Transseries, Hardy fields, and surreal numbers

Lou van den Dries

University of Illinois at Urbana-Champaign

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- I. Reminders from Aschenbrenner's talk
- II. Remarks on Hardy fields
- III. Connection to the surreals
- IV. Open problems

(joint work with MATTHIAS ASCHENBRENNER and JORIS VAN DER HOEVEN)

I. Reminders from Aschenbrenner's talk

Main Theorem

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We consider \mathbb{T} as a valued ordered differential field, that is, as a structure for the language with the primitives

0, 1, +, \cdot , ∂ (derivation), \leq (ordering), \leq (dominance).

Main Theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We consider $\mathbb T$ as a valued ordered differential field, that is, as a structure for the language with the primitives

0, 1, +, \cdot , ∂ (derivation), \leq (ordering), \leq (dominance).

Main Theorem

 $\mathsf{Th}(\mathbb{T})$ is axiomatized by the following:

- 1 Liouville closed H-field;
- **2** ω-free;

3 newtonian.

Moreover, this complete theory is model complete, and is the model companion of the theory of H-fields.

Main Theorem

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We consider $\mathbb T$ as a valued ordered differential field, that is, as a structure for the language with the primitives

0, 1, +, \cdot , ∂ (derivation), \leq (ordering), \leq (dominance).

Main Theorem

 $\mathsf{Th}(\mathbb{T})$ is axiomatized by the following:

- 1 Liouville closed H-field;
- **2** ω-free;
- 3 newtonian.

Moreover, this complete theory is model complete, and is the model companion of the theory of H-fields.

ω-free: certain pseudo-cauchy sequences have no pseudo-limits. So a model of this theory is never spherically complete. Newtonianity is a kind of differential-henselianity.

Why is T newtonian?

Recall: an *H*-field is **grounded** if the subset $(\Gamma^{\neq})^{\dagger}$ of its value group Γ has a largest element.

Why is \mathbb{T} newtonian?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Recall: an *H*-field is **grounded** if the subset $(\Gamma^{\neq})^{\dagger}$ of its value group Γ has a largest element.

By virtue of its construction \mathbb{T} is the union of an increasing sequence of spherically complete grounded *H*-subfields. In view of the next result and $\partial(\mathbb{T}) = \mathbb{T}$, it follows that \mathbb{T} is (ω -free) and newtonian:

Why is \mathbb{T} newtonian?

Recall: an *H*-field is **grounded** if the subset $(\Gamma^{\neq})^{\dagger}$ of its value group Γ has a largest element.

By virtue of its construction \mathbb{T} is the union of an increasing sequence of spherically complete grounded *H*-subfields. In view of the next result and $\partial(\mathbb{T}) = \mathbb{T}$, it follows that \mathbb{T} is (ω -free) and newtonian:

Theorem

Suppose K is an H-field with $\partial(K) = K$ and K is a directed union of spherically complete grounded H-subfields. Then K is ω -free and newtonian.

Why is \mathbb{T} newtonian?

Recall: an *H*-field is **grounded** if the subset $(\Gamma^{\neq})^{\dagger}$ of its value group Γ has a largest element.

By virtue of its construction \mathbb{T} is the union of an increasing sequence of spherically complete grounded *H*-subfields. In view of the next result and $\partial(\mathbb{T}) = \mathbb{T}$, it follows that \mathbb{T} is (ω -free) and newtonian:

Theorem

Suppose K is an H-field with $\partial(K) = K$ and K is a directed union of spherically complete grounded H-subfields. Then K is ω -free and newtonian.

(A kind of analogue to Hensel's Lemma which says that spherically complete valued fields are henselian.)

II. Remarks on Hardy fields

(ロ)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A Hardy field is a field *K* of germs at $+\infty$ of differentiable functions $f : (a, +\infty) \to \mathbb{R}$ such that the germ of f' also belongs to *K*. For simplicity, assume also that Hardy fields contain \mathbb{R} .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A Hardy field is a field *K* of germs at $+\infty$ of differentiable functions $f : (a, +\infty) \to \mathbb{R}$ such that the germ of f' also belongs to *K*. For simplicity, assume also that Hardy fields contain \mathbb{R} .

