Lebesgue integration of oscillating and subanalytic functions

Tamara Servi
(University of Pisa)

(joint work with R. Cluckers, G. Comte, D. Miller, J.-P. Rolin)

19th July 2015

Motivation and background

Motivation and background

Oscillatory integrals. $\lambda \in \mathbb{R}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{n}} e^{\mathrm{i} \lambda \varphi(x)} \psi(x) \mathrm{d} x \text {, where: }
$$

- the phase φ is analytic, $0 \in \mathbb{R}^{n}$ is an isolated singular point of φ;
- the amplitude ψ is \mathcal{C}^{∞} with support a compact nbd of 0 .

Motivation and background

Oscillatory integrals. $\lambda \in \mathbb{R}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{\mathrm{i} \lambda \varphi(x)} \psi(x) \mathrm{d} x \text {, where: }
$$

- the phase φ is analytic, $0 \in \mathbb{R}^{n}$ is an isolated singular point of φ;
- the amplitude ψ is \mathcal{C}^{∞} with support a compact nbd of 0 .

These objects are classically studied in optical physics (Fresnel, Airy,...).

Motivation and background

Oscillatory integrals. $\lambda \in \mathbb{R}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{\mathrm{i} \lambda \varphi(x)} \psi(x) \mathrm{d} x \text {, where: }
$$

- the phase φ is analytic, $0 \in \mathbb{R}^{n}$ is an isolated singular point of φ;
- the amplitude ψ is \mathcal{C}^{∞} with support a compact nbd of 0 .

These objects are classically studied in optical physics (Fresnel, Airy,...).
Aim. To study the behaviour of $\mathcal{I}(\lambda)$ when $\lambda \rightarrow \infty$.

Motivation and background

Oscillatory integrals. $\lambda \in \mathbb{R}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{\mathrm{i} \lambda \varphi(x)} \psi(x) \mathrm{d} x, \text { where: }
$$

- the phase φ is analytic, $0 \in \mathbb{R}^{n}$ is an isolated singular point of φ;
- the amplitude ψ is \mathcal{C}^{∞} with support a compact nbd of 0 .

These objects are classically studied in optical physics (Fresnel, Airy,...).
Aim. To study the behaviour of $\mathcal{I}(\lambda)$ when $\lambda \rightarrow \infty$.
$n=1 \quad \mathcal{I}(\lambda) \sim e^{i \lambda \varphi(0)} \sum_{j \in \mathbb{N}} a_{j}(\psi) \lambda^{-\frac{j}{N(\varphi)}} \quad a_{j}(\psi) \in \mathbb{R}, N(\varphi) \in \mathbb{N}$ fixed.

Motivation and background

Oscillatory integrals. $\lambda \in \mathbb{R}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{\mathrm{i} \lambda \varphi(x)} \psi(x) \mathrm{d} x, \text { where: }
$$

- the phase φ is analytic, $0 \in \mathbb{R}^{n}$ is an isolated singular point of φ;
- the amplitude ψ is \mathcal{C}^{∞} with support a compact nbd of 0 .

These objects are classically studied in optical physics (Fresnel, Airy,...).
Aim. To study the behaviour of $\mathcal{I}(\lambda)$ when $\lambda \rightarrow \infty$.
$n=1 \quad \mathcal{I}(\lambda) \sim e^{i \lambda \varphi(0)} \sum_{j \in \mathbb{N}} a_{j}(\psi) \lambda^{-\frac{j}{N(\varphi)}} \quad a_{j}(\psi) \in \mathbb{R}, N(\varphi) \in \mathbb{N}$ fixed.
$n>1$ reduce to the case $n=1$ by monomializing the phase (res. of sing.).

Motivation and background

Oscillatory integrals. $\lambda \in \mathbb{R}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{\mathrm{i} \lambda \varphi(x)} \psi(x) \mathrm{d} x, \text { where: }
$$

- the phase φ is analytic, $0 \in \mathbb{R}^{\boldsymbol{n}}$ is an isolated singular point of φ;
- the amplitude ψ is \mathcal{C}^{∞} with support a compact nbd of 0 .

These objects are classically studied in optical physics (Fresnel, Airy,...).
Aim. To study the behaviour of $\mathcal{I}(\lambda)$ when $\lambda \rightarrow \infty$.
$n=1 \quad \mathcal{I}(\lambda) \sim e^{i \lambda \varphi(0)} \sum_{j \in \mathbb{N}} a_{j}(\psi) \lambda^{-\frac{j}{N(\varphi)}} \quad a_{j}(\psi) \in \mathbb{R}, N(\varphi) \in \mathbb{N}$ fixed.
$n>1$ reduce to the case $n=1$ by monomializing the phase (res. of sing.).
Suitable blow-ups act as changes of variables in \mathbb{R}^{n}, outside a set of measure 0 .

Motivation and background

Oscillatory integrals. $\lambda \in \mathbb{R}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{\mathrm{i} \lambda \varphi(x)} \psi(x) \mathrm{d} x, \text { where: }
$$

- the phase φ is analytic, $0 \in \mathbb{R}^{\boldsymbol{n}}$ is an isolated singular point of φ;
- the amplitude ψ is \mathcal{C}^{∞} with support a compact nbd of 0 .

These objects are classically studied in optical physics (Fresnel, Airy,...).
Aim. To study the behaviour of $\mathcal{I}(\lambda)$ when $\lambda \rightarrow \infty$.
$n=1 \quad \mathcal{I}(\lambda) \sim e^{i \lambda \varphi(0)} \sum_{j \in \mathbb{N}} a_{j}(\psi) \lambda^{-\frac{j}{N(\varphi)}} \quad a_{j}(\psi) \in \mathbb{R}, N(\varphi) \in \mathbb{N}$ fixed.
$n>1$ reduce to the case $n=1$ by monomializing the phase (res. of sing.).
Suitable blow-ups act as changes of variables in \mathbb{R}^{n}, outside a set of measure 0 . Using Fubini and the case $n=1$, one proves:

$$
\mathcal{I}(\lambda) \sim e^{\mathrm{i} \lambda \varphi(0)} \sum_{q \in \mathbb{Q}} \sum_{k=0}^{n-1} a_{q, k}(\psi) \lambda^{q}(\log \lambda)^{k}
$$

Oscillatory integrals in several variables

A more general situation. $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

Oscillatory integrals in several variables

A more general situation. $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{\mathrm{i} \varphi(\lambda, x)} \psi(x) \mathrm{d} x
$$

(the parameters λ and the variables x are "intertwined" in the expression for φ).

Oscillatory integrals in several variables

A more general situation. $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{n}} e^{i \varphi(\lambda, x)} \psi(x) \mathrm{d} x
$$

(the parameters λ and the variables x are "intertwined" in the expression for φ).
Example. Fourier transforms $\hat{\psi}(\lambda)=\int_{\mathbb{R}^{n}} e^{-2 \pi \mathrm{i} \cdot \cdot x} \psi(x) \mathrm{d} x$.

Oscillatory integrals in several variables

A more general situation. $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{n}} e^{i \varphi(\lambda, x)} \psi(x) \mathrm{d} x
$$

(the parameters λ and the variables x are "intertwined" in the expression for φ).
Example. Fourier transforms $\hat{\psi}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{-2 \pi \mathrm{i} \cdot \cdot x} \psi(x) \mathrm{d} x$.
Aim. Understand the nature of $\mathcal{I}(\lambda)$ (depending on the nature of φ and ψ).

Oscillatory integrals in several variables

A more general situation. $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{n}} e^{i \varphi(\lambda, x)} \psi(x) \mathrm{d} x
$$

(the parameters λ and the variables x are "intertwined" in the expression for φ).
Example. Fourier transforms $\hat{\psi}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{-2 \pi i \lambda \cdot x} \psi(x) \mathrm{d} x$.
Aim. Understand the nature of $\mathcal{I}(\lambda)$ (depending on the nature of φ and ψ).
Tool needed.
Monomialize the phase while keeping track of the different nature of the variables λ and x.

Oscillatory integrals in several variables

A more general situation. $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{\mathrm{i} \varphi(\lambda, x)} \psi(x) \mathrm{d} x
$$

(the parameters λ and the variables x are "intertwined" in the expression for φ).
Example. Fourier transforms $\hat{\psi}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{-2 \pi \mathrm{i} \lambda \cdot \boldsymbol{x}} \psi(x) \mathrm{d} x$.
Aim. Understand the nature of $\mathcal{I}(\lambda)$ (depending on the nature of φ and ψ).
Tool needed.
Monomialize the phase while keeping track of the different nature of the variables λ and x.

Natural framework and natural tool:

Oscillatory integrals in several variables

A more general situation. $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{\mathrm{i} \varphi(\lambda, x)} \psi(x) \mathrm{d} x
$$

(the parameters λ and the variables x are "intertwined" in the expression for φ).
Example. Fourier transforms $\hat{\psi}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{-2 \pi \mathrm{i} \lambda \cdot \boldsymbol{x}} \psi(x) \mathrm{d} x$.
Aim. Understand the nature of $\mathcal{I}(\lambda)$ (depending on the nature of φ and ψ).
Tool needed.
Monomialize the phase while keeping track of the different nature of the variables λ and x.

Natural framework and natural tool:
Framework: φ, ψ globally subanalytic (i.e. definable in \mathbb{R}_{an}).

Oscillatory integrals in several variables

A more general situation. $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{\mathrm{i} \varphi(\lambda, x)} \psi(x) \mathrm{d} x
$$

(the parameters λ and the variables x are "intertwined" in the expression for φ).
Example. Fourier transforms $\hat{\psi}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{-2 \pi \mathrm{i} \lambda \cdot \boldsymbol{x}} \psi(x) \mathrm{d} x$.
Aim. Understand the nature of $\mathcal{I}(\lambda)$ (depending on the nature of φ and ψ).
Tool needed.
Monomialize the phase while keeping track of the different nature of the variables λ and x.

Natural framework and natural tool:
Framework: φ, ψ globally subanalytic (i.e. definable in \mathbb{R}_{an}).
Tool: the Lion-Rolin Preparation Theorem.

