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Motivation and background

Oscillatory integrals. λ ∈ R, x = (x1, . . . , xn) ∈ Rn

I (λ) =
ˆ
Rn

e iλϕ(x)ψ (x) dx , where:

• the phase ϕ is analytic, 0 ∈ Rn is an isolated singular point of ϕ;
• the amplitude ψ is C∞ with support a compact nbd of 0.

These objects are classically studied in optical physics (Fresnel, Airy,...).

Aim. To study the behaviour of I (λ) when λ→∞.

n = 1 I (λ) ∼ e iλϕ(0)
∑
j∈N

aj (ψ)λ
− j

N(ϕ) aj (ψ) ∈ R, N (ϕ) ∈ N fixed.

n > 1 reduce to the case n = 1 by monomializing the phase (res. of sing.).
Suitable blow-ups act as changes of variables in Rn, outside a set of measure 0.
Using Fubini and the case n = 1, one proves:

I (λ) ∼ e iλϕ(0)
∑
q∈Q

n−1∑
k=0

aq,k (ψ)λ
q (log λ)k .
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Oscillatory integrals in several variables

A more general situation. λ = (λ1, . . . , λm) ∈ Rm, x = (x1, . . . , xn) ∈ Rn

I (λ) =
ˆ
Rn

e iϕ(λ,x)ψ (x) dx

(the parameters λ and the variables x are “intertwined” in the expression for ϕ).

Example. Fourier transforms ψ̂ (λ) =

ˆ
Rn
e−2πiλ·xψ (x) dx .

Aim. Understand the nature of I (λ) (depending on the nature of ϕ and ψ).

Tool needed.
Monomialize the phase while keeping track of the different nature of the
variables λ and x .

Natural framework and natural tool:
Framework: ϕ,ψ globally subanalytic (i.e. definable in Ran).
Tool: the Lion-Rolin Preparation Theorem.

Proviso. For the rest of the talk, subanalytic means “globally subanalytic”.
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Our framework: parametric integrals and subanalytic functions
Def. For X ⊆ Rm and f : X × Rn → R, define, ∀x ∈ X s.t. f (x , ·) ∈ L1 (Rn),

the parametric integral If (x) =
´
Rn f (x , y) dy .

Def. For X ⊆ Rm subanalytic, let

S (X ) := {f : X → R subanalytic} and S =
⋃

X sub.

S (X )

(Comte - Lion - Rolin). f ∈ S (X × Rn)⇒ If ∈ C (X ),
where C (X ) := R-algebra generated by {g , log h : g , h ∈ S (X ) , h > 0}

(“constructible” or “log-subanalytic” functions:
∑
j≤J

gj

∏
k≤K

log hj,k).

(Cluckers - Miller). f ∈ C (X × Rn)⇒ If ∈ C (X ) .

Aim. Study oscillatory integrals I (λ) =
´
Rn e iλϕ(x)ψ (x) dx , with ϕ,ψ ∈ S (Rn)

and Fourier transforms f̂ (ξ) =
´
Rn f (x) e−2πiξ·xdx with f ∈ S (Rn).

Question. D (X ) := C- algebra generated by C (X ) and
{
e iϕ(x) : ϕ ∈ S (X )

}
.

f ∈ D (X × Rn)
?⇒ If ∈ D (X )
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One-dimensional transcendentals

X ⊆ Rm subanalytic. What do we need to add to D (X ) to make it stable
under parametric integration?

γh,`(x) =
´
R h(x , t)(log |t|)

`e itdt,
(
` ∈ N, h ∈ S (X × R) , h (x , ·) ∈ L1 (R)

)
Def. E (X ) := the D (X )-module generated by {γh,`}h,`
Main Theorem. f ∈ E (X × Rn)⇒ If ∈ E (X ) . More precisely,

let Int (f ,X ) :=
{
x ∈ X : f (x , ·) ∈ L1 (Rn)

}
(integrability locus).

Then there exists F ∈ E (X ) s.t. F (x) =
ˆ
Rn
f (x , y) dy ∀x ∈ Int (f ,X ).

