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I. Reminders from Aschenbrenner’s talk



Main Theorem

We consider T as a valued ordered differential field, that is, as a
structure for the language with the primitives

0, 1, +, · , ∂ (derivation), 6 (ordering), 4 (dominance).

Main Theorem
Th(T) is axiomatized by the following:

1 Liouville closed H-field;
2 ω-free;
3 newtonian.

Moreover, this complete theory is model complete, and is the
model companion of the theory of H-fields.

ω-free: certain pseudo-cauchy sequences have no
pseudo-limits. So a model of this theory is never spherically
complete. Newtonianity is a kind of differential-henselianity.
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Why is T newtonian?

Recall: an H-field is grounded if the subset (Γ6=)† of its value
group Γ has a largest element.

By virtue of its construction T is the union of an increasing
sequence of spherically complete grounded H-subfields. In
view of the next result and ∂(T) = T, it follows that T is (ω-free)
and newtonian:

Theorem
Suppose K is an H-field with ∂(K ) = K and K is a directed
union of spherically complete grounded H-subfields. Then K is
ω-free and newtonian.

(A kind of analogue to Hensel’s Lemma which says that
spherically complete valued fields are henselian.)
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II. Remarks on Hardy fields



Hardy fields as H-fields

A Hardy field is a field K of germs at +∞ of differentiable
functions f : (a,+∞)→ R such that the germ of f ′ also belongs
to K . For simplicity, assume also that Hardy fields contain R.

For example, R(x ,ex , log x) is a Hardy field.

Hardy fields are ordered valued differential fields in a natural
way, and as such, are H-fields. With the axioms for H-fields we
were trying to capture the universal properties of Hardy fields.

Did we succeed in this?
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Hardy fields as H-fields

Yes. Every universal property true in all Hardy fields is true in
all H-fields with real closed constant field.

To be precise, extend the language of ordered valued
differential fields with symbols for the multiplicative inverse, and
for the standard part map st : K → C. In this extended
language, the class of H-fields has a universal axiomatization,
and every universal sentence true in all Hardy fields is true in
all H-fields with real closed constant field.

This is because Th(T) is the model companion of the theory of
H-fields, and has a Hardy field model isomorphic to

Tda := {f ∈ T : f is d-algebraic}.



Hardy fields as H-fields

Yes. Every universal property true in all Hardy fields is true in
all H-fields with real closed constant field.

To be precise, extend the language of ordered valued
differential fields with symbols for the multiplicative inverse, and
for the standard part map st : K → C.

In this extended
language, the class of H-fields has a universal axiomatization,
and every universal sentence true in all Hardy fields is true in
all H-fields with real closed constant field.

This is because Th(T) is the model companion of the theory of
H-fields, and has a Hardy field model isomorphic to

Tda := {f ∈ T : f is d-algebraic}.



Hardy fields as H-fields

Yes. Every universal property true in all Hardy fields is true in
all H-fields with real closed constant field.

To be precise, extend the language of ordered valued
differential fields with symbols for the multiplicative inverse, and
for the standard part map st : K → C. In this extended
language, the class of H-fields has a universal axiomatization,
and every universal sentence true in all Hardy fields is true in
all H-fields with real closed constant field.

This is because Th(T) is the model companion of the theory of
H-fields, and has a Hardy field model isomorphic to

Tda := {f ∈ T : f is d-algebraic}.



Hardy fields as H-fields

Yes. Every universal property true in all Hardy fields is true in
all H-fields with real closed constant field.

To be precise, extend the language of ordered valued
differential fields with symbols for the multiplicative inverse, and
for the standard part map st : K → C. In this extended
language, the class of H-fields has a universal axiomatization,
and every universal sentence true in all Hardy fields is true in
all H-fields with real closed constant field.

This is because Th(T) is the model companion of the theory of
H-fields, and has a Hardy field model isomorphic to

Tda := {f ∈ T : f is d-algebraic}.



An open problem on Hardy fields

Are all maximal Hardy fields elementarily equivalent to T?

We don’t know yet. It is classical that every Hardy field has a
Liouville closed Hardy field extension. We have a proof that
every Hardy field has an ω-free Hardy field extension. Thus
maximal Hardy fields are Liouville closed and ω-free.

To answer the question it remains to show that every Hardy
field has a newtonian Hardy field extension.
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III. Connection to the surreals



No as an H-field

Berarducci and Mantova recently equipped Conway’s field No
of surreal numbers with a derivation ∂ that makes it a Liouville
closed H-field with constant field R.

Moreover, the BM-derivation ∂ respects infinite sums, and is in
a certain technical sense the simplest possible derivation on
No making it an H-field with constant field R and respecting
infinite sums.

Is No with the BM-derivation elementarily equivalent to T?
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No with the BM-derivation is newtonian

To answer this question positively, it is enough by an earlier
theorem to represent No as a directed union of spherically
complete grounded H-subfields.