Oscillatory integrals in several variables

A more general situation. $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{R}^{m}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$

$$
\mathcal{I}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{\mathrm{i} \varphi(\lambda, x)} \psi(x) \mathrm{d} x
$$

(the parameters λ and the variables x are "intertwined" in the expression for φ).
Example. Fourier transforms $\hat{\psi}(\lambda)=\int_{\mathbb{R}^{\boldsymbol{n}}} e^{-2 \pi \mathrm{i} \cdot \cdot x} \psi(x) \mathrm{d} x$.
Aim. Understand the nature of $\mathcal{I}(\lambda)$ (depending on the nature of φ and ψ).
Tool needed.
Monomialize the phase while keeping track of the different nature of the variables λ and x.

Natural framework and natural tool:
Framework: φ, ψ globally subanalytic (i.e. definable in \mathbb{R}_{an}).
Tool: the Lion-Rolin Preparation Theorem.
Proviso. For the rest of the talk, subanalytic means "globally subanalytic".

Our framework: parametric integrals and subanalytic functions Def. For $X \subseteq \mathbb{R}^{m}$ and $f: X \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, define, $\forall x \in X$ s.t. $f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)$, the parametric integral $\quad \mathcal{I}_{f}(x)=\int_{\mathbb{R}^{n}} f(x, y) \mathrm{d} y$.

Our framework: parametric integrals and subanalytic functions Def. For $X \subseteq \mathbb{R}^{m}$ and $f: X \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, define, $\forall x \in X$ s.t. $f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)$, the parametric integral $\quad \mathcal{I}_{f}(x)=\int_{\mathbb{R}^{n}} f(x, y) \mathrm{d} y$.

Def. For $X \subseteq \mathbb{R}^{m}$ subanalytic, let

$$
\mathcal{S}(X):=\{f: X \rightarrow \mathbb{R} \text { subanalytic }\} \text { and } \mathcal{S}=\bigcup_{X \text { sub. }} \mathcal{S}(X)
$$

Our framework: parametric integrals and subanalytic functions Def. For $X \subseteq \mathbb{R}^{m}$ and $f: X \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, define, $\forall x \in X$ s.t. $f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)$, the parametric integral $\quad \mathcal{I}_{f}(x)=\int_{\mathbb{R}^{n}} f(x, y) \mathrm{d} y$.

Def. For $X \subseteq \mathbb{R}^{m}$ subanalytic, let

$$
\mathcal{S}(X):=\{f: X \rightarrow \mathbb{R} \text { subanalytic }\} \text { and } \mathcal{S}=\bigcup_{X \text { sub. }} \mathcal{S}(X)
$$

(Comte - Lion - Rolin). $f \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{C}(X)$,

Our framework: parametric integrals and subanalytic functions Def. For $X \subseteq \mathbb{R}^{m}$ and $f: X \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, define, $\forall x \in X$ s.t. $f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)$, the parametric integral $\quad \mathcal{I}_{f}(x)=\int_{\mathbb{R}^{n}} f(x, y) \mathrm{d} y$.

Def. For $X \subseteq \mathbb{R}^{m}$ subanalytic, let

$$
\mathcal{S}(X):=\{f: X \rightarrow \mathbb{R} \text { subanalytic }\} \text { and } \mathcal{S}=\bigcup_{X \text { sub. }} \mathcal{S}(X)
$$

(Comte - Lion - Rolin). $f \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{C}(X)$, where $\mathcal{C}(X):=\mathbb{R}$-algebra generated by $\{g, \log h: g, h \in \mathcal{S}(X), h>0\}$

Our framework: parametric integrals and subanalytic functions Def. For $X \subseteq \mathbb{R}^{m}$ and $f: X \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, define, $\forall x \in X$ s.t. $f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)$, the parametric integral $\quad \mathcal{I}_{f}(x)=\int_{\mathbb{R}^{n}} f(x, y) \mathrm{d} y$.

Def. For $X \subseteq \mathbb{R}^{m}$ subanalytic, let

$$
\mathcal{S}(X):=\{f: X \rightarrow \mathbb{R} \text { subanalytic }\} \text { and } \mathcal{S}=\bigcup_{X \text { sub. }} \mathcal{S}(X)
$$

(Comte - Lion - Rolin). $f \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{C}(X)$, where $\mathcal{C}(X):=\mathbb{R}$-algebra generated by $\{g, \log h: g, h \in \mathcal{S}(X), h>0\}$ ("constructible" or "log-subanalytic" functions: $\sum_{j \leq J} g_{j} \prod_{k \leq K} \log h_{j, k}$).

Our framework: parametric integrals and subanalytic functions Def. For $X \subseteq \mathbb{R}^{m}$ and $f: X \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, define, $\forall x \in X$ s.t. $f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)$, the parametric integral $\quad \mathcal{I}_{f}(x)=\int_{\mathbb{R}^{n}} f(x, y) \mathrm{d} y$.

Def. For $X \subseteq \mathbb{R}^{m}$ subanalytic, let

$$
\mathcal{S}(X):=\{f: X \rightarrow \mathbb{R} \text { subanalytic }\} \text { and } \mathcal{S}=\bigcup_{X \text { sub. }} \mathcal{S}(X)
$$

(Comte - Lion - Rolin). $f \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{C}(X)$, where $\mathcal{C}(X):=\mathbb{R}$-algebra generated by $\{g, \log h: g, h \in \mathcal{S}(X), h>0\}$ ("constructible" or "log-subanalytic" functions: $\sum_{j \leq J} g_{j} \prod_{k \leq K} \log h_{j, k}$).
(Cluckers - Miller). $f \in \mathcal{C}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{C}(X)$.

Our framework: parametric integrals and subanalytic functions Def. For $X \subseteq \mathbb{R}^{m}$ and $f: X \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, define, $\forall x \in X$ s.t. $f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)$, the parametric integral $\quad \mathcal{I}_{f}(x)=\int_{\mathbb{R}^{n}} f(x, y) \mathrm{d} y$.

Def. For $X \subseteq \mathbb{R}^{m}$ subanalytic, let

$$
\mathcal{S}(X):=\{f: X \rightarrow \mathbb{R} \text { subanalytic }\} \text { and } \mathcal{S}=\bigcup_{X \text { sub. }} \mathcal{S}(X)
$$

(Comte - Lion - Rolin). $f \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{C}(X)$, where $\mathcal{C}(X):=\mathbb{R}$-algebra generated by $\{g, \log h: g, h \in \mathcal{S}(X), h>0\}$ ("constructible" or "log-subanalytic" functions: $\sum_{j \leq J} g_{j} \prod_{k \leq K} \log h_{j, k}$).
(Cluckers - Miller). $f \in \mathcal{C}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{C}(X)$.
Aim. Study oscillatory integrals $\mathcal{I}(\lambda)=\int_{\mathbb{R}^{n}} e^{i \lambda \varphi(x)} \psi(x) d x$, with $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and Fourier transforms $\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i \xi \cdot x} d x$ with $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

Our framework: parametric integrals and subanalytic functions Def. For $X \subseteq \mathbb{R}^{m}$ and $f: X \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, define, $\forall x \in X$ s.t. $f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)$, the parametric integral $\quad \mathcal{I}_{f}(x)=\int_{\mathbb{R}^{n}} f(x, y) \mathrm{d} y$.

Def. For $X \subseteq \mathbb{R}^{m}$ subanalytic, let

$$
\mathcal{S}(X):=\{f: X \rightarrow \mathbb{R} \text { subanalytic }\} \text { and } \mathcal{S}=\bigcup_{X \text { sub. }} \mathcal{S}(X)
$$

(Comte - Lion - Rolin). $f \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{C}(X)$, where $\mathcal{C}(X):=\mathbb{R}$-algebra generated by $\{g, \log h: g, h \in \mathcal{S}(X), h>0\}$ ("constructible" or "log-subanalytic" functions: $\sum_{j \leq J} g_{j} \prod_{k \leq K} \log h_{j, k}$).
(Cluckers - Miller). $f \in \mathcal{C}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{C}(X)$.
Aim. Study oscillatory integrals $\mathcal{I}(\lambda)=\int_{\mathbb{R}^{n}} e^{i \lambda \varphi(x)} \psi(x) \mathrm{d} x$, with $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and Fourier transforms $\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i \xi \cdot x} d x$ with $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
Question. $\mathcal{D}(X):=\mathbb{C}$ - algebra generated by $\mathcal{C}(X)$ and $\left\{e^{\mathrm{i} \varphi(x)}: \varphi \in \mathcal{S}(X)\right\}$.

Our framework: parametric integrals and subanalytic functions Def. For $X \subseteq \mathbb{R}^{m}$ and $f: X \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, define, $\forall x \in X$ s.t. $f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)$, the parametric integral $\quad \mathcal{I}_{f}(x)=\int_{\mathbb{R}^{n}} f(x, y) \mathrm{d} y$.

Def. For $X \subseteq \mathbb{R}^{m}$ subanalytic, let

$$
\mathcal{S}(X):=\{f: X \rightarrow \mathbb{R} \text { subanalytic }\} \text { and } \mathcal{S}=\bigcup_{X \text { sub. }} \mathcal{S}(X)
$$

(Comte - Lion - Rolin). $f \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{C}(X)$, where $\mathcal{C}(X):=\mathbb{R}$-algebra generated by $\{g, \log h: g, h \in \mathcal{S}(X), h>0\}$ ("constructible" or "log-subanalytic" functions: $\sum_{j \leq J} g_{j} \prod_{k \leq K} \log h_{j, k}$).
(Cluckers - Miller). $f \in \mathcal{C}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{C}(X)$.
Aim. Study oscillatory integrals $\mathcal{I}(\lambda)=\int_{\mathbb{R}^{n}} e^{i \lambda \varphi(x)} \psi(x) \mathrm{d} x$, with $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and Fourier transforms $\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i \xi \cdot x} d x$ with $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
Question. $\mathcal{D}(X):=\mathbb{C}$ - algebra generated by $\mathcal{C}(X)$ and $\left\{\mathrm{e}^{\mathrm{i} \varphi(x)}: \varphi \in \mathcal{S}(X)\right\}$.

$$
f \in \mathcal{D}\left(X \times \mathbb{R}^{n}\right) \stackrel{?}{\Rightarrow} \mathcal{I}_{f} \in \mathcal{D}(X)
$$

Oscillating and subanalytic functions

The answer is NO: the \mathbb{C} - algebra $\mathcal{D}(X)$ generated by $\left\{g(x), \log h(x), e^{\mathrm{i} \varphi(x)}: g, h, \varphi \in \mathcal{S}(X)\right\}$ is not stable under parametric integration.