Corollary. E (X ) is a C-algebra.
Proof. By Fubini,
γh,` (x) · γh′,`′ (x) =

˜
R2 h (x , t) · h′ (x , t′) · (log |t|)` · (log |t′|)

`′ e i(t+t′)dtdt′,
which is the parametric integral of a function in D (X ), and hence, by the Main
Theorem, belongs to E (X ).

Corollary. E =
⋃
E (X ) is the smallest collection of C-algebras containing

S ∪
{
e iϕ : ϕ ∈ S

}
and stable under parametric integration.

Moreover, E is closed under taking Fourier transforms.
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Generators

Rem. An element of E (X × Rn) can be written as a finite sum of generators:

T (x , y) = f (x , y) · e iϕ(x,y) · γ (x , y) , where

f ∈ C (X × Rn) , ϕ ∈ S (X × Rn) and γ (x , y) =
ˆ
R
h(x , y , t)(log |t|)`e itdt

Def. A generator T (x , y) ∈ E (X × Rn) is strongly integrable if

y 7−→ |f (x , y)|
ˆ
R

∣∣∣h (x , y , t) (log |t|)`∣∣∣ dt ∈ L1 (Rn).

Proposition. If T is strongly integrable, then IT ∈ E (X ).

Proof. By Fubini-Tonelli,ˆ
Rn
T (x , y) dy =

¨
Rn+1

f (x , y) h (x , y , t) (log |t|)` e i(t+ϕ(x,y))dydt, so we may

suppose T = f (x , y) e iϕ(x,y) ∈ D (X × Rn). O-minimality does the rest.

Def. A generator T (x , y) ∈ E (X × Rn) is naive in y if γ does not depend on y .



Generators

Rem. An element of E (X × Rn) can be written as a finite sum of generators:

T (x , y) = f (x , y) · e iϕ(x,y) · γ (x , y) , where

f ∈ C (X × Rn) , ϕ ∈ S (X × Rn) and γ (x , y) =
ˆ
R
h(x , y , t)(log |t|)`e itdt

Def. A generator T (x , y) ∈ E (X × Rn) is strongly integrable if

y 7−→ |f (x , y)|
ˆ
R

∣∣∣h (x , y , t) (log |t|)`∣∣∣ dt ∈ L1 (Rn).

Proposition. If T is strongly integrable, then IT ∈ E (X ).

Proof. By Fubini-Tonelli,ˆ
Rn
T (x , y) dy =

¨
Rn+1

f (x , y) h (x , y , t) (log |t|)` e i(t+ϕ(x,y))dydt, so we may

suppose T = f (x , y) e iϕ(x,y) ∈ D (X × Rn). O-minimality does the rest.

Def. A generator T (x , y) ∈ E (X × Rn) is naive in y if γ does not depend on y .



Generators

Rem. An element of E (X × Rn) can be written as a finite sum of generators:

T (x , y) = f (x , y) · e iϕ(x,y) · γ (x , y) , where

f ∈ C (X × Rn) , ϕ ∈ S (X × Rn) and γ (x , y) =
ˆ
R
h(x , y , t)(log |t|)`e itdt

Def. A generator T (x , y) ∈ E (X × Rn) is strongly integrable if

y 7−→ |f (x , y)|
ˆ
R

∣∣∣h (x , y , t) (log |t|)`∣∣∣ dt ∈ L1 (Rn).

Proposition. If T is strongly integrable, then IT ∈ E (X ).

Proof. By Fubini-Tonelli,ˆ
Rn
T (x , y) dy =

¨
Rn+1

f (x , y) h (x , y , t) (log |t|)` e i(t+ϕ(x,y))dydt, so we may

suppose T = f (x , y) e iϕ(x,y) ∈ D (X × Rn). O-minimality does the rest.

Def. A generator T (x , y) ∈ E (X × Rn) is naive in y if γ does not depend on y .



