Normal distribution in the subanalytic setting

Julia Ruppert
University of Passau
Faculty of Informatics and Mathematics

July 2015

Outline

1. Motivation
2. Statement of the problem
3. Results
4. Summary

Motivation

Parameterized integrals in the subanalytic setting:

- Comte, Lion, Rolin: $\int f(x, y) d y$

Motivation

Parameterized integrals in the subanalytic setting:

- Comte, Lion, Rolin: $\int f(x, y) d y$
- Cluckers, Miller: $\int f(x, y)(\log (g(x, y)))^{n} d y$

$$
\int e^{\frac{-y^{2}}{2 t}} f(x, y) d y
$$

Motivation

Fakultät für Informatik und Mathematik

Parameterized integrals in the subanalytic setting:

- Comte, Lion, Rolin: $\int f(x, y) d y$
- Cluckers, Miller: $\int f(x, y)(\log (g(x, y)))^{n} d y$
- Cluckers, Comte, Miller, Rolin, Servi: $\int e^{i g(x, y)} f(x, y) d y$

Motivation

Fakultät für Informatik und Mathematık

Parameterized integrals in the subanalytic setting:

- Comte, Lion, Rolin: $\int f(x, y) d y$
- Cluckers, Miller: $\int f(x, y)(\log (g(x, y)))^{n} d y$
- Cluckers, Comte, Miller, Rolin, Servi: $\int e^{i g(x, y)} f(x, y) d y$
- Now: $\int e^{\frac{-y^{2}}{2 t}} f(x, y) d y$

Brownian Motion

Definition (Brownian Motion in \mathbb{R})

An one dimensional stochastic process $\left(B_{t}\right)_{t \geq 0}$ is called Brownian Motion in \mathbb{R} with start value z if it is characterised by the following facts:

- $B_{0}=z$

Let $0 \leq s<t$. Then $B_{t}-B_{s}$ is normally distributed with expected
value 0 and variance $t-s$.
Let $n>1,0<t_{0}<t_{1}<\ldots<t_{n}$.Then $B_{t_{0}}, B_{t_{1}}-B_{t_{0}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$
are independent random variables.
Every path is almost surely continuous.

Brownian Motion

Definition (Brownian Motion in \mathbb{R})

An one dimensional stochastic process $\left(B_{t}\right)_{t \geq 0}$ is called Brownian Motion in \mathbb{R} with start value z if it is characterised by the following facts:

- $B_{0}=z$
- Let $0 \leq s<t$. Then $B_{t}-B_{s}$ is normally distributed with expected value 0 and variance $t-s$.
are independent random variables.
Every path is almost surely continuous.

Brownian Motion

Definition (Brownian Motion in \mathbb{R})

An one dimensional stochastic process $\left(B_{t}\right)_{t \geq 0}$ is called Brownian Motion in \mathbb{R} with start value z if it is characterised by the following facts:

- $B_{0}=z$
- Let $0 \leq s<t$. Then $B_{t}-B_{s}$ is normally distributed with expected value 0 and variance $t-s$.
\downarrow Let $n \geq 1,0 \leq t_{0}<t_{1}<\ldots<t_{n}$.Then $B_{t_{0}}, B_{t_{1}}-B_{t_{0}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$ are independent random variables.

Every path is almost surely continuous.

Brownian Motion

Definition (Brownian Motion in \mathbb{R})

An one dimensional stochastic process $\left(B_{t}\right)_{t \geq 0}$ is called Brownian Motion in \mathbb{R} with start value z if it is characterised by the following facts:

- $B_{0}=z$
- Let $0 \leq s<t$. Then $B_{t}-B_{s}$ is normally distributed with expected value 0 and variance $t-s$.
\downarrow Let $n \geq 1,0 \leq t_{0}<t_{1}<\ldots<t_{n}$.Then $B_{t_{0}}, B_{t_{1}}-B_{t_{0}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$ are independent random variables.
- Every path is almost surely continuous.

Brownian Motion

Definition (Brownian Motion in \mathbb{R}^{n})

An n-dimensional stochastic process $\left(B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{n}\right)\right)_{t \geq 0}$ is called Brownian Motion in \mathbb{R}^{n} with start value $z \in \mathbb{R}^{n}$ if every stochastic process $\left(B_{t}^{i}\right)_{t \geq 0}$ is a Brownian Motion in \mathbb{R} for $i \in\{1, \ldots, n\}$, the stochastic processes $B_{t}^{1}, \ldots, B_{t}^{n}$ are independent for every $t \geq 0$ and $B_{0}=z$.