Oscillating and subanalytic functions

The answer is NO: the \mathbb{C} - algebra $\mathcal{D}(X)$ generated by $\left\{g(x), \log h(x), e^{\mathrm{i} \varphi(x)}: g, h, \varphi \in \mathcal{S}(X)\right\}$ is not stable under parametric integration.

Example. $\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t$

Oscillating and subanalytic functions

The answer is NO:
the \mathbb{C} - algebra $\mathcal{D}(X)$ generated by $\left\{g(x), \log h(x), e^{\mathrm{i} \varphi(x)}: g, h, \varphi \in \mathcal{S}(X)\right\}$ is not stable under parametric integration.
Example. Si $(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t=\int_{\mathbb{R}} \frac{\chi_{[0, x]}(t)}{2 i t}\left(e^{i t}-e^{-i t}\right) \mathrm{d} t$

Oscillating and subanalytic functions

The answer is NO:
the \mathbb{C} - algebra $\mathcal{D}(X)$ generated by $\left\{g(x), \log h(x), e^{\mathrm{i} \varphi(x)}: g, h, \varphi \in \mathcal{S}(X)\right\}$ is not stable under parametric integration.
Example. $\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t=\int_{\mathbb{R}} \frac{\chi_{[0, x]}(t)}{2 i t}\left(e^{i t}-e^{-i t}\right) \mathrm{d} t \notin \mathcal{D}\left(\mathbb{R}^{+}\right)$.

Oscillating and subanalytic functions

The answer is NO:
the \mathbb{C} - algebra $\mathcal{D}(X)$ generated by $\left\{g(x), \log h(x), e^{\mathrm{i} \varphi(x)}: g, h, \varphi \in \mathcal{S}(X)\right\}$ is not stable under parametric integration.
Example. Si $(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t=\int_{\mathbb{R}} \frac{\chi_{[0, x]}(t)}{2 \mathrm{i} t}\left(e^{i t}-e^{-i t}\right) \mathrm{d} t \notin \mathcal{D}\left(\mathbb{R}^{+}\right)$. Why?

Oscillating and subanalytic functions

The answer is NO:
the \mathbb{C} - algebra $\mathcal{D}(X)$ generated by $\left\{g(x), \log h(x), e^{i \varphi(x)}: g, h, \varphi \in \mathcal{S}(X)\right\}$ is not stable under parametric integration.

Example. $\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t=\int_{\mathbb{R}} \frac{\chi_{[0, x]}(t)}{2 i t}\left(e^{\mathrm{i} t}-e^{-\mathrm{i} t}\right) \mathrm{d} t \notin \mathcal{D}\left(\mathbb{R}^{+}\right)$. Why?
It is well-known that

$$
\operatorname{Si}(x) \underset{x \rightarrow+\infty}{\sim} \frac{\pi}{2}-\frac{\cos x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k)!}{x^{2 k}}-\frac{\sin x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k+1)!}{x^{2 k+1}}
$$

Oscillating and subanalytic functions

The answer is NO:
the \mathbb{C} - algebra $\mathcal{D}(X)$ generated by $\left\{g(x), \log h(x), e^{i \varphi(x)}: g, h, \varphi \in \mathcal{S}(X)\right\}$ is not stable under parametric integration.
Example. $\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t=\int_{\mathbb{R}} \frac{\chi_{[0, x]}(t)}{2 i t}\left(e^{\mathrm{i} t}-e^{-\mathrm{i} t}\right) \mathrm{d} t \notin \mathcal{D}\left(\mathbb{R}^{+}\right)$. Why? It is well-known that

$$
\operatorname{Si}(x) \underset{x \rightarrow+\infty}{\sim} \frac{\pi}{2}-\frac{\cos x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k)!}{x^{2 k}}-\frac{\sin x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k+1)!}{x^{2 k+1}}
$$

i.e. Si \sim to a polynomial in $\{\cos x, \sin x\}$ with coefficients divergent series $\in \mathbb{R} \llbracket \frac{1}{x} \rrbracket$.

Oscillating and subanalytic functions

The answer is NO:
the \mathbb{C} - algebra $\mathcal{D}(X)$ generated by $\left\{g(x), \log h(x), e^{i \varphi(x)}: g, h, \varphi \in \mathcal{S}(X)\right\}$ is not stable under parametric integration.
Example. $\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t=\int_{\mathbb{R}} \frac{\chi_{[0, x]}(t)}{2 i t}\left(e^{\mathrm{i} t}-e^{-\mathrm{i} t}\right) \mathrm{d} t \notin \mathcal{D}\left(\mathbb{R}^{+}\right)$. Why? It is well-known that

$$
\operatorname{Si}(x) \underset{x \rightarrow+\infty}{\sim} \frac{\pi}{2}-\frac{\cos x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k)!}{x^{2 k}}-\frac{\sin x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k+1)!}{x^{2 k+1}}
$$

i.e. Si \sim to a polynomial in $\{\cos x, \sin x\}$ with coefficients divergent series $\in \mathbb{R} \llbracket \frac{1}{x} \rrbracket$.

However, if $f \in \mathcal{D}\left(\mathbb{R}^{+}\right)$, then f is asymptotic to a polynomial in $\{\log x\} \cup\left\{\cos \left(c_{j} x^{r_{j}}\right), \sin \left(c_{j} x^{r_{j}}\right)\right\}_{j=1}^{N}$ with convergent coefficients $\in \mathbb{R}\left\{x^{-\frac{1}{d}}\right\}$, (for some $N, d \in \mathbb{N}, c_{j} \in \mathbb{R}, r_{j} \in \mathbb{Q}^{+}$).

Oscillating and subanalytic functions

The answer is NO:
the \mathbb{C} - algebra $\mathcal{D}(X)$ generated by $\left\{g(x), \log h(x), e^{i \varphi(x)}: g, h, \varphi \in \mathcal{S}(X)\right\}$ is not stable under parametric integration.
Example. $\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t=\int_{\mathbb{R}} \frac{\chi_{[0, x]}(t)}{2 i t}\left(e^{\mathrm{i} t}-e^{-\mathrm{i} t}\right) \mathrm{d} t \notin \mathcal{D}\left(\mathbb{R}^{+}\right)$. Why? It is well-known that

$$
\operatorname{Si}(x) \underset{x \rightarrow+\infty}{\sim} \frac{\pi}{2}-\frac{\cos x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k)!}{x^{2 k}}-\frac{\sin x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k+1)!}{x^{2 k+1}}
$$

i.e. Si \sim to a polynomial in $\{\cos x, \sin x\}$ with coefficients divergent series $\in \mathbb{R} \llbracket \frac{1}{x} \rrbracket$.

However, if $f \in \mathcal{D}\left(\mathbb{R}^{+}\right)$, then f is asymptotic to a polynomial in $\{\log x\} \cup\left\{\cos \left(c_{j} x^{r_{j}}\right), \sin \left(c_{j} x^{r_{j}}\right)\right\}_{j=1}^{N}$ with convergent coefficients $\in \mathbb{R}\left\{x^{-\frac{1}{d}}\right\}$, (for some $N, d \in \mathbb{N}, c_{j} \in \mathbb{R}, r_{j} \in \mathbb{Q}^{+}$).

To see this:

- For $g \in \mathcal{S}\left(\mathbb{R}^{+}\right), \exists c \in \mathbb{R}, r \in \mathbb{Q}, d \in \mathbb{N}, \exists H \in \mathbb{R}\{Y\}^{*}$ s.t. $g(x)=c x^{r} H\left(x^{-\frac{1}{d}}\right)$.

Oscillating and subanalytic functions

The answer is NO:
the \mathbb{C} - algebra $\mathcal{D}(X)$ generated by $\left\{g(x), \log h(x), e^{i \varphi(x)}: g, h, \varphi \in \mathcal{S}(X)\right\}$ is not stable under parametric integration.
Example. $\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t=\int_{\mathbb{R}} \frac{\chi_{[0, x]}(t)}{2 i t}\left(e^{\mathrm{i} t}-e^{-\mathrm{i} t}\right) \mathrm{d} t \notin \mathcal{D}\left(\mathbb{R}^{+}\right)$. Why? It is well-known that

$$
\operatorname{Si}(x) \underset{x \rightarrow+\infty}{\sim} \frac{\pi}{2}-\frac{\cos x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k)!}{x^{2 k}}-\frac{\sin x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k+1)!}{x^{2 k+1}}
$$

i.e. Si \sim to a polynomial in $\{\cos x, \sin x\}$ with coefficients divergent series $\in \mathbb{R} \llbracket \frac{1}{x} \rrbracket$.

However, if $f \in \mathcal{D}\left(\mathbb{R}^{+}\right)$, then f is asymptotic to a polynomial in $\{\log x\} \cup\left\{\cos \left(c_{j} x^{r_{j}}\right), \sin \left(c_{j} x^{r_{j}}\right)\right\}_{j=1}^{N}$ with convergent coefficients $\in \mathbb{R}\left\{x^{-\frac{1}{d}}\right\}$, (for some $N, d \in \mathbb{N}, c_{j} \in \mathbb{R}, r_{j} \in \mathbb{Q}^{+}$).

To see this:

- For $g \in \mathcal{S}\left(\mathbb{R}^{+}\right), \exists c \in \mathbb{R}, r \in \mathbb{Q}, d \in \mathbb{N}, \exists H \in \mathbb{R}\{Y\}^{*}$ s.t. $g(x)=c x^{r} H\left(x^{-\frac{1}{d}}\right)$.
$\bullet \log (g(x))=r \log x+\log \left(c H\left(x^{-\frac{1}{d}}\right)\right), e^{\mathrm{i} g(x)}=e^{\mathrm{i} \sum_{\boldsymbol{j} \leq \boldsymbol{r} \boldsymbol{d}} c_{j} x^{r-\boldsymbol{j} / \boldsymbol{d}}} \cdot e^{\mathrm{i} \sum_{\boldsymbol{j}>r \boldsymbol{d}} c_{j} x^{r-\boldsymbol{j} / \boldsymbol{d}}}$.

