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Let Q C C be bounded, simply connected, and semianalytic.
Assume that the opening angle < is an irrational multiple of 7 for
all singular boundary points x € 9. Then ¢ : Q — E is definable
in an o-minimal structure.

<
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General Premises

> Let Q C C be a simply connected domain with piecewise
analytic boundary.
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Let Q C C be a simply connected domain with piecewise
analytic boundary.

Let 0 € 09 be a singular boundary point.
Let ¢ : Q — H be a Riemann map with ¢(0) = 0.
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Assume that the opening angle at 0 € 9Q is o with 0 < a < 2.

If « ¢ Q then ¢ has an asymptotic power series expansion at 0
of the following kind

N
E ak,lzk+a )
k>0, I>1

where ax ;€ C and ag1 # 0, i.e.

o)~ Y aza = o(2V)
k+L<N
for all N € N.
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If a = s, with p and q coprime, then ¢ has an asymptotic
power series expansion at 0 of the following kind

N
> ak,,mz* = (log(2))™

k>0, 1<I<q, 0<m<k

where ay;m € C and ag10 # 0.
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We say that Q has an analytic corner at 0 if 0 is a singular
boundary point and the boundary at 0 is locally given by two
regular analytic arcs with opening angle T where 0 < o < 2.
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Theorem (L. Lichtenstein (1911), S. Warschawski (1955))

At an analytic corner at 0 with opening angle o with 0 < o < 2
we have at 0 on Q

(2) ¢(z) ~ 2@
(b) ¢(z) ~zat

~zEh fora# 1 keN
(©) ¢\ (z) forn>?2

= O(zi_”) fora =%,k eN
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We say that Q has an analytic cusp at 0 if 0 is a singular boundary
point and the boundary at 0 is locally given by two regular analytic
arcs such that the opening angle vanishes.
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After applying a coordinate transformation we can assume that
locally the boundary of Q is given by the arcs I'; and ', with the
parameterisations

~v1(t) =t and y2(t) = texp(i<q(t)),

(o]

resp. Hereby, <tq(t) = . axtX is a real power series with d € N
k=d
and ag # 0.
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We have at 0 on Q

d-1
o(z) ~ exp Z bnz""9 + alog(z)
n=0
with c
b, = " and a = ¢y,
n—d

where ¢, are the coefficients of the Laurent series

1
—d k
=t E Cit”.
Q(t) k=0
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Example
Let

1
Q= {ZGC |0< |z < 5,0 < arg(z) < |z| — |z]2}

then .
©(z) ~ exp (—; +7 Iog(z)> .
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Remark
If ag11 = ... = axg = 0 we have
T
¢(z) ~ exp (_W)
at 0 on Q.

oo
Recall: <q(t) = 3 axtk
k=d
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Example
Let

1
Q= {z eClo<|zI < 5,0 < arg(z) < ad]z|d}

then

™
¢(z) ~ exp (—W> .
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Theorem
We have for n € N

d-1

(M (z2) ~ exp <Z bz""? +a Iog(z)> z~n(d+1)

k=0

at 0 on Q.
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Inverse function v

Re
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Theorem
Let ¢ : H — Q be a conformal map with 1)(0) = 0. Then

0= ()

-

at 0 on H.
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Theorem
We have for n € N

at 0 on H.
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Contributions
Asymptotic behaviour at analytic cusps of

»p:Q—>H
>80(”)
» iy H—Q
(M

v
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Contributions
Asymptotic behaviour at analytic cusps of

> p:Q—H
> ()
» iy H—Q
- (")

Open Questions

» Development of the mapping function in a generalized power
series?

» O-minimality?
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Thank youl
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