For example, $\mathbb{R}(x, e^x, \log x)$ is a Hardy field.

A Hardy field is a field *K* of germs at $+\infty$ of differentiable functions $f : (a, +\infty) \to \mathbb{R}$ such that the germ of f' also belongs to *K*. For simplicity, assume also that Hardy fields contain \mathbb{R} .

For example, $\mathbb{R}(x, e^x, \log x)$ is a Hardy field.

Hardy fields are ordered valued differential fields in a natural way, and as such, are *H*-fields. With the axioms for *H*-fields we were trying to capture the universal properties of Hardy fields.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

A Hardy field is a field *K* of germs at $+\infty$ of differentiable functions $f : (a, +\infty) \to \mathbb{R}$ such that the germ of f' also belongs to *K*. For simplicity, assume also that Hardy fields contain \mathbb{R} .

For example, $\mathbb{R}(x, e^x, \log x)$ is a Hardy field.

Hardy fields are ordered valued differential fields in a natural way, and as such, are *H*-fields. With the axioms for *H*-fields we were trying to capture the universal properties of Hardy fields.

Did we succeed in this?

Hardy fields as *H*-fields

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Yes. Every universal property true in all Hardy fields is true in all *H*-fields with real closed constant field.

Hardy fields as *H*-fields

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Yes. Every universal property true in all Hardy fields is true in all *H*-fields with real closed constant field.

To be precise, extend the language of ordered valued differential fields with symbols for the multiplicative inverse, and for the standard part map st : $K \rightarrow C$.

Hardy fields as *H*-fields

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Yes. Every universal property true in all Hardy fields is true in all *H*-fields with real closed constant field.

To be precise, extend the language of ordered valued differential fields with symbols for the multiplicative inverse, and for the standard part map st : $K \rightarrow C$. In this extended language, the class of *H*-fields has a universal axiomatization, and every universal sentence true in all Hardy fields is true in all *H*-fields with real closed constant field.

Yes. Every universal property true in all Hardy fields is true in all *H*-fields with real closed constant field.

To be precise, extend the language of ordered valued differential fields with symbols for the multiplicative inverse, and for the standard part map st : $K \rightarrow C$. In this extended language, the class of *H*-fields has a universal axiomatization, and every universal sentence true in all Hardy fields is true in all *H*-fields with real closed constant field.

This is because $Th(\mathbb{T})$ is the model companion of the theory of *H*-fields, and has a Hardy field model isomorphic to

 $\mathbb{T}^{da} := \{ f \in \mathbb{T} : f \text{ is d-algebraic} \}.$

An open problem on Hardy fields

Are all maximal Hardy fields elementarily equivalent to $\mathbb{T}?$

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Are all maximal Hardy fields elementarily equivalent to \mathbb{T} ?

We don't know yet. It is classical that every Hardy field has a Liouville closed Hardy field extension. We have a proof that every Hardy field has an ω -free Hardy field extension.

Are all maximal Hardy fields elementarily equivalent to \mathbb{T} ?

We don't know yet. It is classical that every Hardy field has a Liouville closed Hardy field extension. We have a proof that every Hardy field has an ω -free Hardy field extension. Thus maximal Hardy fields are Liouville closed and ω -free.

Are all maximal Hardy fields elementarily equivalent to \mathbb{T} ?

We don't know yet. It is classical that every Hardy field has a Liouville closed Hardy field extension. We have a proof that every Hardy field has an ω -free Hardy field extension. Thus maximal Hardy fields are Liouville closed and ω -free.

To answer the question it remains to show that every Hardy field has a newtonian Hardy field extension.

III. Connection to the surreals

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Berarducci and Mantova recently equipped Conway's field **No** of surreal numbers with a derivation ∂ that makes it a Liouville closed *H*-field with constant field \mathbb{R} .

