Übungen zur Vorlesung *Algebra II* Blatt 1

Allgemeiner Hinweis: Alle Aussagen sind stets zu beweisen.

Aufgabe 1.1. (2+1+1 Punkte)

- (a) Beweisen Sie die Irreduzibilität von 2, 3, $1+\sqrt{-5}$ und $1-\sqrt{-5}$ in $\mathbb{Z}\left[\sqrt{-5}\right]$.
- (b) Zeigen Sie, dass 2, 3, $1+\sqrt{-5}$ und $1-\sqrt{-5}$ nicht paarweise assoziiert in $\mathbb{Z}\left[\sqrt{-5}\right]$ sind.
- (c) Folgern Sie, dass $\mathbb{Z}\left[\sqrt{-5}\right]$ kein faktorieller Ring ist.

Aufgabe 1.2. (2+2 Punkte)

- (a) Zeigen Sie, dass $\langle 2, 1+\sqrt{-5} \rangle$, $\langle 2, 1-\sqrt{-5} \rangle$ und $\langle 3, 1+\sqrt{-5} \rangle$ Primideale von $\mathbb{Z}\left[\sqrt{-5}\right]$ sind.
- (b) Beweisen Sie über $\mathbb{Z}\left[\sqrt{-5}\right]$ die Gültigkeit der folgenden Gleichungen:

(i)
$$\langle 3, 1 + \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle = \langle 3 \rangle$$

(ii)
$$\langle 2, 1 + \sqrt{-5} \rangle \langle 3, 1 + \sqrt{-5} \rangle = \langle 1 + \sqrt{-5} \rangle$$

(iii)
$$\langle 2, 1 - \sqrt{-5} \rangle \langle 3, 1 - \sqrt{-5} \rangle = \langle 1 - \sqrt{-5} \rangle$$

(iv)
$$\langle 2, 1+\sqrt{-5}\rangle\langle 2, 1-\sqrt{-5}\rangle\langle 3, 1+\sqrt{-5}\rangle\langle 3, 1-\sqrt{-5}\rangle=\langle 6\rangle$$
.

Zusatzaufgabe für Interessierte.

Ziel dieser Aufgabe ist es zu zeigen, dass der Ring der Gauß'schen Zahlen $\mathbb{Z}[i]:=\mathbb{Z}\left[\sqrt{-1}\right]$ versehen mit der Norm

$$\begin{array}{ccc} N: \ \mathbb{Z}[i] & \to & \mathbb{Z} \\ a+bi & \mapsto & a^2+b^2 \end{array}$$

ein euklidischer Ring ist. Betrachten Sie hierfür zunächst $\alpha, \beta \in \mathbb{Z}[i]$ mit $\beta \neq 0$.

(a) Beweisen Sie, dass geeignete $r,s\in\mathbb{Q}$ mit $\frac{\alpha}{\beta}=r+si$ über $\mathbb{Q}(i)$ existieren.

Fixieren Sie nun geeignete $r,s\in\mathbb{Q}$ mit $\frac{\alpha}{\beta}=r+si$ über $\mathbb{Q}(i).$

(b) Begründen Sie die Existenz geeigneter ganzer Zahlen p und q mit $|r-p|, |s-q| \leq \frac{1}{2}.$

Fixieren Sie geeignete $p,q\in\mathbb{Z}$ mit $|r-p|,|s-q|\leq\frac{1}{2}$.

- (c) Zeigen Sie, dass für $\rho:=p+qi\in\mathbb{Z}[i]$ ein $\sigma\in\mathbb{Z}[i]$ mit $\alpha=\rho\beta+\sigma$ und $N(\sigma)\leq\frac{1}{2}N(\beta)$ existiert.
- (d) Folgern Sie, dass $(\mathbb{Z}[i], N)$ ein euklidischer Ring ist.

Abgabe: Dienstag, den 22. April 2025, um 10:00 Uhr in den Briefkasten Nr. 17. Achten Sie auf eine saubere und lesbare Darstellung und heften Sie Ihre einzelnen Blätter zusammen.