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Corollary. & =[J& (X) is the smallest collection of C-algebras containing
SU{e¥: ¢ € 8} and stable under parametric integration.
Moreover, £ is closed under taking Fourier transforms.
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Proposition. If T is strongly integrable, then Z+ € £ (X).
Proof. By Fubini-Tonelli,

/ (x,y)dy = // (x,y,t) (log [t])* €t+¢Ndydt, so we may
]Rn

suppose T = f (x, y) ¥ ¢ D(X x R"). O-minimality does the rest. [

Def. A generator T (x,y) € £(X x R") is naive iny if v does not depend on y.
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Apply the above lemma to F (x) =3, felti™) where Lj (x1,...,xn) is the
linear form such that p; (y) = L; (y,yz7 e ,y"). O