Moreover, the BM-derivation ∂ respects infinite sums, and is in a certain technical sense the simplest possible derivation on **No** making it an *H*-field with constant field \mathbb{R} and respecting infinite sums.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Berarducci and Mantova recently equipped Conway's field **No** of surreal numbers with a derivation ∂ that makes it a Liouville closed *H*-field with constant field \mathbb{R} .

Moreover, the BM-derivation ∂ respects infinite sums, and is in a certain technical sense the simplest possible derivation on **No** making it an *H*-field with constant field \mathbb{R} and respecting infinite sums.

Is **No** with the BM-derivation elementarily equivalent to \mathbb{T} ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

To answer this question positively, it is enough by an earlier theorem to represent **No** as a directed union of spherically complete grounded H-subfields.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

To answer this question positively, it is enough by an earlier theorem to represent **No** as a directed union of spherically complete grounded H-subfields.

It is easy to produce spherically complete additive subgroups and subfields of **No**: for any set $S \subseteq$ **No** we have the spherically complete additive subgroup

$$\mathbb{R}[[\omega^{S}]] := \{a = \sum_{s \in S} r_{s} \omega^{s} : \text{ supp } a \text{ is reverse well-ordered} \}$$

To answer this question positively, it is enough by an earlier theorem to represent **No** as a directed union of spherically complete grounded H-subfields.

It is easy to produce spherically complete additive subgroups and subfields of **No**: for any set $S \subseteq$ **No** we have the spherically complete additive subgroup

$$\mathbb{R}[[\omega^{S}]] := \{a = \sum_{s \in S} r_{s} \omega^{s} : \text{ supp } a \text{ is reverse well-ordered} \}$$

If *S* has a least element, then $\mathbb{R}[[\omega^S]]$ has a smallest archimedean class. If *S* is already an additive subgroup, then $\mathbb{R}[[\omega^S]]$ is a spherically complete subfield of **No**.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

To increase our chance of getting in this way subfields closed under the BM-derivation we work with **initial** subsets *S* of **No**, that is, if $a <_s b \in S$, then $a \in S$.

To increase our chance of getting in this way subfields closed under the BM-derivation we work with **initial** subsets *S* of **No**, that is, if $a <_s b \in S$, then $a \in S$.

So let *S* be an initial subset of **No**. Then the ordered additive group $\Gamma := \mathbb{R}[[\omega^S]]$ is initial, and so is $\mathcal{K} := \mathbb{R}[[\omega^{\Gamma}]]$. (Ehrlich)

To increase our chance of getting in this way subfields closed under the BM-derivation we work with **initial** subsets *S* of **No**, that is, if $a <_s b \in S$, then $a \in S$.

So let *S* be an initial subset of **No**. Then the ordered additive group $\Gamma := \mathbb{R}[[\omega^S]]$ is initial, and so is $\mathcal{K} := \mathbb{R}[[\omega^{\Gamma}]]$. (Ehrlich)

Examples

1
$$S = \{0\}$$
 gives $\Gamma = \mathbb{R}$, so $K = \mathbb{R}[[\omega^{\mathbb{R}}]]$, closed under ∂ ;

(日) (日) (日) (日) (日) (日) (日)

To increase our chance of getting in this way subfields closed under the BM-derivation we work with **initial** subsets *S* of **No**, that is, if $a <_s b \in S$, then $a \in S$.

So let *S* be an initial subset of **No**. Then the ordered additive group $\Gamma := \mathbb{R}[[\omega^S]]$ is initial, and so is $\mathcal{K} := \mathbb{R}[[\omega^{\Gamma}]]$. (Ehrlich)

Examples

- **1** $S = \{0\}$ gives $\Gamma = \mathbb{R}$, so $K = \mathbb{R}[[\omega^{\mathbb{R}}]]$, closed under ∂ ;
- 2 $S = \{0, 1\}$ gives $\Gamma = \mathbb{R} + \mathbb{R}\omega$, so $K = \mathbb{R}[[\omega^{\mathbb{R}} \cdot \exp(\omega)^{\mathbb{R}}]]$, closed under ∂ ;

To increase our chance of getting in this way subfields closed under the BM-derivation we work with **initial** subsets *S* of **No**, that is, if $a <_s b \in S$, then $a \in S$.

