Heights of pre-special points of Shimura varieties

Christopher Daw¹ Martin Orr²

¹Institut des Hautes Études Scientifiques

²University College London

Workshop: O-Minimality and Applications, Konstanz 2015

イロン 不同 とくほ とくほ とう

æ

Outline

Motivation and Set-Up

- Shimura Varieties and Special Subvarieties
- The André-Oort Conjecture

2 The Pila-Zannier Strategy

- Outline
- Heights
- Galois Orbits

ヘロト ヘアト ヘビト ヘビト

ъ

Shimura Varieties and Special Subvarieties The André-Oort Conjecture

ヘロン 人間 とくほ とくほ とう

э.

Shimura Varieties

- Let G be an algebraic group over Q (semisimple, adjoint)
- Let $\mathbb{S} := \operatorname{Res}_{\mathbb{C}/\mathbb{R}}\mathbb{G}_m$ i.e. $\mathbb{S}(\mathbb{R}) = \mathbb{C}^{\times}$
- Let $h: \mathbb{S} \to G_{\mathbb{R}}$ (satisfying three properties)
- Let X denote the conjugacy class of h under $G(\mathbb{R})^+$
- Let Γ be a congruence subgroup of $G(\mathbb{Q})^+$
- X is a complex manifold (hermitian, symmetric)
- $\Gamma \setminus X$ is a **Shimura variety** (quasi-projective, algebraic)

Shimura Varieties and Special Subvarieties The André-Oort Conjecture

ヘロン ヘアン ヘビン ヘビン

Special Subvarieties

- Let $x \in X$ and H := MT(x) the Mumford-Tate group
- i.e. $H \subseteq G$ is the smallest \mathbb{Q} -group such that $x(\mathbb{S}) \subseteq H_{\mathbb{R}}$
- Let X_H denote the conjugacy class of x under $H(\mathbb{R})^+$
- Let Γ_H be a congruence subgroup of $H(\mathbb{Q})^+$ contained in Γ
- $\Gamma_H \setminus X_H$ is a Shimura variety
- The morphism $\Gamma_H \setminus X_H \to \Gamma \setminus X$ is algebraic
- The image of $\Gamma_H \setminus X_H$ is called a **special subvariety**
- It is a **point** if and only if *H* is a torus (commutative)

Shimura Varieties and Special Subvarieties The André-Oort Conjecture

イロン 不得 とくほ とくほとう

André-Oort

Conjecture (André-Oort)

- Let S be a Shimura variety
- Let Σ be a set of special points contained in S
- Let $\overline{\Sigma}$ denote the Zariski closure of Σ in S
- Let Z denote an irreducible component of $\overline{\Sigma}$

Then Z is a special subvariety.

- Original proof under GRH by Klingler-Ullmo-Yafaev (2014)
- Unconditional proof for A_g by Pila, Tsimerman et al.
- Proof follows the so-called Pila-Zannier strategy

Outline Heights Galois Orbits

Definability

Theorem (Peterzil-Starchenko, Klingler-Ullmo-Yafaev)

- Let π denote the uniformising map $X \to \Gamma \backslash X$
- Let F be a semi-algebraic fundamental set in X for Γ

Then $\pi_{|\mathcal{F}}$ is definable in $\mathbb{R}_{an,exp}$.

- Case of A_g due to Peterzil-Starchenko (2010)
- General case due to Klingler-Ullmo-Yafaev

ヘロト 人間 とくほとくほとう

æ

Outline Heights Galois Orbits

Pila-Wilkie

Denote by $\mathcal Z$ the definable set $\pi^{-1}(Z)\cap \mathcal F$

Theorem (Pila-Wilkie)

- Let $A \subseteq \mathbb{R}^n$ be a set definable in an o-minimal structure
- Let A^{alg} denote the union of the connected positive-dimensional semi-algebraic subsets of A

For all $T \geq 1$

$$|\{x \in A \setminus A^{\mathrm{alg}} : [\mathbb{Q}(x) : \mathbb{Q}] \leq k, \ H(x) \leq T\} \ll_{\epsilon} T^{\epsilon}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Outline Heights Galois Orbits

Ax-Lindemann-Weierstrass

The question is: What is \mathcal{Z}^{alg} ?

