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Abstract Shelah’s conjecture for NIP fields suggests that every infinite NIP field
should be separably closed, real closed or admit a non-trivial henselian valuation.
Notably that would mean that NIP fields are ‘very close’ to being algebraically
closed. A reasonable approach in the pursuit of this conjecture is therefore to
show that fields that are ‘far’ from being algebraically closed necessarily have the
independence property. In an earlier work, I could prove that all purely transcen-
dental extensions of real fields have the independence property.This class of fields
consists exactly of all fields that can be expressed as a rational function field over
some real field K. The aim of this work is now to generalize this result to real
minimal Hahn fields K(G), where G is some arbitrary ordered abelian group. Note
that rational function fields can be viewed as the minimal Hahn fields where G = Z.

Independence on real rational function fields
Proposition 1. Let K be a real field. Then K(X) has the independence property.

The crucial ingredients in my original proof were on the one hand that every positive-semidefinite
rational function over Q can be expressed as a sum of at most five squares, on the other hand the
simple fact that a sum of squares can never be negative in any ordering on a real field. Then the
formula

ϕ(x ; y) := ∃z, u1, u2, u3, u4, u5 :

(
xz = y ∧

5∑
i=1

u2
i = 1− z2

)
was shown to witness the independence property through the use of pn := X−n

(n+1)(X2+1) for an n ∈ N
and bI :=

∏
n∈I bn for any finite I ( N. Note that, since Q embeds into any real field K, we can

consider the pn, bI as element of any real rational function field K(X).
For all real fields K it is K(X) |= ϕ(pn; bI)⇔ n ∈ I because if n ∈ I, then z must be bI\{n}, which

is bounded by one and thus 1−z2 is positive semidefinite. Hence we can find the required ui already in
Q(X) and the existential formula is inherited. On the other hand, if n 6∈ I, then z = bI

pn
is unbounded

on infinitely many points near the singularity n. Hence 1− z2 is negative at infinitely many points and
any potential ui would all be defined at one of these points. Then evaluating in this point would yield
a negative element of K expressed as a sum of five squares, which leads to a contradiction.

Real minimal Hahn fields
Let K be a real field and G an ordered abelian group. We define the ring K[G] as the subring of the
formal power series field K((G)) which consists of all power series with finite support. That means
any s ∈ K[G] can be described as the formal expression

s =
∑
γ∈Γs

aγX
γ

for Γs : supp(s) ( G finite. The minimal Hahn field K(G) is now defined as the fraction field
of K[G]. Note that every element of K(G) can be written as the fraction of two expressions as
above. Furthermore, for G = Z this is exactly the field of rational functions over K. Since Z as group
can be embedded into any ordered abelian group G, we can always consider K(X) as a subfield of
K(G). This allows us to consider the pn and bI as elements of K(G) and we immediately obtain
n ∈ I ⇒ K(G) |= ϕ(pn; bI).

Interpreting K(G) as functions
It only remains to show that for n ∈ N\ I it follows K(G) 6|= ϕ(pn; bI). The crucial ingredient used in
the case of the rational function field K(X) is that its elements can be easily interpreted as functions
over K. Furthermore, they are compatible with addition and multiplication as pointwise operation
wherever they are defined and only have finitely many singularities.
In this more general setting now even interpreting the elements of K(G) as functions may not be

possible. Consider the example of Q(Q), this field contains X
1
2 . But if we now naturally let X denote

the identity on K, then X
1
2 would map every element a ∈ Q to a square root of a. This is obviously

impossible, on one hand for example 2 has no square root in Q, on the other hand −1 can not have
a square root in any real extension of Q.
In this general setting, we must therefore put in a lot more work to obtain the required argument.

Since we can never avoid the issue of −1 not being a valid input to evaluate X
1
2 , we will only try to

consider elements of K(G) as functions defined on the positive elements of K with under a fixed
ordering. We will first develop the main idea in a restricted setting where we assume that both K and
G admit an archimedean ordering.
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The archimedean case
We now consider an archimedean ordered group G and a real field K that admits an archimedean
ordering. Then both K and G can (independently) be embedded into R as ordered abelian group or
real field respectively. We can now make use of those two embeddings to consider K(G) as a subfield
of R(R). We obtain Q(Z) ⊆ K(G) ⊆ R(R).