Oscillating and subanalytic functions

The answer is NO:
the \mathbb{C} - algebra $\mathcal{D}(X)$ generated by $\left\{g(x), \log h(x), e^{i \varphi(x)}: g, h, \varphi \in \mathcal{S}(X)\right\}$ is not stable under parametric integration.
Example. $\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t=\int_{\mathbb{R}} \frac{\chi_{[0, x]}(t)}{2 i t}\left(e^{\mathrm{i} t}-e^{-\mathrm{i} t}\right) \mathrm{d} t \notin \mathcal{D}\left(\mathbb{R}^{+}\right)$. Why? It is well-known that

$$
\operatorname{Si}(x) \underset{x \rightarrow+\infty}{\sim} \frac{\pi}{2}-\frac{\cos x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k)!}{x^{2 k}}-\frac{\sin x}{x} \sum_{k \geq 0}(-1)^{k} \frac{(2 k+1)!}{x^{2 k+1}}
$$

i.e. Si \sim to a polynomial in $\{\cos x, \sin x\}$ with coefficients divergent series $\in \mathbb{R} \llbracket \frac{1}{x} \rrbracket$.

However, if $f \in \mathcal{D}\left(\mathbb{R}^{+}\right)$, then f is asymptotic to a polynomial in $\{\log x\} \cup\left\{\cos \left(c_{j} x^{r_{j}}\right), \sin \left(c_{j} x^{r_{j}}\right)\right\}_{j=1}^{N}$ with convergent coefficients $\in \mathbb{R}\left\{x^{-\frac{1}{d}}\right\}$, (for some $N, d \in \mathbb{N}, c_{j} \in \mathbb{R}, r_{j} \in \mathbb{Q}^{+}$).

To see this:

- For $g \in \mathcal{S}\left(\mathbb{R}^{+}\right), \exists c \in \mathbb{R}, r \in \mathbb{Q}, d \in \mathbb{N}, \exists H \in \mathbb{R}\{Y\}^{*}$ s.t. $g(x)=c x^{r} H\left(x^{-\frac{1}{d}}\right)$.
- $\log (g(x))=r \log x+\log \left(c H\left(x^{-\frac{1}{d}}\right)\right), e^{\mathrm{i} g(x)}=e^{\mathrm{i} \sum_{\boldsymbol{j} \leq \boldsymbol{r} \boldsymbol{d}} c_{j} x^{r-j / d}} \cdot e^{\mathrm{i} \sum_{j>r \boldsymbol{d}} c_{j} x^{r-j / d}}$.
- if g is bounded, then $\log (g(x)), \cos (g(x)), \sin (g(x)) \in \mathcal{S}\left(\mathbb{R}^{+}\right)$.

One-dimensional transcendentals

$X \subseteq \mathbb{R}^{m}$ subanalytic. What do we need to add to $\mathcal{D}(X)$ to make it stable under parametric integration?

One-dimensional transcendentals

$X \subseteq \mathbb{R}^{m}$ subanalytic. What do we need to add to $\mathcal{D}(X)$ to make it stable under parametric integration?
$\gamma_{h, \ell}(x)=\int_{\mathbb{R}} h(x, t)(\log |t|)^{\ell} e^{\mathrm{itt}} d t, \quad\left(\ell \in \mathbb{N}, h \in \mathcal{S}(X \times \mathbb{R}), h(x, \cdot) \in L^{1}(\mathbb{R})\right)$

One-dimensional transcendentals

$X \subseteq \mathbb{R}^{m}$ subanalytic. What do we need to add to $\mathcal{D}(X)$ to make it stable under parametric integration?
$\gamma_{h, \ell}(x)=\int_{\mathbb{R}} h(x, t)(\log |t|)^{\ell} e^{\text {itt }} d t, \quad\left(\ell \in \mathbb{N}, h \in \mathcal{S}(X \times \mathbb{R}), h(x, \cdot) \in L^{1}(\mathbb{R})\right)$
Def. $\mathcal{E}(X):=$ the $\mathcal{D}(X)$-module generated by $\left\{\gamma_{h, \ell}\right\}_{h, \ell}$

One-dimensional transcendentals

$X \subseteq \mathbb{R}^{m}$ subanalytic. What do we need to add to $\mathcal{D}(X)$ to make it stable under parametric integration?
$\gamma_{h, \ell}(x)=\int_{\mathbb{R}} h(x, t)(\log |t|)^{\ell} e^{\mathrm{itt}} d t, \quad\left(\ell \in \mathbb{N}, h \in \mathcal{S}(X \times \mathbb{R}), h(x, \cdot) \in L^{1}(\mathbb{R})\right)$
Def. $\mathcal{E}(X):=$ the $\mathcal{D}(X)$-module generated by $\left\{\gamma_{h, \ell}\right\}_{h, \ell}$
Main Theorem. $f \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{E}(X)$.

One-dimensional transcendentals

$X \subseteq \mathbb{R}^{m}$ subanalytic. What do we need to add to $\mathcal{D}(X)$ to make it stable under parametric integration?
$\gamma_{h, \ell}(x)=\int_{\mathbb{R}} h(x, t)(\log |t|)^{\ell} e^{\mathrm{itt}} d t, \quad\left(\ell \in \mathbb{N}, h \in \mathcal{S}(X \times \mathbb{R}), h(x, \cdot) \in L^{1}(\mathbb{R})\right)$
Def. $\mathcal{E}(X):=$ the $\mathcal{D}(X)$-module generated by $\left\{\gamma_{h, \ell}\right\}_{h, \ell}$
Main Theorem. $f \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{E}(X)$. More precisely, let $\operatorname{lnt}(f, X):=\left\{x \in X: f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)\right\}$ (integrability locus).

One-dimensional transcendentals

$X \subseteq \mathbb{R}^{m}$ subanalytic. What do we need to add to $\mathcal{D}(X)$ to make it stable under parametric integration?
$\gamma_{h, \ell}(x)=\int_{\mathbb{R}} h(x, t)(\log |t|)^{\ell} e^{\mathrm{it}} d t, \quad\left(\ell \in \mathbb{N}, h \in \mathcal{S}(X \times \mathbb{R}), h(x, \cdot) \in L^{1}(\mathbb{R})\right)$
Def. $\mathcal{E}(X):=$ the $\mathcal{D}(X)$-module generated by $\left\{\gamma_{h, \ell}\right\}_{h, \ell}$
Main Theorem. $f \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{E}(X)$. More precisely, let $\operatorname{lnt}(f, X):=\left\{x \in X: f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)\right\}$ (integrability locus).
Then there exists $F \in \mathcal{E}(X)$ s.t. $F(x)=\int_{\mathbb{R}^{\boldsymbol{n}}} f(x, y) \mathrm{d} y \quad \forall x \in \operatorname{lnt}(f, X)$.

One-dimensional transcendentals

$X \subseteq \mathbb{R}^{m}$ subanalytic. What do we need to add to $\mathcal{D}(X)$ to make it stable under parametric integration?
$\gamma_{h, \ell}(x)=\int_{\mathbb{R}} h(x, t)(\log |t|)^{\ell} e^{\mathrm{it}} d t, \quad\left(\ell \in \mathbb{N}, h \in \mathcal{S}(X \times \mathbb{R}), h(x, \cdot) \in L^{1}(\mathbb{R})\right)$
Def. $\mathcal{E}(X):=$ the $\mathcal{D}(X)$-module generated by $\left\{\gamma_{h, \ell}\right\}_{h, \ell}$
Main Theorem. $f \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{E}(X)$. More precisely, let $\operatorname{lnt}(f, X):=\left\{x \in X: f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)\right\}$ (integrability locus).
Then there exists $F \in \mathcal{E}(X)$ s.t. $F(x)=\int_{\mathbb{R}^{\boldsymbol{n}}} f(x, y) \mathrm{d} y \quad \forall x \in \operatorname{Int}(f, X)$.
Corollary. $\mathcal{E}(X)$ is a \mathbb{C}-algebra.

One-dimensional transcendentals

$X \subseteq \mathbb{R}^{m}$ subanalytic. What do we need to add to $\mathcal{D}(X)$ to make it stable under parametric integration?
$\gamma_{h, \ell}(x)=\int_{\mathbb{R}} h(x, t)(\log |t|)^{\ell} e^{\mathrm{it}} d t, \quad\left(\ell \in \mathbb{N}, h \in \mathcal{S}(X \times \mathbb{R}), h(x, \cdot) \in L^{1}(\mathbb{R})\right)$
Def. $\mathcal{E}(X):=$ the $\mathcal{D}(X)$-module generated by $\left\{\gamma_{h, \ell}\right\}_{h, \ell}$
Main Theorem. $f \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{E}(X)$. More precisely, let $\operatorname{lnt}(f, X):=\left\{x \in X: f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)\right\}$ (integrability locus).
Then there exists $F \in \mathcal{E}(X)$ s.t. $F(x)=\int_{\mathbb{R}^{n}} f(x, y)$ dy $\quad \forall x \in \operatorname{Int}(f, X)$.
Corollary. $\mathcal{E}(X)$ is a \mathbb{C}-algebra.
Proof. By Fubini,
$\gamma_{h, \ell}(x) \cdot \gamma_{h^{\prime}, \ell^{\prime}}(x)=\iint_{\mathbb{R}^{2}} h(x, t) \cdot h^{\prime}\left(x, t^{\prime}\right) \cdot(\log |t|)^{\ell} \cdot\left(\log \left|t^{\prime}\right|\right)^{\ell^{\prime}} e^{i\left(t+t^{\prime}\right)} \mathrm{d} t \mathrm{~d} t^{\prime}$

One-dimensional transcendentals

$X \subseteq \mathbb{R}^{m}$ subanalytic. What do we need to add to $\mathcal{D}(X)$ to make it stable under parametric integration?
$\gamma_{h, \ell}(x)=\int_{\mathbb{R}} h(x, t)(\log |t|)^{\ell} e^{\mathrm{it}} d t, \quad\left(\ell \in \mathbb{N}, h \in \mathcal{S}(X \times \mathbb{R}), h(x, \cdot) \in L^{1}(\mathbb{R})\right)$
Def. $\mathcal{E}(X):=$ the $\mathcal{D}(X)$-module generated by $\left\{\gamma_{h, \ell}\right\}_{h, \ell}$
Main Theorem. $f \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{E}(X)$. More precisely, let $\operatorname{Int}(f, X):=\left\{x \in X: f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)\right\}$ (integrability locus).
Then there exists $F \in \mathcal{E}(X)$ s.t. $F(x)=\int_{\mathbb{R}^{\boldsymbol{n}}} f(x, y)$ dy $\quad \forall x \in \operatorname{lnt}(f, X)$.
Corollary. $\mathcal{E}(X)$ is a \mathbb{C}-algebra.
Proof. By Fubini,
$\gamma_{h, \ell}(x) \cdot \gamma_{h^{\prime}, \ell^{\prime}}(x)=\iint_{\mathbb{R}^{2}} h(x, t) \cdot h^{\prime}\left(x, t^{\prime}\right) \cdot(\log |t|)^{\ell} \cdot\left(\log \left|t^{\prime}\right|\right)^{\ell^{\prime}} e^{i\left(t+t^{\prime}\right)} \mathrm{d} t \mathrm{~d} t^{\prime}$, which is the parametric integral of a function in $\mathcal{D}(X)$, and hence, by the Main Theorem, belongs to $\mathcal{E}(X)$.