Theorem (Ax-Lindemann-Weierstrass)

Let Θ denote the set of positive-dimensional (weakly) special subvarieties contained in Z. Then

$$\mathcal{Z}^{\mathrm{alg}} = igcup_{V\in\Theta} \pi^{-1}(V) \cap \mathcal{F}.$$

- The compact case due to Ullmo-Yafaev
- Then the case of A_g due to Pila-Tsimerman (2014)
- General case due to Klingler-Ullmo-Yafaev
- All use o-minimality (in $G(\mathbb{Q})$ rather than X)

ヘロト ヘアト ヘビト ヘビト

Outline Heights Galois Orbits

Theorem of Ullmo

Theorem (Ullmo)

- Let S be a Shimura variety
- Let Z be a (Hodge-generic) **proper** subvariety of S
- If $S = S_1 \times S_2$ assume that Z is not of the form $S_1 \times Z_2$

Then the set of positive-dimensional (weakly) special subvarieties contained in Z is not Zariski dense in Z.

- Using Pila-Wilkie show that $\pi^{-1}(\Sigma) \cap (\mathcal{Z} \setminus \mathcal{Z}^{alg})$ is finite
- Ax-Lindemann-Weierstrass ⇒ all but finitely many points in Σ belong to a positive-dimensional special subvariety contained in Z
- Ullmo \implies Z is equal to S

ヘロン 人間 とくほ とくほ とう

1

Outline Heights Galois Orbits

Hodge Structures

- Choose a faithful representation $G \rightarrow \operatorname{GL}(V)$
- Choose a lattice $V_{\mathbb{Z}}$ in V
- For each $x \in X$ we obtain a \mathbb{Z} -Hodge structure V_x on $V_{\mathbb{Z}}$
- $\operatorname{End}_{\mathbb{Z}-\mathrm{HS}}(V_x) := \operatorname{End}_{\mathbb{Z}}(V_{\mathbb{Z}})^{\mathrm{MT}(x)}$
- $R_x := Z(\operatorname{End}_{\mathbb{Z}-\operatorname{HS}}(V_x))$
- $D_x := |\operatorname{disc}(R_x)|$
- If V_x corresponds to an Abelian variety A_x then

```
\operatorname{End}_{\mathbb{Z}-\operatorname{HS}}(V_x) = \operatorname{End}(A_x).
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Outline Heights Galois Orbits

Main Result

Theorem (D-Orr, Pila-Tsimerman)

Let *S* be a Shimura variety with the preceding notations. There exist positive constants C_1 and C_2 and an integer *k* such that for any pre-image $x \in \mathcal{F}$ of a special point, *x* has algebraic co-ordinates of degree at most *k* and

$$H(x) \leq C_1 D_x^{C_2}.$$

• Case of A_g due to Pila-Tsimerman (2013)

ヘロン 人間 とくほ とくほ とう

1

Outline Heights Galois Orbits

Galois Orbits

- *S* has a canonical model over a number field *E*
- Special subvarieties are defined over finite extensions

Conjecture (Edixhoven)

Let *S* be a Shimura variety with the preceding notations. There exists a positive constant C_3 such that for any special point $s \in S$,

$$|\operatorname{Gal}(\overline{\mathbb{Q}}/E) \cdot \boldsymbol{s}| \gg D_x^{C_3}.$$

- Known under the GRH by Ullmo-Yafaev (2015)
- Case of A_g recently announced by Tsimerman follows from Masser-Wüstholz and the averaged Colmez formula due to Andreatta-Goren-Howard-Madapusi Pera and Yuan-Zhang

Combing Heights and Galois Orbits for Finiteness

- Choose $x_0 \in \pi^{-1}(\Sigma) \cap (\mathcal{Z} \setminus \mathcal{Z}^{alg})$
- Fix $\epsilon > 0$ and apply Pila-Wilkie to \mathcal{Z} with $T = C_1 D_{x_0}^{C_2}$
- $A := |\{x \in \pi^{-1}(\Sigma) \cap (\mathcal{Z} \setminus \mathcal{Z}^{\mathrm{alg}}) : H(x) \leq C_1 D_{x_0}^{C_2}\}| \ll D_{x_0}^{C_2 \epsilon}$
- However, for all Galois conjugates x of x_0 , $D_x = D_{x_0}$
- $\implies A \gg D_{x_0}^{C_3}$
- \implies D_{x_0} is bounded on $\pi^{-1}(\Sigma) \cap (\mathcal{Z} \setminus \mathcal{Z}^{alg})$
- $\implies \pi^{-1}(\Sigma) \cap (\mathcal{Z} \setminus \mathcal{Z}^{\mathrm{alg}})$ is finite

<ロ> (四) (四) (三) (三) (三)