
$\left(\omega_{n}\right)$ has no "pseudolimit" in \mathbb{T} : there are no $f \in \mathbb{T}$ with
$f=\frac{1}{\ell_{0}^{2}}+\frac{1}{\left(\ell_{0} \ell_{1}\right)^{2}}+\frac{1}{\left(\ell_{0} \ell_{1} \ell_{2}\right)^{2}}+\cdots+\frac{1}{\left(\ell_{0} \ell_{1} \cdots \ell_{n}\right)^{2}}+\cdots+$ smaller terms.
This fact about \mathbb{T} translates into $\forall \exists$-statements about H-fields:

Definition

An H-field K with asymptotic integration is ω-free if
$\forall f \exists g\left[1 \prec g \& f-\omega\left(-g^{\dagger \dagger}\right) \succcurlyeq\left(g^{\dagger}\right)^{2}\right] \quad$ (here $a^{\dagger}:=a^{\prime} / a$ for $a \neq 0$).
ω-freeness is amazingly robust, and prevents deviant behavior: if K is ω-free, then

- every d-algebraic H-field extension of K is still ω-free;
- K has only one Liouville closure; ...
$\left(\omega_{n}\right)$ has no "pseudolimit" in \mathbb{T} : there are no $f \in \mathbb{T}$ with
$f=\frac{1}{\ell_{0}^{2}}+\frac{1}{\left(\ell_{0} \ell_{1}\right)^{2}}+\frac{1}{\left(\ell_{0} \ell_{1} \ell_{2}\right)^{2}}+\cdots+\frac{1}{\left(\ell_{0} \ell_{1} \cdots \ell_{n}\right)^{2}}+\cdots+$ smaller terms.
This fact about \mathbb{T} translates into $\forall \exists$-statements about H-fields:

Definition

An H-field K with asymptotic integration is ω-free if
$\forall f \exists g\left[1 \prec g \& f-\omega\left(-g^{\dagger \dagger}\right) \succcurlyeq\left(g^{\dagger}\right)^{2}\right] \quad$ (here $a^{\dagger}:=a^{\prime} / a$ for $a \neq 0$).
ω-freeness is amazingly robust, and prevents deviant behavior: if K is ω-free, then

- every d-algebraic H-field extension of K is still ω-free;
- K has only one Liouville closure; ...

Caveat: there are Liouville closed H-fields which are not ω-free!

Newtonianity

Newtonian says that certain kinds of d-polynomials in one variable over K have a zero $y \preccurlyeq 1$ in K.

Newtonianity

Newtonian says that certain kinds of d-polynomials in one variable over K have a zero $y \preccurlyeq 1$ in K.

The definition involves compositional conjugation:

Newtonianity

Newtonian says that certain kinds of d-polynomials in one variable over K have a zero $y \preccurlyeq 1$ in K.

The definition involves compositional conjugation:

- replacing the derivation ∂ of K by $\phi^{-1} \partial\left(\phi \in K^{\times}\right)$yields a new ordered differential field K^{ϕ}, and

Newtonianity

Newtonian says that certain kinds of d-polynomials in one variable over K have a zero $y \preccurlyeq 1$ in K.

The definition involves compositional conjugation:

- replacing the derivation ∂ of K by $\phi^{-1} \partial\left(\phi \in K^{\times}\right)$yields a new ordered differential field K^{ϕ}, and
- rewriting a d-polynomial P over K in terms of $\phi^{-1} \partial$ yields a d-polynomial P^{ϕ} over K^{ϕ} such that $P^{\phi}(y)=P(y)$ for all y.

Newtonianity

Newtonian says that certain kinds of d-polynomials in one variable over K have a zero $y \preccurlyeq 1$ in K.

The definition involves compositional conjugation:

- replacing the derivation ∂ of K by $\phi^{-1} \partial\left(\phi \in K^{\times}\right)$yields a new ordered differential field K^{ϕ}, and
- rewriting a d-polynomial P over K in terms of $\phi^{-1} \partial$ yields a d-polynomial P^{ϕ} over K^{ϕ} such that $P^{\phi}(y)=P(y)$ for all y.
For example,

$$
Y^{\phi}=Y, \quad\left(Y^{\prime}\right)^{\phi}=\phi Y^{\prime}, \quad\left(Y^{\prime \prime}\right)^{\phi}=\phi^{2} Y^{\prime \prime}+\phi^{\prime} Y^{\prime}
$$

Only use "admissible" ϕ : those for which K^{ϕ} is again an H-field.