Brownian Motion

Fakultät für Informatik und Mathematik

Let $A \subset \mathbb{R}^{n}$ be a borel set and let $z \in \mathbb{R}^{n}$ be the start value. The probability for $B_{t} \in A$ at time t is given by

$$
P\left(B_{t} \in A\right)= \begin{cases}\delta_{z}(A), & t=0 \\ \frac{1}{(2 \pi t)^{\frac{n}{2}}} \int_{A} e^{-\frac{|x-z|^{2}}{2 t}} d x, & t>0 .\end{cases}
$$

where

$$
\delta_{z}(A)= \begin{cases}1, & z \in A \\ 0, & z \notin A .\end{cases}
$$

Brownian Motion

Fakultät für Informatik und Mathematik

Let $A \subset \mathbb{R}^{n}$ be a borel set and let $z \in \mathbb{R}^{n}$ be the start value. The probability for $B_{t} \in A$ at time t is given by

$$
P\left(B_{t} \in A\right)= \begin{cases}\delta_{z}(A), & t=0 \\ \frac{1}{(2 \pi t)^{\frac{n}{2}}} \int_{A} e^{-\frac{|x-z|^{2}}{2 t}} d x, & t>0 .\end{cases}
$$

where

$$
\delta_{z}(A)= \begin{cases}1, & z \in A \\ 0, & z \notin A .\end{cases}
$$

Brownian Motion

Fakultät für Informatik und Mathematik

Let $A \subset \mathbb{R}^{n}$ be a borel set and let $z \in \mathbb{R}^{n}$ be the start value. The probability for $B_{t} \in A$ at time t is given by

$$
P\left(B_{t} \in A\right)= \begin{cases}\delta_{z}(A), & t=0 \\ \frac{1}{(2 \pi t)^{\frac{\pi}{2}}} \int_{A} e^{-\frac{|x-z|^{2}}{2 t}} d x, & t>0 .\end{cases}
$$

where

$$
\delta_{z}(A)= \begin{cases}1, & z \in A \\ 0, & z \notin A .\end{cases}
$$

Motivation

- microscopic: wild
- macroscopic: tame if A is tame ?!

Statement of the problem

Fakultät für Informatik und Mathematik

Let $A \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ be a semialgebraic set. Let

$$
\begin{aligned}
f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}_{\geq 0} & \longrightarrow[0,1] \\
(a, z, t) & \mapsto \begin{cases}\delta_{z}\left(A_{a}\right), & t=0, \\
\frac{1}{(2 \pi t)^{\frac{n}{2}}} \int_{A_{a}} e^{\frac{-|x-z|^{2}}{2 t}} d x, & t>0 .\end{cases}
\end{aligned}
$$

Question:

- Definability?
- Asymptotics?

Results for \mathbb{R}

Let $A \subset \mathbb{R}^{n} \times \mathbb{R}$ be definable in an o-minimal structure \mathcal{M}. The function

$$
f: \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}_{\geq 0} \quad \longrightarrow \quad[0,1]
$$

$$
(a, z, t) \quad \mapsto \quad P_{z}\left(B_{t} \in A_{a}\right)= \begin{cases}\delta_{z}\left(A_{a}\right), & t=0 \\ \frac{1}{\sqrt{2 \pi t}} \int_{A_{a}} e^{\frac{-(x-z)^{2}}{2 t}} d x, & t>0\end{cases}
$$

is definable in an expansion of the o-minimal structure \mathcal{M}.

Results for \mathbb{R}

Let $A \subset \mathbb{R}^{n} \times \mathbb{R}$ be definable in an o-minimal structure \mathcal{M}. The function

$$
f: \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}_{\geq 0} \quad \longrightarrow \quad[0,1]
$$

$$
(a, z, t) \quad \mapsto \quad P_{z}\left(B_{t} \in A_{a}\right)= \begin{cases}\delta_{z}\left(A_{a}\right), & t=0 \\ \frac{1}{\sqrt{2 \pi t}} \int_{A_{a}} e^{\frac{-(x-z)^{2}}{2 t}} d x, & t>0\end{cases}
$$

is definable in an expansion of the o-minimal structure \mathcal{M}.

