

The Asymptotic Behaviour of the Riemann Mapping Function at Analytic Cusps

Sabrina Lehner

Faculty of Computer Science and Mathematics University of Passau

20. July 2015

Content

- 1. Motivation
- Asymptotic Behaviour of the Riemann Mapping Function at Singular Boundary Points
 Analytic Corners
 Analytic Cusps
- 3. Conclusion

Content

1. Motivation

 Asymptotic Behaviour of the Riemann Mapping Function at Singular Boundary Points
 2.1. Analytic Corners
 2.2. Analytic Cusps

3. Conclusion

Theorem (T. Kaiser 2009)

Let $\Omega \subsetneq \mathbb{C}$ be bounded, simply connected, and semianalytic. Assume that the opening angle \triangleleft_x is an irrational multiple of π for all singular boundary points $x \in \partial \Omega$. Then $\phi : \Omega \to \mathbb{E}$ is definable in an o-minimal structure.

General Premises

- \blacktriangleright Let $\Omega \subsetneq \mathbb{C}$ be a simply connected domain with piecewise analytic boundary.
- Let $0 \in \partial \Omega$ be a singular boundary point.
- Let $\varphi: \Omega \to \mathbb{H}$ be a Riemann map with $\varphi(0) = 0$.

General Premises

- Let Ω ⊊ C be a simply connected domain with piecewise analytic boundary.
- Let $0 \in \partial \Omega$ be a singular boundary point.
- Let $\varphi : \Omega \to \mathbb{H}$ be a Riemann map with $\varphi(0) = 0$.

General Premises

- ► Let $\Omega \subsetneq \mathbb{C}$ be a simply connected domain with piecewise analytic boundary.
- Let $0 \in \partial \Omega$ be a singular boundary point.
- Let $\varphi : \Omega \to \mathbb{H}$ be a Riemann map with $\varphi(0) = 0$.

Theorem (R. S. Lehman, 1957)

Assume that the opening angle at $0 \in \partial \Omega$ is $\pi \alpha$ with $0 < \alpha \leq 2$.

(a) If $\alpha \notin \mathbb{Q}$ then φ has an asymptotic power series expansion at 0 of the following kind

$$\sum_{k\geq 0,\ l\geq 1}a_{k,l}z^{k+\frac{l}{\alpha}},$$

where $a_{k,l} \in \mathbb{C}$ and $a_{0,1} \neq 0$, i.e.

$$\varphi(z) - \sum_{k+\frac{l}{\alpha} \leq N} a_{k,l} z^{k+\frac{l}{\alpha}} = o(z^N)$$

for all $N \in \mathbb{N}$.

O-Minimality and Applications

(b) If $\alpha = \frac{p}{q}$, with p and q coprime, then φ has an asymptotic power series expansion at 0 of the following kind

$$\sum_{k\geq 0, \ 1\leq l\leq q, \ 0\leq m\leq \frac{k}{p}}a_{k,l,m}z^{k+\frac{l}{\alpha}}(\log(z))^m$$

where $a_{k,l,m} \in \mathbb{C}$ and $a_{0,1,0} \neq 0$.

O-Minimality and Applications

Content

1. Motivation

 Asymptotic Behaviour of the Riemann Mapping Function at Singular Boundary Points
 2.1. Analytic Corners
 2.2. Analytic Cusps

3. Conclusion

Content

1. Motivation

 Asymptotic Behaviour of the Riemann Mapping Function at Singular Boundary Points
 2.1. Analytic Corners
 2.2. Analytic Cusps

3. Conclusion

Analytic Corners

Definition (Analytic Corner)

We say that Ω has an analytic corner at 0 if 0 is a singular boundary point and the boundary at 0 is locally given by two regular analytic arcs with opening angle $\pi \alpha$ where $0 < \alpha \leq 2$.

Analytic Corners

O-Minimality and Applications

Sabrina Lehner

6 / 21

Theorem (L. Lichtenstein (1911), S. Warschawski (1955))

At an analytic corner at 0 with opening angle $\pi\alpha$ with 0 $<\alpha\leq$ 2 we have at 0 on Ω

(a)
$$\varphi(z) \sim z^{\frac{1}{\alpha}}$$

(b) $\varphi'(z) \sim z^{\frac{1}{\alpha}-1}$
(c) $\varphi^{(n)}(z) \begin{cases} \sim z^{\frac{1}{\alpha}-n} & \text{for } \alpha \neq \frac{1}{k}, k \in \mathbb{N} \\ = O(z^{\frac{1}{\alpha}-n}) & \text{for } \alpha = \frac{1}{k}, k \in \mathbb{N} \end{cases}$ for $n \ge 2$

O-Minimality and Applications

Contents

1. Motivation

 Asymptotic Behaviour of the Riemann Mapping Function at Singular Boundary Points
 Analytic Corners
 Analytic Cusps

3. Conclusion

Definition (Analytic Cusp)

We say that Ω has an analytic cusp at 0 if 0 is a singular boundary point and the boundary at 0 is locally given by two regular analytic arcs such that the opening angle vanishes.