Newtonianity

Newtonian says that certain kinds of d-polynomials in one variable over K have a zero $y \preccurlyeq 1$ in K.
The definition involves compositional conjugation:

- replacing the derivation ∂ of K by $\phi^{-1} \partial\left(\phi \in K^{\times}\right)$yields a new ordered differential field K^{ϕ}, and
- rewriting a d-polynomial P over K in terms of $\phi^{-1} \partial$ yields a d-polynomial P^{ϕ} over K^{ϕ} such that $P^{\phi}(y)=P(y)$ for all y.
For example,

$$
Y^{\phi}=Y, \quad\left(Y^{\prime}\right)^{\phi}=\phi Y^{\prime}, \quad\left(Y^{\prime \prime}\right)^{\phi}=\phi^{2} Y^{\prime \prime}+\phi^{\prime} Y^{\prime}
$$

Only use "admissible" ϕ : those for which K^{ϕ} is again an H-field.
The operation $P \mapsto P^{\phi}$ on d-polynomials can be studied using Lie-theoretic methods.

Newtonianity

Theorem (~ 2009)

Suppose K is ω-free and $P \neq 0$. Then there exists a nonzero $N_{P} \in C[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$ so that for all sufficiently small admissible ϕ :

$$
P^{\phi} \sim \mathfrak{d} \cdot N_{P}, \quad \mathfrak{d}=\mathfrak{d}_{\phi} \in K^{\times} .
$$

Newtonianity

Theorem (~ 2009)

Suppose K is ω-free and $P \neq 0$. Then there exists a nonzero $N_{P} \in C[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$ so that for all sufficiently small admissible ϕ :

$$
P^{\phi} \sim \mathfrak{d} \cdot N_{P}, \quad \mathfrak{d}=\mathfrak{d}_{\phi} \in K^{\times} .
$$

Definition

An ω-free H-field K is newtonian if every d-polynomial $P \neq 0$ in one variable over K with $\operatorname{deg} N_{P}=1$ has a zero $y \preccurlyeq 1$ in K.

Newtonianity

Theorem (~ 2009)

Suppose K is ω-free and $P \neq 0$. Then there exists a nonzero $N_{P} \in C[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$ so that for all sufficiently small admissible ϕ :

$$
P^{\phi} \sim \mathfrak{d} \cdot N_{P}, \quad \mathfrak{d}=\mathfrak{d}_{\phi} \in K^{\times} .
$$

Definition

An ω-free H-field K is newtonian if every d-polynomial $P \neq 0$ in one variable over K with $\operatorname{deg} N_{P}=1$ has a zero $y \preccurlyeq 1$ in K.

The newtonian condition makes it possible to develop a Newton diagram method for d-polynomials.

Newtonianity

Theorem (sample application of Newton diagrams)

Every odd-degree d-polynomial over a real closed ω-free newtonian H -field has a zero.

Newtonianity

Theorem (sample application of Newton diagrams)

Every odd-degree d-polynomial over a real closed ω-free newtonian H -field has a zero.

Some basic facts that go into the proof of our main theorem:

- Any real closed ω-free H-field has a unique newtonization.
- Any ω-free H-field has a unique Newton-Liouville closure.
- No ω-free newtonian Liouville closed H-field has a proper d-algebraic H-field extension with the same constant field.

Newtonianity

Theorem (sample application of Newton diagrams)

Every odd-degree d-polynomial over a real closed ω-free newtonian H -field has a zero.

Some basic facts that go into the proof of our main theorem:

- Any real closed ω-free H-field has a unique newtonization.
- Any ω-free H-field has a unique Newton-Liouville closure.
- No ω-free newtonian Liouville closed H-field has a proper d-algebraic H-field extension with the same constant field.

Corollary

$\mathbb{T}^{\mathrm{da}}=\left(\right.$ Newton-Liouville closure of $\left.\mathbb{R}\left(\ell_{0}, \ell_{1}, \ldots\right)\right) \preccurlyeq \mathbb{T}$.

What's next?

... see Lou's talk.

