Universität Konstanz Fachbereich Mathematik und Statistik Jun.-Prof. Dr. Arno Fehm Sebastian Wenzel WS 2011/12

Übungen zur Vorlesung Algebra

Blatt 11 Sylow-Sätze

Aufgabe 1

(4 Punkte)

Seien G, H endliche Gruppen und $p \in \mathbb{N}$ prim.

- a) Ist S eine p-Sylowgruppe von G mit (G:S) < p, so ist $S \triangleleft G$.
- b) Ist $\varphi: G \to H$ ein Homomorphismus und $S \leq H$ eine p-Sylowgruppe von H, so ist $\varphi^{-1}(S)$ eine p-Sylowgruppe von G.
- c) Ist G abelsch, so ist G isomorph zum direkten Produkt seiner Sylowgruppen.

Aufgabe 2

(4 Punkte)

Zeigen Sie, dass es genau 5 Isomorphietypen von Gruppen der Ordnung 20 gibt.

Aufgabe 3

(4 Punkte)

Zeigen Sie, dass jede Gruppe der Ordnung 1295 zyklisch ist.

Aufgabe 4

(4 Punkte)

Sei G eine Gruppe. Für $x, y \in G$ ist $[x, y] := x^{-1}y^{-1}xy$ der Kommutator von x und y. Die von den Kommutatoren erzeugte Untergruppe $G' := \langle [x, y] : x, y \in G \rangle \leq G$ ist die Kommutatorgruppe von G. Zeigen Sie:

- a) G' ist normal in G und besteht aus Produkten von Kommutatoren.
- b) Ist $\varphi: G \to H$ ein surjektiver Homomorphismus, so ist $\varphi(G') = H'$.
- c) Genau dann ist G' = 1, wenn G abelsch ist.
- d) G' ist der kleinste Normalteiler von G mit abelscher Faktorgruppe.

Man nennt $G^{ab} := G/G'$ die Abelisierung von G.

Abgabe: Montag, 16. Januar 2012, 14 Uhr in die Briefkästen auf F4.