Proposition 2. Every field L with Q(Z) ⊆ L ⊆ R(R) has the independence property.

We define an embedding from R[R] into the ring of maps from R+ to R with pointwise addition and
multiplication. Consider an s ∈ R[R] with the form

s =
∑

r∈supp s

arX
r

for some r ∈ R, ar ∈ R×. We define the function

fs : x 7→
∑

r∈supp s

ar exp(r log(x)).

One can now easily confirm that the map s 7→ fs is indeed a ring embedding. To extend this map from
R[R] to R(R) we now only need to define f1/s for an s as above. We can easily define f1/s(x) := 1

fs(x)

for all x ∈ R+ where fs(x) 6= 0, but must leave it undefined for all roots of fs . If no confusion is
likely to arise, we will write s(x) for fs(x).
The last ingredient we now need is that every fs has only finitely many roots. They are exactly the

objects which are called generalized polynomials in [4], hence we obtain from [4, Corollary 3.2]
that for all s ∈ R[R] it is

|{x ∈ R+ | fs(x) = 0}| < |supp s|.
In fact, this result is strong enough that we can express it as a first order axiom scheme in the
structure (R,+, ·, exp). This will be very useful when generalizing to non-archimedean fields and
groups. For now, we have all we need to see that for any finite I ( N and n ∈ N \ I we obtain
R(R) 6|= ϕ(pn; bI). Otherwise 1 − (bIpn)2 is negative at infinitely many points x ∈ R+, but can be
expressed as a sum of squares

∑5
i=1 u

2
i . Then, since all ui are defined at all but finitely many points in

R+, we find at least one x0 ∈ R+ where 0 > (1− (bIpn)2)(x0) =
∑5

i=1(ui(x0))2 ≥ 0. Contradiction.

The general case
To now handle the general case in which we do not assume the field and group to be archimedean
we require a larger structure to embed them in. Notably that larger structure must accommodate an
exponential function to allow the embedding into the ring of functions as above. To this end we will
consider the surreal numbers No. Notably they admit an addition, multiplication and ordering under
which they act as an ordered field. Furthermore, every ordered field K and ordered abelian group G
can be embedded into No,since by [2, Theorem 19, Theorem 9] their real closure or divisible closure
respectively is isomorphic to a substructure of No. By [3, Chapter 10] they even admit an exponential
function. Even better, by [1, Corollary 2.2] the structure (No,+, ·, exp) is elementarily equivalent to
(R,+, ·, exp). This allows us to transfer the result of [4, Corollary 3.2] to generalized polynomials
with surreal coefficients and exponents, since as mentioned earlier this result can be expressed as a
first order axiom scheme.
With this said, it seems all conditions for the argument that K(G) 6|= ϕ(pn; bI) if n ∈ N \ I are in

place. There is however one caveat: The surreal numbers form a proper class and not a set. We can
with a little work however choose an ordering on K and construct an ordered field extensions L/K
such that we can interpret all elements of K(G) as functions from K+ to L.
We consider the images under all fs for an s ∈ K[G] of any x ∈ K+. Those are at most (|K|2|G|)-

many. We obtain L by adjoining all these points to K. We now made sure that every element of
K(G) can be interpreted as a function from all but finitely many points of K+ to L and the addition
and multiplication on K(G) are compatible with pointwise addition and multiplication outside of those
singularities. Furthermore every 1−(bIpn)2 is negative at infinitely many points of K+ for some ordering
on L whenever n ∈ N \ I, as we can already find infinitely many such points in Q. Thus if we now
assume that K(G) |= ϕ(pn; bI), then we find u1, . . . , u5 and x0 ∈ K+ such that all ui are defined at
x0 and

0 > (1− (
bI
pn

)2)(x0) =

5∑
i=1

(ui(x0))2 ≥ 0.

This is a contradiction and thus implies K(G) 6|= ϕ(pn; bI). We therefore proved:

Theorem. Let K be a real field and G an ordered abelian group. Then K(G) has the independence
property.
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