Generators

Rem. An element of E (X × Rn) can be written as a finite sum of generators:

T (x , y) = f (x , y) · e iϕ(x,y) · γ (x , y) , where

f ∈ C (X × Rn) , ϕ ∈ S (X × Rn) and γ (x , y) =
ˆ
R
h(x , y , t)(log |t|)`e itdt

Def. A generator T (x , y) ∈ E (X × Rn) is strongly integrable if

y 7−→ |f (x , y)|
ˆ
R

∣∣∣h (x , y , t) (log |t|)`∣∣∣ dt ∈ L1 (Rn).

Proposition. If T is strongly integrable, then IT ∈ E (X ).

Proof. By Fubini-Tonelli,ˆ
Rn
T (x , y) dy =

¨
Rn+1

f (x , y) h (x , y , t) (log |t|)` e i(t+ϕ(x,y))dydt, so we may

suppose T = f (x , y) e iϕ(x,y) ∈ D (X × Rn). O-minimality does the rest.

Def. A generator T (x , y) ∈ E (X × Rn) is naive in y if γ does not depend on y .



Generators

Rem. An element of E (X × Rn) can be written as a finite sum of generators:

T (x , y) = f (x , y) · e iϕ(x,y) · γ (x , y) , where

f ∈ C (X × Rn) , ϕ ∈ S (X × Rn) and γ (x , y) =
ˆ
R
h(x , y , t)(log |t|)`e itdt

Def. A generator T (x , y) ∈ E (X × Rn) is strongly integrable if

y 7−→ |f (x , y)|
ˆ
R

∣∣∣h (x , y , t) (log |t|)`∣∣∣ dt ∈ L1 (Rn).

Proposition. If T is strongly integrable, then IT ∈ E (X ).

Proof. By Fubini-Tonelli,ˆ
Rn
T (x , y) dy =

¨
Rn+1

f (x , y) h (x , y , t) (log |t|)` e i(t+ϕ(x,y))dydt, so we may

suppose T = f (x , y) e iϕ(x,y) ∈ D (X × Rn).

O-minimality does the rest.

Def. A generator T (x , y) ∈ E (X × Rn) is naive in y if γ does not depend on y .



Generators

Rem. An element of E (X × Rn) can be written as a finite sum of generators:

T (x , y) = f (x , y) · e iϕ(x,y) · γ (x , y) , where

f ∈ C (X × Rn) , ϕ ∈ S (X × Rn) and γ (x , y) =
ˆ
R
h(x , y , t)(log |t|)`e itdt

Def. A generator T (x , y) ∈ E (X × Rn) is strongly integrable if

y 7−→ |f (x , y)|
ˆ
R

∣∣∣h (x , y , t) (log |t|)`∣∣∣ dt ∈ L1 (Rn).

Proposition. If T is strongly integrable, then IT ∈ E (X ).

Proof. By Fubini-Tonelli,ˆ
Rn
T (x , y) dy =

¨
Rn+1

f (x , y) h (x , y , t) (log |t|)` e i(t+ϕ(x,y))dydt, so we may

suppose T = f (x , y) e iϕ(x,y) ∈ D (X × Rn). O-minimality does the rest.

Def. A generator T (x , y) ∈ E (X × Rn) is naive in y if γ does not depend on y .



Generators

Rem. An element of E (X × Rn) can be written as a finite sum of generators:

T (x , y) = f (x , y) · e iϕ(x,y) · γ (x , y) , where

f ∈ C (X × Rn) , ϕ ∈ S (X × Rn) and γ (x , y) =
ˆ
R
h(x , y , t)(log |t|)`e itdt

Def. A generator T (x , y) ∈ E (X × Rn) is strongly integrable if

y 7−→ |f (x , y)|
ˆ
R

∣∣∣h (x , y , t) (log |t|)`∣∣∣ dt ∈ L1 (Rn).

Proposition. If T is strongly integrable, then IT ∈ E (X ).

Proof. By Fubini-Tonelli,ˆ
Rn
T (x , y) dy =

¨
Rn+1

f (x , y) h (x , y , t) (log |t|)` e i(t+ϕ(x,y))dydt, so we may

suppose T = f (x , y) e iϕ(x,y) ∈ D (X × Rn). O-minimality does the rest.

Def. A generator T (x , y) ∈ E (X × Rn) is naive in y if γ does not depend on y .