So let *S* be an initial subset of **No**. Then the ordered additive group $\Gamma := \mathbb{R}[[\omega^S]]$ is initial, and so is $K := \mathbb{R}[[\omega^{\Gamma}]]$. (Ehrlich)

Examples

- **1** $S = \{0\}$ gives $\Gamma = \mathbb{R}$, so $K = \mathbb{R}[[\omega^{\mathbb{R}}]]$, closed under ∂ ;
- 2 $S = \{0, 1\}$ gives $\Gamma = \mathbb{R} + \mathbb{R}\omega$, so $K = \mathbb{R}[[\omega^{\mathbb{R}} \cdot \exp(\omega)^{\mathbb{R}}]]$, closed under ∂ ;
- **3** $S = \{0, -1\}$ gives $\Gamma = \mathbb{R} + \mathbb{R}\omega^{-1}$, so $K = \mathbb{R}[[\omega^{\mathbb{R}} \cdot \log(\omega)^{\mathbb{R}}]]$, closed under ∂ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

For some initial *S*, however, the resulting field *K* is **not** closed under ∂ . This happens if *S* is the set of ordinals $\leq \varepsilon_0$.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

For some initial *S*, however, the resulting field *K* is **not** closed under ∂ . This happens if *S* is the set of ordinals $\leq \varepsilon_0$.

Let ε be an ε -number, that is, an ordinal such that $\omega^{\varepsilon} = \varepsilon$. Set

 $S_{\varepsilon} := \{ \text{surreals of length } < \varepsilon \}.$

Then S_{ε} is initial, and we can show that the resulting spherically complete subfield K_{ε} of **No** is closed under ∂ . Recall:

$$\Gamma_{\varepsilon} := \mathbb{R}[[\omega^{S_{\varepsilon}}]], \qquad K_{\varepsilon} := \mathbb{R}[[\omega^{\Gamma_{\varepsilon}}]].$$
For some initial *S*, however, the resulting field *K* is **not** closed under ∂ . This happens if *S* is the set of ordinals $\leq \varepsilon_0$.

Let ε be an ε -number, that is, an ordinal such that $\omega^{\varepsilon} = \varepsilon$. Set

 $S_{\varepsilon} := \{ \text{surreals of length } < \varepsilon \}.$

Then S_{ε} is initial, and we can show that the resulting spherically complete subfield K_{ε} of **No** is closed under ∂ . Recall:

$$\Gamma_{\varepsilon} := \mathbb{R}[[\omega^{S_{\varepsilon}}]], \qquad K_{\varepsilon} := \mathbb{R}[[\omega^{\Gamma_{\varepsilon}}]].$$

But the *H*-field K_{ε} is not grounded, since S_{ε} doesn't have a least element.

Remedy: take $S^{\varepsilon} := S_{\varepsilon} \cup \{-\varepsilon\}$. Then S^{ε} is still initial, but now has also a least element, namely $-\varepsilon$. Using the fact that K_{ε} is closed under ∂ , it follows that the field K^{ε} obtained from S^{ε} is still closed under ∂ .

Remedy: take $S^{\varepsilon} := S_{\varepsilon} \cup \{-\varepsilon\}$. Then S^{ε} is still initial, but now has also a least element, namely $-\varepsilon$. Using the fact that K_{ε} is closed under ∂ , it follows that the field K^{ε} obtained from S^{ε} is still closed under ∂ .

So we have for each ε -number ε a spherically complete grounded *H*-subfield K^{ε} of **No**. Easy to check that **No** is the increasing union of those K^{ε} .

Remedy: take $S^{\varepsilon} := S_{\varepsilon} \cup \{-\varepsilon\}$. Then S^{ε} is still initial, but now has also a least element, namely $-\varepsilon$. Using the fact that K_{ε} is closed under ∂ , it follows that the field K^{ε} obtained from S^{ε} is still closed under ∂ .