$$
\int_{C_{a}} e^{\frac{-(x-z)^{2}}{2 t}} d x=\int_{\alpha(a)}^{\beta(a)} e^{\frac{-(x-z)^{2}}{2 t}} d x
$$

$$
=\sqrt{2 t} \frac{\sqrt{\pi}}{2}\left(\operatorname{erf}\left(\frac{\beta(a)-z}{\sqrt{2 t}}\right)-\operatorname{erf}\left(\frac{\alpha(a)-z}{\sqrt{2 t}}\right)\right)
$$

Fakultät für Informatik und Mathematik

$$
\begin{aligned}
\int_{C_{a}} e^{\frac{-(x-z)^{2}}{2 t}} d x & =\int_{\alpha(a)}^{\beta(a)} e^{\frac{-(x-z)^{2}}{2 t}} d x \\
& =\sqrt{2 t} \frac{\sqrt{\pi}}{2}\left(\operatorname{erf}\left(\frac{\beta(a)-z}{\sqrt{2 t}}\right)-\operatorname{erf}\left(\frac{\alpha(a)-z}{\sqrt{2 t}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\int_{C_{a}} e^{\frac{-(x-z)^{2}}{2 t}} d x & =\int_{\alpha(a)}^{\beta(a)} e^{\frac{-(x-z)^{2}}{2 t}} d x \\
& =\sqrt{2 t} \frac{\sqrt{\pi}}{2}\left(\operatorname{erf}\left(\frac{\beta(a)-z}{\sqrt{2 t}}\right)-\operatorname{erf}\left(\frac{\alpha(a)-z}{\sqrt{2 t}}\right)\right)
\end{aligned}
$$

Theorem (Speissegger)

Suppose that $I \subseteq \mathbb{R}$ is an open interval, $a \in I$ and $g: I \rightarrow \mathbb{R}$ is definable in the Pfaffian closure $\mathcal{P}(\mathcal{M})$ and continuous. Then its antiderivative $F: I \rightarrow \mathbb{R}$ given by $F(x):=\int_{a}^{x} g(t) d t$ is also definable in $\mathcal{P}(\mathcal{M})$.

Fakultät für Informatik und Mathematik

$$
\begin{aligned}
\int_{C_{a}} e^{\frac{-(x-z)^{2}}{2 t}} d x & =\int_{\alpha(a)}^{\beta(a)} e^{\frac{-(x-z)^{2}}{2 t}} d x \\
& =\sqrt{2 t} \frac{\sqrt{\pi}}{2}\left(\operatorname{erf}\left(\frac{\beta(a)-z}{\sqrt{2 t}}\right)-\operatorname{erf}\left(\frac{\alpha(a)-z}{\sqrt{2 t}}\right)\right)
\end{aligned}
$$

By Speissegger $f(a, z, t)$ is definable in $\mathcal{P}(\mathcal{M})$.

Results for higher dimensions

Let $A \subset \mathbb{R}^{n} \times \mathbb{R}^{2}$ be a globally subanalytic set. We assume that A_{a} is uniformly bounded and the start value z is 0 . Then the function

$$
\begin{aligned}
f: \mathbb{R}^{n} \times \mathbb{R}_{\geq 0} & \longrightarrow[0,1] \\
(a, t) & \mapsto
\end{aligned} P_{0}\left(B_{t} \in A_{a}\right)=\frac{1}{2 \pi t} \int_{A_{a}} e^{\frac{-|x|^{2}}{2 t}} d x, t>0
$$

a) is definable in $\mathbb{R}_{\text {an }}$ for $t \rightarrow \infty$ (by Comte, Lion, Rolin).
b) For $t \rightarrow 0$ we can establish an asymptotic expansion

$$
f \sim \sum_{n=0}^{\infty} d_{n}(a) t^{\frac{n}{2 q}},
$$

where $d_{n}(a)$ is globally subanalytic for all $n \in \mathbb{N}_{0}$.