Key step: preparation of functions in E (X×R)

Preparation Theorem. Given f ∈ E (X×R), up to cell decomposition of X × R,
there are finite index sets J Int, JNaive ⊆ N and generators Tj ,Sj s.t.

f =
∑

j∈JInt

Tj +
∑

j∈JNaive

Sj , where

the Tj are strongly integrable, the Sj are naive in y and
∀x , x ∈ Int (f ,X )⇒ ∀j ∈ JNaive, x /∈ Int (Sj ,X ).

Ingredients of the proof.
• cell decomposition, definable choice
• “nested” subanalytic preparation (after Lion-Rolin):

h (x , y , t) = h0 (x , y) |t − θ (x , y)|r U (x , y , t)
• integration by parts creates a naive term and an integrable term.

Proof of the Main Theorem. Let x ∈ Int (f ,X ) and F (x) =
∑

j∈JInt

ˆ
R
Tjdy .

Claim. x /∈ Int
(∑

j∈JNaive
Sj ,X

)
. Then

∑
j∈JNaive

Sj (x , ·) ≡ 0 and´
R f (x , y) dy = F (x)∈ E (X ). This proves the case n = 1.

The case n > 1 follows by Fubini and induction on n.
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Finite sums of exponentials of polynomials

Claim. Let x /∈ Int (Sj ,X ) ∀j ∈ J. Then x /∈ Int
(∑

j∈J Sj ,X
)
.

Proof. Fix such an x . We may assume that Sj (y) = fjy rj (log y)sj e ipj (y), with
fj 6= 0 and pj distinct polynomials in y1/d and pj (0) = 0.

Let G (y) =
∑

j∈J fje
ipj (y). Notice that y rj (log y)sj > y−1 for y >> 0.

Then,
ˆ
R+

∣∣∣∑j∈J Sj (y)
∣∣∣ dy ≥ ˆ

R+

1
y |G (y)| dy .

Since G 6≡ 0, by continuity ∃ε, δ > 0 s.t. |G (y)| > ε on some interval I of
length ≥ δ.

Idea: If G were periodic, of period ν, then |G | ≥ ε on Vε :=
⋃

k∈N (I + kν).

Then,
ˆ
R+

1
y |G (y)| dy ≥ ε

ˆ
R+∩Vε

1
y dy ∼

∞∑
k=1

δ
kν =∞.

Now, G is not periodic. But, using the theory of almost periodic functions (H.
Bohr), we show that the set Vε := {y : |G (y)| ≥ ε} is relatively dense in R,
i.e. it intersects every interval of size ν (for some ν > 0), and such an
intersection has measure ≥ δ (for some δ > 0).
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(∑
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)
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ipj (y). Notice that y rj (log y)sj > y−1 for y >> 0.
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1
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k∈N (I + kν).
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Almost periodic functions

Example. f (x) = sin (2πx) + sin
(
2
√
2πx

)
is not periodic.

However,
∀ε > 0 ∃ ∞ many τ s.t. x ∈ R |f (x + τ)− f (x)| < ε.

Given f , an ε-period is a number τ such that x ∈ R |f (x + τ)− f (x)| < ε.
Tf ,ε := {τ : τ is an ε− period}.

Def. A continuous function f is almost periodic if for every ε > 0, the set Tf ,ε
is relatively dense, i.e. it intersects every interval of size ν (for some ν > 0).
This definition extends to F : Rn → R.

Lemma. If F : Rn → R is almost periodic and G (y) = F
(
y , y2, . . . , yn), then

∃ε > 0 s.t. the set Vε := {y : |G (y)| ≥ ε} intersects every interval of size ν
(for some ν > 0), and such an intersection has measure ≥ δ (for some δ > 0).

Recall: we have G (y) =
∑

j∈J fje
ipj (y), which is not almost periodic, and we

want to prove that
ˆ

Vε

1
y dy =∞.

Apply the above lemma to F (x) =
∑

j∈J fje
iLj (x), where Lj (x1, . . . , xn) is the

linear form such that pj (y) = Lj
(
y , y2, . . . , yn).
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