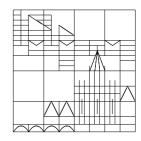
Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. ROBERT DENK OLAF WEINMANN

27. April 2006



Analysis IV 1. Übungsblatt

Aufgabe 1.1 Es seien X und Y nichtleere Mengen und $f: X \longrightarrow Y$ eine Abbildung. Ferner sei \mathcal{A} bzw. \mathcal{B} eine σ -Algebra über X bzw. Y. Zeigen Sie:

- (i) $f^{-1}(\mathcal{B}) := \{f^{-1}(B) : B \in \mathcal{B}\}$ ist eine σ -Algebra über X.
- (ii) $f_*(\mathcal{A}) := \{B \subset Y : f^{-1}(B) \in \mathcal{A}\}$ ist eine σ -Algebra über Y.

Aufgabe 1.2 Es sei X eine nichtleere Menge. Zeigen Sie: Ein Mengensystem $\mathcal{A} \subset \mathcal{P}(X)$ ist genau dann ein Dynkin-System, wenn gilt:

- (i) $X \in \mathcal{A}$,
- (ii) Für $A, B \in \mathcal{A}$ mit $A \subset B$ gilt $B \setminus A \in \mathcal{A}$.
- (iii) Für $A_n \in \mathcal{A} \ (n \in \mathbb{N})$ mit $A_1 \subset A_2 \subset ...$ gilt $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.

Aufgabe 1.3 Es sei X eine beliebige Menge und $A_n \subset X \ (n \in \mathbb{N})$. Wir definieren

$$\liminf_{n \to \infty} A_n := \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} A_n$$

und

$$\limsup_{n\to\infty} A_n := \bigcap_{m\in\mathbb{N}} \bigcup_{n\geq m} A_n.$$

Zeigen Sie: $\liminf_{n\to\infty} A_n \subset \limsup_{n\to\infty} A_n$.

Aufgabe 1.4 Zeigen Sie, dass es keine σ -Algebra gibt, die aus einer unendlichen, aber abzählbaren Anzahl von Elementen besteht.