Fakultät fuir Informatik und Mathematik
Sketch of the proof in the case without parameters:
With polar coordinate transformation and cell decomposition

$$
\frac{1}{2 \pi t} \int e^{-\frac{r^{2}}{2 t}} r d(r, \varphi)
$$

Sketch of the proof in the case without parameters:
With polar coordinate transformation and cell decomposition

$$
\frac{1}{2 \pi t} \int_{C} e^{-\frac{r^{2}}{2 t}} r d(r, \varphi)=\frac{1}{2 \pi t} \int_{r=\alpha}^{\beta} \int_{\varphi=\eta(r)}^{\psi(r)} e^{-\frac{r^{2}}{2 t}} r d \varphi d r
$$

Sketch of the proof in the case without parameters:
With polar coordinate transformation and cell decomposition

$$
\frac{1}{2 \pi t} \int_{C} e^{-\frac{r^{2}}{2 t}} r d(r, \varphi)=\frac{1}{2 \pi t} \int_{r=\alpha}^{\beta} \int_{\varphi=\eta(r)}^{\psi(r)} e^{-\frac{r^{2}}{2 t}} r d \varphi d r
$$

$$
\begin{aligned}
= & \frac{1}{2 \pi t} \int_{\alpha}^{\beta} e^{-\frac{r^{2}}{2 t}} r \psi(r) d r \\
& -\frac{1}{2 \pi t} \int_{\alpha}^{\beta} e^{-\frac{r^{2}}{2 t}} r \eta(r) d r
\end{aligned}
$$

Sketch of the proof in the case without parameters:
With polar coordinate transformation and cell decomposition

$$
\frac{1}{2 \pi t} \int_{C} e^{-\frac{r^{2}}{2 t}} r d(r, \varphi)=\frac{1}{2 \pi t} \int_{r=\alpha}^{\beta} \int_{\varphi=\eta(r)}^{\psi(r)} e^{-\frac{r^{2}}{2 t}} r d \varphi d r
$$

$$
\begin{aligned}
= & \frac{1}{2 \pi t} \int_{\alpha}^{\beta} e^{-\frac{r^{2}}{2 t} r} \psi(r) d r \\
& -\frac{1}{2 \pi t} \int_{\alpha}^{\beta} e^{-\frac{r^{2}}{2 t}} r \eta(r) d r
\end{aligned}
$$

Fakultät für Informatik und Mathematik

$$
\begin{aligned}
& \frac{1}{2 \pi t} \int_{\alpha}^{\beta} e^{-\frac{r^{2}}{2 t} r} \psi(r) d r \quad \stackrel{1}{2 \pi t} \int_{\alpha}^{\beta} e^{-\frac{r^{2}}{2 t} r} r d r \\
& \text { for puisseux series expansion } \\
& =f(t) \sim \sum_{n=0}^{\infty} d_{n} t^{\frac{n}{2 q}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2 \pi t} \int_{\alpha}^{\beta} e^{-\frac{r^{2}}{2 t}} r \psi(r) d r \stackrel{\text { Puisseux series expansion }}{\text { of } \psi}= \\
& \frac{1}{2 \pi t} \sum_{n=0}^{\infty} c_{n} \int_{\alpha}^{\beta} e^{-\frac{r^{2}}{2 t}} r r^{\frac{n}{q}} d r
\end{aligned}
$$

$$
\nabla \text { for } t \rightarrow 0: f(t) \sim \sum_{n=0}^{\infty} d_{n} t^{\frac{n}{2 q}} .
$$

$$
\begin{gathered}
\frac{1}{2 \pi t} \int_{\alpha}^{\beta} e^{-\frac{r^{2}}{2 t}} r \psi(r) d r \stackrel{\text { Puisseux series expansion }}{\stackrel{\text { of } \psi}{=}} \\
\frac{1}{2 \pi t} \sum_{n=0}^{\infty} c_{n} \int_{\alpha}^{\beta} e^{-\frac{r^{2}}{2 t}} r r^{\frac{n}{q}} d r
\end{gathered}
$$

\Rightarrow for $t \rightarrow 0: f(t) \sim \sum_{n=0}^{\infty} d_{n} t^{\frac{n}{2 q}}$.

Summary

Fakultät für Informatik und Mathematik

- for $\mathbb{R}: f(a, z, t)$ is definable in the Pfaffian closure $\mathcal{P}(\mathcal{M})$
- for higher dimensions with A_{a} uniformly bounded and start value $z=0$:
- $f(a, t)$ is definable in $\mathbb{R}_{\text {an }}$ for $t \rightarrow \infty$
- $f(a, t) \sim \sum_{n=0}^{\infty} d_{n}(a) t^{\frac{n}{2 q}}$ for $t \rightarrow 0$