It is easy to produce spherically complete additive subgroups
and subfields of No: for any set S ⊆ No we have the spherically
complete additive subgroup

R[[ωS]] := {a =
∑
s∈S

rsω
s : supp a is reverse well-ordered}

If S has a least element, then R[[ωS]] has a smallest
archimedean class. If S is already an additive subgroup, then
R[[ωS]] is a spherically complete subfield of No.
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No with the BM-derivation is newtonian

To increase our chance of getting in this way subfields closed
under the BM-derivation we work with initial subsets S of No,
that is, if a <s b ∈ S, then a ∈ S.

So let S be an initial subset of No. Then the ordered additive
group Γ := R[[ωS]] is initial, and so is K := R[[ωΓ]]. (Ehrlich)

Examples
1 S = {0} gives Γ = R, so K = R[[ωR]], closed under ∂;
2 S = {0,1} gives Γ = R + Rω, so K = R[[ωR · exp(ω)R]],

closed under ∂;
3 S = {0,−1} gives Γ = R + Rω−1, so K = R[[ωR · log(ω)R]],

closed under ∂.
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No with the BM-derivation is newtonian

For some initial S, however, the resulting field K is not closed
under ∂. This happens if S is the set of ordinals 6 ε0.

Let ε be an ε-number, that is, an ordinal such that ωε = ε. Set

Sε := {surreals of length < ε}.

Then Sε is initial, and we can show that the resulting spherically
complete subfield Kε of No is closed under ∂. Recall:

Γε := R[[ωSε ]], Kε := R[[ωΓε ]].

But the H-field Kε is not grounded, since Sε doesn’t have a
least element.
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No with the BM-derivation is newtonian

Remedy: take Sε := Sε ∪ {−ε}. Then Sε is still initial, but now
has also a least element, namely −ε. Using the fact that Kε is
closed under ∂, it follows that the field K ε obtained from Sε is
still closed under ∂.

So we have for each ε-number ε a spherically complete
grounded H-subfield K ε of No. Easy to check that No is the
increasing union of those K ε.

Thus No with ∂ is elementarily equivalent to T.
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No with the BM-derivation is newtonian

Related results

• there is a unique embedding T→ No of exponential fields
that is the identity on R and respects infinite sums; this
embedding also respects the derivations and is therefore
an elementary embedding of differential fields. (Routine)

• The subfield of No consisting of the surreals of countable
length is closed under ∂. (Less routine)

The second result depends on the fact, of independent interest,
that for any countable ordinal λ, any well-ordered set of surreals
of length < λ is countable.
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IV. Open Problems



T as a differential exponential field

The most conspicuous extra structure on T that T as a
differential field does not see is the exponentiation, although its
restriction to the infinitesimals is definable in T.

This leads to the obvious question whether T as a differential
exponential field has a reasonable model theory. I am optimistic
that this is the case. Recall: exp and ∂ are compatible in the
sense that (exp f )′ = f ′ exp f .

And what about No as a differential exponential field?
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Definable Closure

What are the definably closed subsets of a model of Th(T)?

Example: R is definably closed in T. This is because for any
constant c ∈ R we have an automorphism f (x) 7→ f (x + c) of T
that is the identity on R, and for any f /∈ R one can choose the
constant c such that f (x + c) 6= f (x).

Easy: if A is definably closed set in a model of Th(T), then it is
an H-subfield of that model.
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Uniform finiteness?

Does every definable family (Xf )f∈Tm of (definable) subsets of
Tn have the uniform finiteness property?

That is, given such a family, is there a bound B ∈ N such that all
finite Xf have size 6 B?

Is there a reasonable dimension theory for definable sets in T?
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Allen Gehret’s work on Tlog

Set `0 := x , `1 := log x , . . . , `n+1 = log `n. Define

Tlog :=
⋃
n

R[[`R0 · · · `Rn ]].

Tlog is a particularly transparent H-subfield of T. It is ω-free and
newtonian by the same theorem we used in showing that T and
No are ω-free and newtonian.

But Tlog is not Liouville closed. It is power closed: every
differential equation y† = cf † (c ∈ R, f ∈ Tlog) has a solution,
namely y = f c .

Much of the AHD-work does not use Liouville closednes, but
concerns arbitrary ω-free newtonian H-fields, and this gives
hope that Tlog also has a reasonable model theory.
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Allen Gehret’s work on Tlog

Gehret did the following:
1 he identified the complete theory of the asymptotic couple

of Tlog, and showed it has a good model theory;
2 found an interesting new axiom satisfied by Tlog.

Gehret’s Program is to show that the following axiomatizes a
complete and model complete theory:
• H-field with real closed constant field;
• ω-free and newtonian;
• closed under powers;
• asymptotic couple |= theory in (1) above;
• axiom from (2) above.
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Allen Gehret’s work on Tlog

The new axiom in (2) above was suggested by trying to
existentially define the complement of the existentially
definable set {f † : f ∈ Tlog}, an R-linear subspace of Tlog.

Gehret noticed that this is possible in the two-sorted structure
consisting of Tlog with its asymptotic couple as second sort:

y /∈ {f † : f ∈ Tlog} iff there exists a g 6= 0 such that
v(y − g†) ∈ Ψ↓ \Ψ, where

Ψ := {v(a†) : a ∈ T×log, v(a) 6= 0}

is an important definable set in the asymptotic couple of Tlog.
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