One-dimensional transcendentals

$X \subseteq \mathbb{R}^{m}$ subanalytic. What do we need to add to $\mathcal{D}(X)$ to make it stable under parametric integration?
$\gamma_{h, \ell}(x)=\int_{\mathbb{R}} h(x, t)(\log |t|)^{\ell} e^{\mathrm{it}} d t, \quad\left(\ell \in \mathbb{N}, h \in \mathcal{S}(X \times \mathbb{R}), h(x, \cdot) \in L^{1}(\mathbb{R})\right)$
Def. $\mathcal{E}(X):=$ the $\mathcal{D}(X)$-module generated by $\left\{\gamma_{h, \ell}\right\}_{h, \ell}$
Main Theorem. $f \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right) \Rightarrow \mathcal{I}_{f} \in \mathcal{E}(X)$. More precisely, let $\operatorname{Int}(f, X):=\left\{x \in X: f(x, \cdot) \in L^{1}\left(\mathbb{R}^{n}\right)\right\}$ (integrability locus).
Then there exists $F \in \mathcal{E}(X)$ s.t. $F(x)=\int_{\mathbb{R}^{\boldsymbol{n}}} f(x, y)$ dy $\quad \forall x \in \operatorname{lnt}(f, X)$.
Corollary. $\mathcal{E}(X)$ is a \mathbb{C}-algebra.
Proof. By Fubini,
$\gamma_{h, \ell}(x) \cdot \gamma_{h^{\prime}, \ell^{\prime}}(x)=\iint_{\mathbb{R}^{2}} h(x, t) \cdot h^{\prime}\left(x, t^{\prime}\right) \cdot(\log |t|)^{\ell} \cdot\left(\log \left|t^{\prime}\right|\right)^{\ell^{\prime}} e^{i\left(t+t^{\prime}\right)} \mathrm{d} t \mathrm{~d} t^{\prime}$, which is the parametric integral of a function in $\mathcal{D}(X)$, and hence, by the Main Theorem, belongs to $\mathcal{E}(X)$.

Corollary. $\mathcal{E}=\bigcup \mathcal{E}(X)$ is the smallest collection of \mathbb{C}-algebras containing $\mathcal{S} \cup\left\{e^{\mathrm{i} \varphi}: \varphi \in \mathcal{S}\right\}$ and stable under parametric integration. Moreover, \mathcal{E} is closed under taking Fourier transforms.

Generators

Rem. An element of $\mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ can be written as a finite sum of generators:

Generators

Rem. An element of $\mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ can be written as a finite sum of generators:

$$
\begin{gathered}
T(x, y)=f(x, y) \cdot e^{i \varphi(x, y)} \cdot \gamma(x, y), \text { where } \\
f \in \mathcal{C}\left(X \times \mathbb{R}^{n}\right), \varphi \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right) \text { and } \gamma(x, y)=\int_{\mathbb{R}} h(x, y, t)(\log |t|)^{\ell} e^{i t} d t
\end{gathered}
$$

Generators

Rem. An element of $\mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ can be written as a finite sum of generators:

$$
\begin{gathered}
T(x, y)=f(x, y) \cdot e^{i \varphi(x, y)} \cdot \gamma(x, y), \text { where } \\
f \in \mathcal{C}\left(X \times \mathbb{R}^{n}\right), \varphi \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right) \text { and } \gamma(x, y)=\int_{\mathbb{R}} h(x, y, t)(\log |t|)^{\ell} e^{i t} d t
\end{gathered}
$$

Def. A generator $T(x, y) \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ is strongly integrable if

$$
y \longmapsto|f(x, y)| \int_{\mathbb{R}}\left|h(x, y, t)(\log |t|)^{\ell}\right| \mathrm{d} t \in L^{1}\left(\mathbb{R}^{n}\right)
$$

Generators

Rem. An element of $\mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ can be written as a finite sum of generators:

$$
\begin{gathered}
T(x, y)=f(x, y) \cdot e^{i \varphi(x, y)} \cdot \gamma(x, y), \text { where } \\
f \in \mathcal{C}\left(X \times \mathbb{R}^{n}\right), \varphi \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right) \text { and } \gamma(x, y)=\int_{\mathbb{R}} h(x, y, t)(\log |t|)^{\ell} e^{i t} d t
\end{gathered}
$$

Def. A generator $T(x, y) \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ is strongly integrable if

$$
y \longmapsto|f(x, y)| \int_{\mathbb{R}}\left|h(x, y, t)(\log |t|)^{\ell}\right| \mathrm{d} t \in L^{1}\left(\mathbb{R}^{n}\right) .
$$

Proposition. If T is strongly integrable, then $\mathcal{I}_{T} \in \mathcal{E}(X)$.

Generators

Rem. An element of $\mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ can be written as a finite sum of generators:

$$
T(x, y)=f(x, y) \cdot e^{i \varphi(x, y)} \cdot \gamma(x, y), \text { where }
$$

$f \in \mathcal{C}\left(X \times \mathbb{R}^{n}\right), \varphi \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right)$ and $\gamma(x, y)=\int_{\mathbb{R}} h(x, y, t)(\log |t|)^{\ell} e^{i t} d t$
Def. A generator $T(x, y) \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ is strongly integrable if

$$
y \longmapsto|f(x, y)| \int_{\mathbb{R}}\left|h(x, y, t)(\log |t|)^{\ell}\right| \mathrm{d} t \in L^{1}\left(\mathbb{R}^{n}\right) .
$$

Proposition. If T is strongly integrable, then $\mathcal{I}_{\boldsymbol{T}} \in \mathcal{E}(X)$.
Proof. By Fubini-Tonelli,
$\int_{\mathbb{R}^{\boldsymbol{n}}} T(x, y) \mathrm{d} y=\iint_{\mathbb{R}^{\boldsymbol{n}+\boldsymbol{1}}} f(x, y) h(x, y, t)(\log |t|)^{\ell} e^{\mathrm{i}(t+\varphi(x, y))} \mathrm{d} y \mathrm{~d} t$, so we may
suppose $T=f(x, y) e^{\mathrm{i} \varphi(x, y)} \in \mathcal{D}\left(X \times \mathbb{R}^{n}\right)$.

Generators

Rem. An element of $\mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ can be written as a finite sum of generators:

$$
T(x, y)=f(x, y) \cdot e^{i \varphi(x, y)} \cdot \gamma(x, y), \text { where }
$$

$f \in \mathcal{C}\left(X \times \mathbb{R}^{n}\right), \varphi \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right)$ and $\gamma(x, y)=\int_{\mathbb{R}} h(x, y, t)(\log |t|)^{\ell} e^{i t} d t$
Def. A generator $T(x, y) \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ is strongly integrable if

$$
y \longmapsto|f(x, y)| \int_{\mathbb{R}}\left|h(x, y, t)(\log |t|)^{\ell}\right| \mathrm{d} t \in L^{1}\left(\mathbb{R}^{n}\right) .
$$

Proposition. If T is strongly integrable, then $\mathcal{I}_{T} \in \mathcal{E}(X)$.
Proof. By Fubini-Tonelli,
$\int_{\mathbb{R}^{\boldsymbol{n}}} T(x, y) \mathrm{d} y=\iint_{\mathbb{R}^{\boldsymbol{n}+\boldsymbol{1}}} f(x, y) h(x, y, t)(\log |t|)^{\ell} e^{\mathrm{i}(t+\varphi(x, y))} \mathrm{d} y \mathrm{~d} t$, so we may
suppose $T=f(x, y) e^{i \varphi(x, y)} \in \mathcal{D}\left(X \times \mathbb{R}^{n}\right)$. O-minimality does the rest.

Generators

Rem. An element of $\mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ can be written as a finite sum of generators:

$$
T(x, y)=f(x, y) \cdot e^{i \varphi(x, y)} \cdot \gamma(x, y), \text { where }
$$

$f \in \mathcal{C}\left(X \times \mathbb{R}^{n}\right), \varphi \in \mathcal{S}\left(X \times \mathbb{R}^{n}\right)$ and $\gamma(x, y)=\int_{\mathbb{R}} h(x, y, t)(\log |t|)^{\ell} e^{i t} d t$
Def. A generator $T(x, y) \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ is strongly integrable if

$$
y \longmapsto|f(x, y)| \int_{\mathbb{R}}\left|h(x, y, t)(\log |t|)^{\ell}\right| \mathrm{d} t \in L^{1}\left(\mathbb{R}^{n}\right) .
$$

Proposition. If T is strongly integrable, then $\mathcal{I}_{T} \in \mathcal{E}(X)$.
Proof. By Fubini-Tonelli,
$\int_{\mathbb{R}^{\boldsymbol{n}}} T(x, y) \mathrm{d} y=\iint_{\mathbb{R}^{\boldsymbol{n}+\boldsymbol{1}}} f(x, y) h(x, y, t)(\log |t|)^{\ell} e^{\mathrm{i}(t+\varphi(x, y))} \mathrm{d} y \mathrm{~d} t$, so we may suppose $T=f(x, y) e^{i \varphi(x, y)} \in \mathcal{D}\left(X \times \mathbb{R}^{n}\right)$. O-minimality does the rest.

