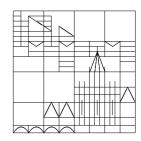
Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. REINHARD RACKE DIPL.-MATH. OLAF WEINMANN

13. November 2006



Analysis I 4. Übungsblatt

Aufgabe 4.1 Untersuchen Sie die nachstehend definierten Folgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ und $(d_n)_{n\in\mathbb{N}}$ auf Konvergenz.

- $(i) \ a_n := \sqrt{n+1} \sqrt{n},$
- (ii) $b_n := \sum_{\nu=1}^n \frac{1}{\nu(\nu+1)}$,
- (iii) $c_n := qc_{n-1}$ hierbei sind $q \in (-1,1)$ und $c_0 := 1 + \sqrt{2}$ vorgegeben.
- (iv) $d_n := \frac{3n^2(3+\frac{1}{n!})(3n^4-4n^3)}{2(n^2-2)(n^4+\sqrt{n^2+1})}.$

Aufgabe 4.2 Gegeben seien Folgen $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ sowie $n_0\in\mathbb{N}$. Für alle $n\geq n_0$ gelte $a_n\leq b_n\leq c_n$. Die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ seien konvergent mit dem Grenzwert $g:=\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n$. Beweisen Sie, dass dann $(b_n)_{n\in\mathbb{N}}$ gegen g konvergiert.

Aufgabe 4.3 Es seien a_n und b_n für $n \in \mathbb{N}$ reelle Zahlen mit $a_n \leq b_n$. Die Folge von Intervallen $I_n = [a_n, b_n] \subset \mathbb{R}$ heißt "Intervallschachtelung", wenn $I_{n+1} \subset I_n$ für alle $n \in \mathbb{N}$ gilt und wenn die Folge der Intervalllängen $(b_n - a_n)_{n \in \mathbb{N}}$ gegen Null konvergiert. Zeigen Sie die Äquivalenz der folgenden Aussagen:

- (i) Es gibt genau ein $x \in \mathbb{R}$ mit $\bigcap_{n=1}^{\infty} I_n = \{x\}$.
- (ii) Jede nichtleere nach oben beschränkte Teilmenge reeller Zahlen besitzt ein Supremum.

Aufgabe 4.4 Es sei $a \in \mathbb{R}$ beliebig gewählt. Weiter sei $a_1 \in \mathbb{R}$ mit $a_1 > \sqrt{a}$ und

$$a_{n+1} := \frac{1}{2} \left(a_n + \frac{a}{a_n} \right).$$

Beweisen Sie:

- (i) Für alle $n \in \mathbb{N}$ ist $a_n > \sqrt{a}$.
- (ii) Es gilt $\lim_{n\to\infty} a_n = \sqrt{a}$.