So we have for each ε -number ε a spherically complete grounded *H*-subfield K^{ε} of **No**. Easy to check that **No** is the increasing union of those K^{ε} .

Thus **No** with ∂ is elementarily equivalent to \mathbb{T} .

Related results

- there is a unique embedding T → No of exponential fields that is the identity on R and respects infinite sums; this embedding also respects the derivations and is therefore an elementary embedding of differential fields. (Routine)
- The subfield of **No** consisting of the surreals of countable length is closed under ∂ . (Less routine)

Related results

- there is a unique embedding $\mathbb{T} \to \mathbf{No}$ of exponential fields that is the identity on \mathbb{R} and respects infinite sums; this embedding also respects the derivations and is therefore an elementary embedding of differential fields. (Routine)
- The subfield of **No** consisting of the surreals of countable length is closed under ∂ . (Less routine)

The second result depends on the fact, of independent interest, that for any countable ordinal λ , any well-ordered set of surreals of length $< \lambda$ is countable.

IV. Open Problems

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

The most conspicuous extra structure on \mathbb{T} that \mathbb{T} as a differential field does not see is the exponentiation, although its restriction to the infinitesimals is definable in \mathbb{T} .

The most conspicuous extra structure on \mathbb{T} that \mathbb{T} as a differential field does not see is the exponentiation, although its restriction to the infinitesimals is definable in \mathbb{T} .

This leads to the obvious question whether \mathbb{T} as a differential exponential field has a reasonable model theory. I am optimistic that this is the case. Recall: exp and ∂ are compatible in the sense that $(\exp f)' = f' \exp f$.

The most conspicuous extra structure on \mathbb{T} that \mathbb{T} as a differential field does not see is the exponentiation, although its restriction to the infinitesimals is definable in \mathbb{T} .

This leads to the obvious question whether \mathbb{T} as a differential exponential field has a reasonable model theory. I am optimistic that this is the case. Recall: exp and ∂ are compatible in the sense that $(\exp f)' = f' \exp f$.

And what about **No** as a differential exponential field?

What are the definably closed subsets of a model of $Th(\mathbb{T})$?

What are the definably closed subsets of a model of $Th(\mathbb{T})$?

Example: \mathbb{R} is definably closed in \mathbb{T} . This is because for any constant $c \in \mathbb{R}$ we have an automorphism $f(x) \mapsto f(x + c)$ of \mathbb{T} that is the identity on \mathbb{R} , and for any $f \notin \mathbb{R}$ one can choose the constant c such that $f(x + c) \neq f(x)$.

What are the definably closed subsets of a model of $Th(\mathbb{T})$?

Example: \mathbb{R} is definably closed in \mathbb{T} . This is because for any constant $c \in \mathbb{R}$ we have an automorphism $f(x) \mapsto f(x + c)$ of \mathbb{T} that is the identity on \mathbb{R} , and for any $f \notin \mathbb{R}$ one can choose the constant c such that $f(x + c) \neq f(x)$.

Easy: if A is definably closed set in a model of $Th(\mathbb{T})$, then it is an *H*-subfield of that model.

Does every definable family $(X_f)_{f \in \mathbb{T}^m}$ of (definable) subsets of \mathbb{T}^n have the uniform finiteness property?

That is, given such a family, is there a bound $B \in \mathbb{N}$ such that all finite X_f have size $\leq B$?

Does every definable family $(X_f)_{f \in \mathbb{T}^m}$ of (definable) subsets of \mathbb{T}^n have the uniform finiteness property?

That is, given such a family, is there a bound $B \in \mathbb{N}$ such that all finite X_f have size $\leq B$?

Is there a reasonable dimension theory for definable sets in \mathbb{T} ?