Def. A generator $T(x, y) \in \mathcal{E}\left(X \times \mathbb{R}^{n}\right)$ is naive in y if γ does not depend on y.

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in J \operatorname{lnt}} T_{j}+\sum_{j \in J_{\text {Naive }}} S_{j}
$$

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in \text { Jlnt }} T_{j}+\sum_{j \in J^{\text {Naive }}} S_{j}, \text { where }
$$

the T_{j} are strongly integrable, the S_{j} are naive in y and

$$
\forall x, x \in \operatorname{Int}(f, X) \Rightarrow \forall j \in J^{\text {Naive }}, x \notin \operatorname{Int}\left(S_{j}, X\right)
$$

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in J^{\text {lnt }}} T_{j}+\sum_{j \in J^{\text {Naive }}} S_{j}, \text { where }
$$

the T_{j} are strongly integrable, the S_{j} are naive in y and

$$
\forall x, x \in \operatorname{Int}(f, X) \Rightarrow \forall j \in J^{\text {Naive }}, x \notin \operatorname{Int}\left(S_{j}, X\right)
$$

Ingredients of the proof.

- cell decomposition, definable choice

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in J^{\text {lnt }}} T_{j}+\sum_{j \in J^{\text {Naive }}} S_{j}, \text { where }
$$

the T_{j} are strongly integrable, the S_{j} are naive in y and

$$
\forall x, x \in \operatorname{Int}(f, X) \Rightarrow \forall j \in J^{\text {Naive }}, x \notin \operatorname{Int}\left(S_{j}, X\right)
$$

Ingredients of the proof.

- cell decomposition, definable choice
- "nested" subanalytic preparation (after Lion-Rolin):

$$
h(x, y, t)=h_{0}(x, y)|t-\theta(x, y)|^{r} U(x, y, t)
$$

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in \text { Jlnt }} T_{j}+\sum_{j \in J^{\text {Naive }}} S_{j}, \text { where }
$$

the T_{j} are strongly integrable, the S_{j} are naive in y and

$$
\forall x, x \in \operatorname{Int}(f, X) \Rightarrow \forall j \in J^{\text {Naive }}, x \notin \operatorname{Int}\left(S_{j}, X\right)
$$

Ingredients of the proof.

- cell decomposition, definable choice
- "nested" subanalytic preparation (after Lion-Rolin):

$$
h(x, y, t)=h_{0}(x, y)|t-\theta(x, y)|^{r} U(x, y, t)
$$

- integration by parts creates a naive term and an integrable term.

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in J \operatorname{lnt}} T_{j}+\sum_{j \in J_{\text {Naive }}} S_{j}, \text { where }
$$

the T_{j} are strongly integrable, the S_{j} are naive in y and

$$
\forall x, x \in \operatorname{Int}(f, X) \Rightarrow \forall j \in J^{\text {Naive }}, x \notin \operatorname{Int}\left(S_{j}, X\right)
$$

Ingredients of the proof.

- cell decomposition, definable choice
- "nested" subanalytic preparation (after Lion-Rolin):

$$
h(x, y, t)=h_{0}(x, y)|t-\theta(x, y)|^{r} U(x, y, t)
$$

- integration by parts creates a naive term and an integrable term.

Proof of the Main Theorem. Let $x \in \operatorname{lnt}(f, X)$ and $F(x)=\sum_{j \in J \operatorname{lnt}} \int_{\mathbb{R}} T_{j} \mathrm{~d} y$.

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in J \operatorname{lnt}} T_{j}+\sum_{j \in J_{\text {Naive }}} S_{j}, \text { where }
$$

the T_{j} are strongly integrable, the S_{j} are naive in y and

$$
\forall x, x \in \operatorname{Int}(f, X) \Rightarrow \forall j \in J^{\text {Naive }}, x \notin \operatorname{Int}\left(S_{j}, X\right)
$$

Ingredients of the proof.

- cell decomposition, definable choice
- "nested" subanalytic preparation (after Lion-Rolin):

$$
h(x, y, t)=h_{0}(x, y)|t-\theta(x, y)|^{r} U(x, y, t)
$$

- integration by parts creates a naive term and an integrable term.

Proof of the Main Theorem. Let $x \in \operatorname{lnt}(f, X)$ and $F(x)=\sum_{j \in J \operatorname{lnt}} \int_{\mathbb{R}} T_{j} \mathrm{~d} y$.
Claim. $x \notin \operatorname{Int}\left(\sum_{j \in J \text { Naive }} S_{j}, X\right)$.

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in J^{\text {lnt }}} T_{j}+\sum_{j \in J^{\text {Naive }}} S_{j}, \text { where }
$$

the T_{j} are strongly integrable, the S_{j} are naive in y and

$$
\forall x, x \in \operatorname{Int}(f, X) \Rightarrow \forall j \in J^{\text {Naive }}, x \notin \operatorname{Int}\left(S_{j}, X\right)
$$

Ingredients of the proof.

- cell decomposition, definable choice
- "nested" subanalytic preparation (after Lion-Rolin):

$$
h(x, y, t)=h_{0}(x, y)|t-\theta(x, y)|^{r} U(x, y, t)
$$

- integration by parts creates a naive term and an integrable term.

Proof of the Main Theorem. Let $x \in \operatorname{lnt}(f, X)$ and $F(x)=\sum_{j \in J \operatorname{lnt}} \int_{\mathbb{R}} T_{j} \mathrm{~d} y$.
Claim. $x \notin \operatorname{Int}\left(\sum_{j \in J \text { Naive }} S_{j}, X\right)$. Then $\sum_{j \in J \text { Naive }} S_{j}(x, \cdot) \equiv 0$

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in J^{\text {lnt }}} T_{j}+\sum_{j \in J^{\text {Naive }}} S_{j}, \text { where }
$$

the T_{j} are strongly integrable, the S_{j} are naive in y and

$$
\forall x, x \in \operatorname{Int}(f, X) \Rightarrow \forall j \in J^{\text {Naive }}, x \notin \operatorname{Int}\left(S_{j}, X\right)
$$

Ingredients of the proof.

- cell decomposition, definable choice
- "nested" subanalytic preparation (after Lion-Rolin):

$$
h(x, y, t)=h_{0}(x, y)|t-\theta(x, y)|^{r} U(x, y, t)
$$

- integration by parts creates a naive term and an integrable term.

Proof of the Main Theorem. Let $x \in \operatorname{lnt}(f, X)$ and $F(x)=\sum_{j \in J \operatorname{lnt}} \int_{\mathbb{R}} T_{j} \mathrm{~d} y$.
Claim. $x \notin \operatorname{lnt}\left(\sum_{j \in J \text { Naive }} S_{j}, X\right)$. Then $\sum_{j \in J^{\text {Naive }}} S_{j}(x, \cdot) \equiv 0$ and $\int_{\mathbb{R}} f(x, y) \mathrm{d} y=F(x)$

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in J^{\text {lnt }}} T_{j}+\sum_{j \in J^{\text {Naive }}} S_{j}, \text { where }
$$

the T_{j} are strongly integrable, the S_{j} are naive in y and

$$
\forall x, x \in \operatorname{Int}(f, X) \Rightarrow \forall j \in J^{\text {Naive }}, x \notin \operatorname{Int}\left(S_{j}, X\right)
$$

Ingredients of the proof.

- cell decomposition, definable choice
- "nested" subanalytic preparation (after Lion-Rolin):

$$
h(x, y, t)=h_{0}(x, y)|t-\theta(x, y)|^{r} U(x, y, t)
$$

- integration by parts creates a naive term and an integrable term.

Proof of the Main Theorem. Let $x \in \operatorname{lnt}(f, X)$ and $F(x)=\sum_{j \in J \operatorname{lnt}} \int_{\mathbb{R}} T_{j} \mathrm{~d} y$.
Claim. $x \notin \operatorname{lnt}\left(\sum_{j \in J \text { Naive }} S_{j}, X\right)$. Then $\sum_{j \in J_{\text {Naive }}} S_{j}(x, \cdot) \equiv 0$ and $\int_{\mathbb{R}} f(x, y) \mathrm{d} y=F(x) \in \mathcal{E}(X)$.

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in J \operatorname{lnt}} T_{j}+\sum_{j \in J_{\text {Naive }}} S_{j}, \text { where }
$$

the T_{j} are strongly integrable, the S_{j} are naive in y and

$$
\forall x, x \in \operatorname{Int}(f, X) \Rightarrow \forall j \in J^{\text {Naive }}, x \notin \operatorname{Int}\left(S_{j}, X\right)
$$

Ingredients of the proof.

- cell decomposition, definable choice
- "nested" subanalytic preparation (after Lion-Rolin):

$$
h(x, y, t)=h_{0}(x, y)|t-\theta(x, y)|^{r} U(x, y, t)
$$

- integration by parts creates a naive term and an integrable term.

Proof of the Main Theorem. Let $x \in \operatorname{lnt}(f, X)$ and $F(x)=\sum_{j \in J \operatorname{lnt}} \int_{\mathbb{R}} T_{j} \mathrm{~d} y$.
Claim. $x \notin \operatorname{lnt}\left(\sum_{j \in J \text { Naive }} S_{j}, X\right)$. Then $\sum_{j \in J^{\text {Naive }}} S_{j}(x, \cdot) \equiv 0$ and $\int_{\mathbb{R}} f(x, y) \mathrm{d} y=F(x) \in \mathcal{E}(X)$. This proves the case $n=1$.

Key step: preparation of functions in $\mathcal{E}(X \times \mathbb{R})$

Preparation Theorem. Given $f \in \mathcal{E}(X \times \mathbb{R})$, up to cell decomposition of $X \times \mathbb{R}$, there are finite index sets $J^{\text {lnt }}, J^{\text {Naive }} \subseteq \mathbb{N}$ and generators T_{j}, S_{j} s.t.

$$
f=\sum_{j \in J \operatorname{lnt}} T_{j}+\sum_{j \in J_{\text {Naive }}} S_{j}, \text { where }
$$

the T_{j} are strongly integrable, the S_{j} are naive in y and

$$
\forall x, x \in \operatorname{Int}(f, X) \Rightarrow \forall j \in J^{\text {Naive }}, x \notin \operatorname{Int}\left(S_{j}, X\right)
$$

Ingredients of the proof.