O-Minimality and Applications

Setting

r

After applying a coordinate transformation we can assume that locally the boundary of Ω is given by the arcs Γ_1 and Γ_2 with the parameterisations

$$\gamma_1(t) = t \text{ and } \gamma_2(t) = t \exp(i \triangleleft_{\Omega}(t)),$$

resp. Hereby, $\triangleleft_{\Omega}(t) = \sum_{k=d}^{\infty} a_k t^k$ is a real power series with $d \in \mathbb{N}$
and $a_d \neq 0$.

O-Minimality and Applications

O-Minimality and Applications

Sabrina Lehner

11 / 21

Theorem

We have at 0 on Ω

$$\varphi(z) \sim \exp\left(\sum_{n=0}^{d-1} b_n z^{n-d} + a \log(z)\right)$$

with

$$b_n := rac{\pi c_n}{n-d}$$
 and $a := \pi c_d$,

where c_k are the coefficients of the Laurent series

$$\frac{1}{\triangleleft_{\Omega}(t)} = t^{-d} \sum_{k=0}^{\infty} c_k t^k.$$

O-Minimality and Applications

Example

Let

$$\Omega:=\left\{z\in\mathbb{C}\mid 0<|z|<rac{1}{2}, 0< {\mathsf{arg}}(z)<|z|-|z|^2
ight\}$$

then

$$arphi(z) \sim \exp\left(-rac{\pi}{z} + \pi \log(z)
ight).$$

O-Minimality and Applications

Remark

If $a_{d+1} = \ldots = a_{2d} = 0$ we have

$$\varphi(z) \sim \exp\left(-rac{\pi}{a_d dz^d}
ight)$$

at 0 on Ω .

$$\mathsf{Recall:} \triangleleft_{\Omega}(t) = \sum_{k=d}^{\infty} a_k t^k$$

O-Minimality and Applications

Example

Let

$$\Omega := \left\{ z \in \mathbb{C} \mid 0 < |z| < rac{1}{2}, 0 < ext{arg}(z) < extbf{a}_d |z|^d
ight\}$$

then

$$\varphi(z) \sim \exp\left(-\frac{\pi}{a_d dz^d}\right).$$

O-Minimality and Applications

Theorem

We have for $n \in \mathbb{N}$

$$\varphi^{(n)}(z) \sim \exp\left(\sum_{k=0}^{d-1} b_k z^{k-d} + a \log(z)\right) z^{-n(d+1)}$$

at 0 on Ω .

Inverse function $\boldsymbol{\psi}$

O-Minimality and Applications

Sabrina Lehner

17 / 21

Theorem

Let $\psi : \mathbb{H} \to \Omega$ be a conformal map with $\psi(0) = 0$. Then

$$\psi(z) \simeq \left(-\frac{\pi}{a_d d \log(z)}\right)^{\frac{1}{d}}$$

at 0 on \mathbb{H} .

O-Minimality and Applications

Theorem

We have for $n \in \mathbb{N}$

$$\psi^{(n)}(z) \sim \left(-\frac{1}{\log(z)}\right)^{rac{1}{d}+1} z^{-n}$$

at 0 on \mathbb{H} .

Content

1. Motivation

 Asymptotic Behaviour of the Riemann Mapping Function at Singular Boundary Points
 2.1. Analytic Corners
 2.2. Analytic Cusps

3. Conclusion

Conclusion

Contributions

Asymptotic behaviour at analytic cusps of

 $\varphi: \Omega \to \mathbb{H}$ $\varphi^{(n)}$ $\psi: \mathbb{H} \to \Omega$ $\psi^{(n)}$

Open Questions

- Development of the mapping function in a generalized power series?
- O-minimality?

O-Minimality and Applications

Conclusion

Contributions

Asymptotic behaviour at analytic cusps of

 $\varphi: \Omega \to \mathbb{H}$ $\varphi^{(n)}$ $\psi: \mathbb{H} \to \Omega$ $\psi^{(n)}$

Open Questions

- Development of the mapping function in a generalized power series?
- O-minimality?

O-Minimality and Applications

Thank you!

O-Minimality and Applications

Sabrina Lehner

21 / 21