Allen Gehret's work on \mathbb{T}_{log}

Set
$$\ell_0 := x, \ell_1 := \log x, \dots, \ell_{n+1} = \log \ell_n$$
. Define

$$\mathbb{T}_{\log} := \bigcup_n \mathbb{R}[[\ell_0^{\mathbb{R}} \cdots \ell_n^{\mathbb{R}}]].$$

Set
$$\ell_0 := x, \ell_1 := \log x, \dots, \ell_{n+1} = \log \ell_n$$
. Define

$$\mathbb{T}_{\log} := \bigcup_{n} \mathbb{R}[[\ell_0^{\mathbb{R}} \cdots \ell_n^{\mathbb{R}}]].$$

 \mathbb{T}_{log} is a particularly transparent *H*-subfield of \mathbb{T} . It is ω -free and newtonian by the same theorem we used in showing that \mathbb{T} and **No** are ω -free and newtonian.

Set
$$\ell_0 := x, \ell_1 := \log x, \dots, \ell_{n+1} = \log \ell_n$$
. Define

$$\mathbb{T}_{\log} := \bigcup_{n} \mathbb{R}[[\ell_0^{\mathbb{R}} \cdots \ell_n^{\mathbb{R}}]].$$

 \mathbb{T}_{log} is a particularly transparent *H*-subfield of \mathbb{T} . It is ω -free and newtonian by the same theorem we used in showing that \mathbb{T} and **No** are ω -free and newtonian.

But \mathbb{T}_{\log} is **not** Liouville closed. It is power closed: every differential equation $y^{\dagger} = cf^{\dagger}$ ($c \in \mathbb{R}, f \in \mathbb{T}_{\log}$) has a solution, namely $y = f^c$.

Set
$$\ell_0 := x, \ell_1 := \log x, ..., \ell_{n+1} = \log \ell_n$$
. Define

$$\mathbb{T}_{\log} := \bigcup_{n} \mathbb{R}[[\ell_0^{\mathbb{R}} \cdots \ell_n^{\mathbb{R}}]].$$

 \mathbb{T}_{log} is a particularly transparent *H*-subfield of \mathbb{T} . It is ω -free and newtonian by the same theorem we used in showing that \mathbb{T} and **No** are ω -free and newtonian.

But \mathbb{T}_{\log} is **not** Liouville closed. It is power closed: every differential equation $y^{\dagger} = cf^{\dagger}$ ($c \in \mathbb{R}, f \in \mathbb{T}_{\log}$) has a solution, namely $y = f^c$.

Much of the AHD-work does not use Liouville closednes, but concerns arbitrary ω -free newtonian *H*-fields, and this gives hope that \mathbb{T}_{log} also has a reasonable model theory.

Gehret did the following:

- he identified the complete theory of the asymptotic couple of T_{log}, and showed it has a good model theory;
- **2** found an interesting new axiom satisfied by \mathbb{T}_{log} .

Gehret did the following:

- he identified the complete theory of the asymptotic couple of T_{log}, and showed it has a good model theory;
- 2 found an interesting new axiom satisfied by \mathbb{T}_{\log} .

Gehret's Program is to show that the following axiomatizes a complete and model complete theory:

- *H*-field with real closed constant field;
- ω-free and newtonian;
- closed under powers;
- asymptotic couple \models theory in (1) above;
- axiom from (2) above.

The new axiom in (2) above was suggested by trying to existentially define the **complement** of the existentially definable set $\{f^{\dagger}: f \in \mathbb{T}_{log}\}$, an \mathbb{R} -linear subspace of \mathbb{T}_{log} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The new axiom in (2) above was suggested by trying to existentially define the **complement** of the existentially definable set $\{f^{\dagger}: f \in \mathbb{T}_{log}\}$, an \mathbb{R} -linear subspace of \mathbb{T}_{log} .

Gehret noticed that this is possible in the two-sorted structure consisting of \mathbb{T}_{log} with its asymptotic couple as second sort:

 $y \notin \{f^{\dagger}: f \in \mathbb{T}_{log}\}$ iff there exists a $g \neq 0$ such that $v(y - g^{\dagger}) \in \Psi^{\downarrow} \setminus \Psi$, where

$$\Psi := \{ v(a^{\dagger}): a \in \mathbb{T}_{\log}^{\times}, v(a) \neq 0 \}$$

is an important definable set in the asymptotic couple of \mathbb{T}_{log} .