- cell decomposition, definable choice
- "nested" subanalytic preparation (after Lion-Rolin):

$$
h(x, y, t)=h_{0}(x, y)|t-\theta(x, y)|^{r} U(x, y, t)
$$

- integration by parts creates a naive term and an integrable term.

Proof of the Main Theorem. Let $x \in \operatorname{lnt}(f, X)$ and $F(x)=\sum_{j \in J \operatorname{lnt}} \int_{\mathbb{R}} T_{j} \mathrm{~d} y$.
Claim. $x \notin \operatorname{lnt}\left(\sum_{j \in J \text { Naive }} S_{j}, X\right)$. Then $\sum_{j \in J^{\text {Naive }}} S_{j}(x, \cdot) \equiv 0$ and $\int_{\mathbb{R}} f(x, y) \mathrm{d} y=F(x) \in \mathcal{E}(X)$. This proves the case $n=1$.

The case $n>1$ follows by Fubini and induction on n.

Finite sums of exponentials of polynomials

Finite sums of exponentials of polynomials Claim. Let $x \notin \operatorname{lnt}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{lnt}\left(\sum_{j \in J} S_{j}, X\right)$.

Finite sums of exponentials of polynomials Claim. Let $x \notin \operatorname{lnt}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{lnt}\left(\sum_{j \in J} S_{j}, X\right)$.

Proof. Fix such an x.

Finite sums of exponentials of polynomials

Claim. Let $x \notin \operatorname{Int}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{Int}\left(\sum_{j \in J} S_{j}, X\right)$.
Proof. Fix such an x. We may assume that $S_{j}(y)=f_{j} y^{r_{j}}(\log y)^{s_{j}} e^{i p_{j}(y)}$, with $f_{j} \neq 0$ and p_{j} distinct polynomials in $y^{1 / d}$ and $p_{j}(0)=0$.

Finite sums of exponentials of polynomials

Claim. Let $x \notin \operatorname{lnt}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{lnt}\left(\sum_{j \in J} S_{j}, X\right)$.
Proof. Fix such an x. We may assume that $S_{j}(y)=f_{j} y^{r_{j}}(\log y)^{s_{j}} e^{\mathrm{i} p_{j}(y)}$, with $f_{j} \neq 0$ and p_{j} distinct polynomials in $y^{1 / d}$ and $p_{j}(0)=0$.

Let $G(y)=\sum_{j \in J} f_{j} i^{\mathrm{i} p_{j}(y)}$.

Finite sums of exponentials of polynomials

Claim. Let $x \notin \operatorname{lnt}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{lnt}\left(\sum_{j \in J} S_{j}, X\right)$.
Proof. Fix such an x. We may assume that $S_{j}(y)=f_{j} y^{r_{j}}(\log y)^{s_{j}} e^{i p_{j}(y)}$, with $f_{j} \neq 0$ and p_{j} distinct polynomials in $y^{1 / d}$ and $p_{j}(0)=0$.
Let $G(y)=\sum_{j \in J} f_{j} e^{i p_{j}(y)}$. Notice that $y^{r_{j}}(\log y)^{s_{j}}>y^{-1}$ for $y \gg 0$.

Finite sums of exponentials of polynomials

Claim. Let $x \notin \operatorname{lnt}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{lnt}\left(\sum_{j \in J} S_{j}, X\right)$.
Proof. Fix such an x. We may assume that $S_{j}(y)=f_{j} y^{r_{j}}(\log y)^{s_{j}} e^{\mathrm{i} p_{j}(y)}$, with $f_{j} \neq 0$ and p_{j} distinct polynomials in $y^{1 / d}$ and $p_{j}(0)=0$.

Let $G(y)=\sum_{j \in J} f_{j} e^{i p_{j}(y)}$. Notice that $y^{r_{j}}(\log y)^{s_{j}}>y^{-1}$ for $y \gg 0$.
Then, $\int_{\mathbb{R}^{+}}\left|\sum_{j \in J} S_{j}(y)\right| \mathrm{d} y \geq \int_{\mathbb{R}^{+}} \frac{1}{y}|G(y)| \mathrm{d} y$.

Finite sums of exponentials of polynomials

Claim. Let $x \notin \operatorname{Int}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{Int}\left(\sum_{j \in J} S_{j}, X\right)$.
Proof. Fix such an x. We may assume that $S_{j}(y)=f_{j} y^{r_{j}}(\log y)^{s_{j}} e^{\mathrm{i} p_{j}(y)}$, with $f_{j} \neq 0$ and p_{j} distinct polynomials in $y^{1 / d}$ and $p_{j}(0)=0$.

Let $G(y)=\sum_{j \in J} f_{j} e^{i p_{j}(y)}$. Notice that $y^{r_{j}}(\log y)^{s_{j}}>y^{-1}$ for $y \gg 0$.
Then, $\int_{\mathbb{R}^{+}}\left|\sum_{j \in J} S_{j}(y)\right| \mathrm{d} y \geq \int_{\mathbb{R}^{+}} \frac{1}{y}|G(y)| \mathrm{d} y$.
Since $G \not \equiv 0$, by continuity $\exists \varepsilon, \delta>0$ s.t. $|G(y)|>\varepsilon$ on some interval I of length $\geq \delta$.

Finite sums of exponentials of polynomials

Claim. Let $x \notin \operatorname{Int}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{Int}\left(\sum_{j \in J} S_{j}, X\right)$.
Proof. Fix such an x. We may assume that $S_{j}(y)=f_{j} y^{r_{j}}(\log y)^{s_{j}} e^{i p_{j}(y)}$, with $f_{j} \neq 0$ and p_{j} distinct polynomials in $y^{1 / d}$ and $p_{j}(0)=0$.
Let $G(y)=\sum_{j \in J} f_{j} e^{i p_{j}(y)}$. Notice that $y^{r_{j}}(\log y)^{s_{j}}>y^{-1}$ for $y \gg 0$.
Then, $\int_{\mathbb{R}^{+}}\left|\sum_{j \in J} S_{j}(y)\right| \mathrm{d} y \geq \int_{\mathbb{R}^{+}} \frac{1}{y}|G(y)| \mathrm{d} y$.
Since $G \not \equiv 0$, by continuity $\exists \varepsilon, \delta>0$ s.t. $|G(y)|>\varepsilon$ on some interval I of length $\geq \delta$.

Idea: If G were periodic, of period ν, then $|G| \geq \varepsilon$ on $V_{\varepsilon}:=\bigcup_{k \in \mathbb{N}}(I+k \nu)$.

Finite sums of exponentials of polynomials

Claim. Let $x \notin \operatorname{Int}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{Int}\left(\sum_{j \in J} S_{j}, X\right)$.
Proof. Fix such an x. We may assume that $S_{j}(y)=f_{j} y^{r_{j}}(\log y)^{s_{j}} e^{i p_{j}(y)}$, with $f_{j} \neq 0$ and p_{j} distinct polynomials in $y^{1 / d}$ and $p_{j}(0)=0$.
Let $G(y)=\sum_{j \in J} f_{j} \mathrm{e}^{\mathrm{i} p_{j}(y)}$. Notice that $y^{r_{j}}(\log y)^{s_{j}}>y^{-1}$ for $y \gg 0$.
Then, $\int_{\mathbb{R}^{+}}\left|\sum_{j \in J} S_{j}(y)\right| \mathrm{d} y \geq \int_{\mathbb{R}^{+}} \frac{1}{y}|G(y)| \mathrm{d} y$.
Since $G \not \equiv 0$, by continuity $\exists \varepsilon, \delta>0$ s.t. $|G(y)|>\varepsilon$ on some interval I of length $\geq \delta$.

Idea: If G were periodic, of period ν, then $|G| \geq \varepsilon$ on $V_{\varepsilon}:=\bigcup_{k \in \mathbb{N}}(I+k \nu)$.
Then, $\int_{\mathbb{R}^{+}} \frac{1}{y}|G(y)| \mathrm{d} y \geq \varepsilon \int_{\mathbb{R}^{+} \cap v_{\varepsilon}} \frac{1}{y} \mathrm{~d} y \sim \sum_{k=1}^{\infty} \frac{\delta}{k \nu}=\infty$.

Finite sums of exponentials of polynomials

Claim. Let $x \notin \operatorname{Int}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{Int}\left(\sum_{j \in J} S_{j}, X\right)$.
Proof. Fix such an x. We may assume that $S_{j}(y)=f_{j} y^{r_{j}}(\log y)^{s_{j}} e^{i p_{j}(y)}$, with $f_{j} \neq 0$ and p_{j} distinct polynomials in $y^{1 / d}$ and $p_{j}(0)=0$.
Let $G(y)=\sum_{j \in J} f_{j} \mathrm{e}^{\mathrm{i} p_{j}(y)}$. Notice that $y^{r_{j}}(\log y)^{s_{j}}>y^{-1}$ for $y \gg 0$.
Then, $\int_{\mathbb{R}^{+}}\left|\sum_{j \in J} S_{j}(y)\right| \mathrm{d} y \geq \int_{\mathbb{R}^{+}} \frac{1}{y}|G(y)| \mathrm{d} y$.
Since $G \not \equiv 0$, by continuity $\exists \varepsilon, \delta>0$ s.t. $|G(y)|>\varepsilon$ on some interval I of length $\geq \delta$.

Idea: If G were periodic, of period ν, then $|G| \geq \varepsilon$ on $V_{\varepsilon}:=\bigcup_{k \in \mathbb{N}}(I+k \nu)$.
Then, $\int_{\mathbb{R}^{+}} \frac{1}{y}|G(y)| \mathrm{d} y \geq \varepsilon \int_{\mathbb{R}^{+} \cap v_{\varepsilon}} \frac{1}{y} \mathrm{~d} y \sim \sum_{k=1}^{\infty} \frac{\delta}{k \nu}=\infty$.
Now, G is not periodic.

