Übungen zur Vorlesung *Algebraische Zahlentheorie*Blatt 6

Allgemeiner Hinweis: Dies ist ein freiwilliges Zusatzblatt, welches weder korrigiert noch besprochen wird, für die Vorbereitung auf die Klausur jedoch hilfreich ist. Die Lösungen stehen auf der Homepage der Vorlesung zur Verfügung.

Aufgabe 6.1.

Sei $p \in \mathbb{N}$ eine Primzahl.

- (a) Sei $p \neq 2$.
 - (i) Beweisen Sie die Existenz geeigneter ganzer Zahlen m und n mit

$$m^2 + n^2 + 1 \equiv 0 \mod p.$$

(ii) Fixieren Sie $m,n\in\mathbb{Z}$ gemäß (i) und betrachten Sie die Menge

$$\Gamma := \{(a, b, c, d) \in \mathbb{Z}^4 \mid c \equiv ma + nb \mod p, \ d \equiv mb - na \mod p\}.$$

Zeigen Sie, dass Γ ein vollständiges Gitter in \mathbb{R}^4 ist.

(iii) Sei T_{Γ} ein fundamentales Parallelotop von Γ mit Volumen $v(T_{\Gamma})=p^2$. Beweisen Sie unter Verwendung von Satz 21.8 (Minkowski) die Existenz geeigneter ganzer Zahlen a,b,c und d mit

$$p = a^2 + b^2 + c^2 + d^2.$$

(b) Folgern Sie, dass jede natürliche Zahl eine Summe aus vier Quadraten ganzer Zahlen ist.

Aufgabe 6.2.

Bestimmen Sie die Klassengruppe von $\mathbb{Z}[\sqrt{10}]$.

Aufgabe 6.3.

Sei $0 < d \in \mathbb{Z}$ quadratfrei.

- (a) Sei $d\equiv 2,3\mod 4$. Beweisen Sie, dass die Gleichung $x^2-dy^2=1$ unendlich viele Lösungen besitzt.
- (b) Sei $d\equiv 1\mod 4$. Beweisen Sie, dass die Gleichung $x^2-dy^2=4$ unendlich viele Lösungen besitzt.