Finite sums of exponentials of polynomials

Claim. Let $x \notin \operatorname{Int}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{Int}\left(\sum_{j \in J} S_{j}, X\right)$.
Proof. Fix such an x. We may assume that $S_{j}(y)=f_{j} y^{r_{j}}(\log y)^{s_{j}} e^{i p_{j}(y)}$, with $f_{j} \neq 0$ and p_{j} distinct polynomials in $y^{1 / d}$ and $p_{j}(0)=0$.
Let $G(y)=\sum_{j \in J} f_{j} \mathrm{e}^{\mathrm{i} p_{j}(y)}$. Notice that $y^{r_{j}}(\log y)^{s_{j}}>y^{-1}$ for $y \gg 0$.
Then, $\int_{\mathbb{R}^{+}}\left|\sum_{j \in J} S_{j}(y)\right| \mathrm{d} y \geq \int_{\mathbb{R}^{+}} \frac{1}{y}|G(y)| \mathrm{d} y$.
Since $G \not \equiv 0$, by continuity $\exists \varepsilon, \delta>0$ s.t. $|G(y)|>\varepsilon$ on some interval I of length $\geq \delta$.

Idea: If G were periodic, of period ν, then $|G| \geq \varepsilon$ on $V_{\varepsilon}:=\bigcup_{k \in \mathbb{N}}(I+k \nu)$.
Then, $\int_{\mathbb{R}^{+}} \frac{1}{y}|G(y)| \mathrm{d} y \geq \varepsilon \int_{\mathbb{R}^{+} \cap v_{\varepsilon}} \frac{1}{y} \mathrm{~d} y \sim \sum_{k=1}^{\infty} \frac{\delta}{k \nu}=\infty$.
Now, G is not periodic. But, using the theory of almost periodic functions $(\mathrm{H}$. Bohr), we show that the set $V_{\varepsilon}:=\{y:|G(y)| \geq \varepsilon\}$ is relatively dense in \mathbb{R}, i.e. it intersects every interval of size ν (for some $\nu>0$), and such an intersection has measure $\geq \delta$ (for some $\delta>0$).

Finite sums of exponentials of polynomials

Claim. Let $x \notin \operatorname{Int}\left(S_{j}, X\right) \forall j \in J$. Then $x \notin \operatorname{Int}\left(\sum_{j \in J} S_{j}, X\right)$.
Proof. Fix such an x. We may assume that $S_{j}(y)=f_{j} y^{r_{j}}(\log y)^{s_{j}} e^{i p_{j}(y)}$, with $f_{j} \neq 0$ and p_{j} distinct polynomials in $y^{1 / d}$ and $p_{j}(0)=0$.
Let $G(y)=\sum_{j \in J} f_{j} \mathrm{e}^{\mathrm{i} p_{j}(y)}$. Notice that $y^{r_{j}}(\log y)^{s_{j}}>y^{-1}$ for $y \gg 0$.
Then, $\int_{\mathbb{R}^{+}}\left|\sum_{j \in J} S_{j}(y)\right| \mathrm{d} y \geq \int_{\mathbb{R}^{+}} \frac{1}{y}|G(y)| \mathrm{d} y$.
Since $G \not \equiv 0$, by continuity $\exists \varepsilon, \delta>0$ s.t. $|G(y)|>\varepsilon$ on some interval I of length $\geq \delta$.

Idea: If G were periodic, of period ν, then $|G| \geq \varepsilon$ on $V_{\varepsilon}:=\bigcup_{k \in \mathbb{N}}(I+k \nu)$.
Then, $\int_{\mathbb{R}^{+}} \frac{1}{y}|G(y)| \mathrm{d} y \geq \varepsilon \int_{\mathbb{R}^{+} \cap v_{\varepsilon}} \frac{1}{y} \mathrm{~d} y \sim \sum_{k=1}^{\infty} \frac{\delta}{k \nu}=\infty$.
Now, G is not periodic. But, using the theory of almost periodic functions $(\mathrm{H}$. Bohr), we show that the set $V_{\varepsilon}:=\{y:|G(y)| \geq \varepsilon\}$ is relatively dense in \mathbb{R}, i.e. it intersects every interval of size ν (for some $\nu>0$), and such an intersection has measure $\geq \delta$ (for some $\delta>0$).

Almost periodic functions

Example. $f(x)=\sin (2 \pi x)+\sin (2 \sqrt{2} \pi x)$ is not periodic.

Almost periodic functions

Example. $f(x)=\sin (2 \pi x)+\sin (2 \sqrt{2} \pi x)$ is not periodic. However, $\forall \varepsilon>0 \exists \infty$ many τ s.t. $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$.

Almost periodic functions

Example. $f(x)=\sin (2 \pi x)+\sin (2 \sqrt{2} \pi x)$ is not periodic. However, $\forall \varepsilon>0 \exists \infty$ many τ s.t. $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$.
Given f, an ε-period is a number τ such that $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$.

Almost periodic functions

Example. $f(x)=\sin (2 \pi x)+\sin (2 \sqrt{2} \pi x)$ is not periodic. However, $\forall \varepsilon>0 \exists \infty$ many τ s.t. $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$.

Given f, an ε-period is a number τ such that $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$. $\mathcal{T}_{f, \varepsilon}:=\{\tau: \tau$ is an ε - period $\}$.

Almost periodic functions

Example. $f(x)=\sin (2 \pi x)+\sin (2 \sqrt{2} \pi x)$ is not periodic. However, $\forall \varepsilon>0 \exists \infty$ many τ s.t. $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$.

Given f, an ε-period is a number τ such that $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$. $\mathcal{T}_{f, \varepsilon}:=\{\tau: \tau$ is an ε-period $\}$.
Def. A continuous function f is almost periodic if for every $\varepsilon>0$, the set $\mathcal{T}_{f, \varepsilon}$ is relatively dense, i.e. it intersects every interval of size ν (for some $\nu>0$).

Almost periodic functions

Example. $f(x)=\sin (2 \pi x)+\sin (2 \sqrt{2} \pi x)$ is not periodic. However, $\forall \varepsilon>0 \exists \infty$ many τ s.t. $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$.

Given f, an ε-period is a number τ such that $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$. $\mathcal{T}_{f, \varepsilon}:=\{\tau: \tau$ is an ε-period $\}$.

Def. A continuous function f is almost periodic if for every $\varepsilon>0$, the set $\mathcal{T}_{\boldsymbol{f}, \varepsilon}$ is relatively dense, i.e. it intersects every interval of size ν (for some $\nu>0$). This definition extends to $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Almost periodic functions

Example. $f(x)=\sin (2 \pi x)+\sin (2 \sqrt{2} \pi x)$ is not periodic. However, $\forall \varepsilon>0 \exists \infty$ many τ s.t. $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$.

Given f, an ε-period is a number τ such that $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$. $\mathcal{T}_{f, \varepsilon}:=\{\tau: \tau$ is an ε-period $\}$.

Def. A continuous function f is almost periodic if for every $\varepsilon>0$, the set $\mathcal{T}_{f, \varepsilon}$ is relatively dense, i.e. it intersects every interval of size ν (for some $\nu>0$). This definition extends to $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Lemma. If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is almost periodic and $G(y)=F\left(y, y^{2}, \ldots, y^{n}\right)$, then $\exists \varepsilon>0$ s.t. the set $V_{\varepsilon}:=\{y:|G(y)| \geq \varepsilon\}$ intersects every interval of size ν (for some $\nu>0$), and such an intersection has measure $\geq \delta$ (for some $\delta>0$).

Almost periodic functions

Example. $f(x)=\sin (2 \pi x)+\sin (2 \sqrt{2} \pi x)$ is not periodic. However, $\forall \varepsilon>0 \exists \infty$ many τ s.t. $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$.

Given f, an ε-period is a number τ such that $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$. $\mathcal{T}_{f, \varepsilon}:=\{\tau: \tau$ is an ε-period $\}$.

Def. A continuous function f is almost periodic if for every $\varepsilon>0$, the set $\mathcal{T}_{f, \varepsilon}$ is relatively dense, i.e. it intersects every interval of size ν (for some $\nu>0$). This definition extends to $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Lemma. If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is almost periodic and $G(y)=F\left(y, y^{2}, \ldots, y^{n}\right)$, then $\exists \varepsilon>0$ s.t. the set $V_{\varepsilon}:=\{y:|G(y)| \geq \varepsilon\}$ intersects every interval of size ν (for some $\nu>0$), and such an intersection has measure $\geq \delta$ (for some $\delta>0$).

Recall: we have $G(y)=\sum_{j \in J} f_{j} e^{i p_{j}(y)}$, which is not almost periodic, and we want to prove that $\int_{V_{\varepsilon}} \frac{1}{y} \mathrm{~d} y=\infty$.

Almost periodic functions

Example. $f(x)=\sin (2 \pi x)+\sin (2 \sqrt{2} \pi x)$ is not periodic. However, $\forall \varepsilon>0 \exists \infty$ many τ s.t. $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$.

Given f, an ε-period is a number τ such that $x \in \mathbb{R}|f(x+\tau)-f(x)|<\varepsilon$. $\mathcal{T}_{f, \varepsilon}:=\{\tau: \tau$ is an ε-period $\}$.

Def. A continuous function f is almost periodic if for every $\varepsilon>0$, the set $\mathcal{T}_{\boldsymbol{f}, \varepsilon}$ is relatively dense, i.e. it intersects every interval of size ν (for some $\nu>0$). This definition extends to $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Lemma. If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is almost periodic and $G(y)=F\left(y, y^{2}, \ldots, y^{n}\right)$, then $\exists \varepsilon>0$ s.t. the set $V_{\varepsilon}:=\{y:|G(y)| \geq \varepsilon\}$ intersects every interval of size ν (for some $\nu>0$), and such an intersection has measure $\geq \delta$ (for some $\delta>0$).
Recall: we have $G(y)=\sum_{j \in J} f_{j} e^{i p_{j}(y)}$, which is not almost periodic, and we want to prove that $\int_{V_{\varepsilon}} \frac{1}{y} \mathrm{~d} y=\infty$.

Apply the above lemma to $F(x)=\sum_{j \in J} f_{j} e^{i L_{j}(x)}$, where $L_{j}\left(x_{1}, \ldots, x_{n}\right)$ is the linear form such that $p_{j}(y)=L_{j}\left(y, y^{2}, \ldots, y^{n}\right)$.

