Tutorials for 'Real Closed Fields and Integer Parts' Exercise Sheet 1: Structures, Terms and Formulas

General Note: All statements must always be proven. The bonus exercise is voluntary and will be awarded extra points.

Exercise 1.1 (Structures; cf. [Lecture Notes, Exercise 2.1.7]) Consider the set $B = \{0, 1\}$ and assume that $0 \neq 1$.

(i) For each language \mathcal{L} in Definition 2.1.6, i.e. for each

 $\mathcal{L} \in \{\mathcal{L}_{<}, \mathcal{L}_{admon}, \mathcal{L}_{mon}, \mathcal{L}_{g}, \mathcal{L}_{mgp}, \mathcal{L}_{semr}, \mathcal{L}_{r}, \mathcal{L}_{og}, \mathcal{L}_{or}, \mathcal{L}_{exp}\},$

how many different interpretations on B are there to obtain an \mathcal{L} -structure having B as domain? Justify your answer.

- (ii) Find all L_<-structures with domain B that are strict linear orders (see Definition E.1.2 (1)). How many of them are there up to isomorphism (which means counting isomorphic structures as the same)? Justify your answer.
- (iii) Find all $\mathcal{L}_{\text{semr}}$ -structures with domain B that are semirings (see Definition E.1.1).
- (iv) Find all \mathcal{L}_{r} -structures with domain *B* that are fields.
- (v) Is there an \mathcal{L}_{or} -structure with domain B that is an ordered field (see Definition E.1.2)? Justify your answer.

Definition E.1.1. A monoid is an \mathcal{L}_{mon} -structure $(M, \cdot, 1)$ fulfilling the axioms

- $\forall x, y, z \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$ (associativity of \cdot),
- $\forall x \ (x \cdot 1 = x \land 1 \cdot x = x)$ (1 is a neutral element of \cdot).

A monoid $(M, \cdot, 1)$ is called **commutative** if it additionally fulfills the axiom

$$\forall x, y \ x \cdot y = y \cdot x$$
 (commutativity of \cdot).

A semiring is an \mathcal{L}_{semr} -structure $(S, +, \cdot, 0, 1)$ such that

- (1) its additive part (S, +, 0) is a commutative monoid;
- (2) its multiplicative part $(S, \cdot, 1)$ is a monoid;
- (3) multiplication distributes over addition from both sides;
- (4) 0 annihilates S, i.e. $0 \cdot s = s \cdot 0 = 0$ for any $s \in S$.

Definition E.1.2. An ordered field is an \mathcal{L}_{or} -structure $(K, +, -, \cdot, 0, 1, <)$ such that

- (1) the $\mathcal{L}_{<}$ -structure (K, <) is a strict linear order, i.e. (K, <) fulfills the axioms
 - $\forall x \neg x < x$ (irreflexivity or anti-reflexivity),
 - $\forall x, y, z \ ((x < y \land y < z) \rightarrow x < z)$ (transitivity),
 - $\forall x, y, z \ (x < y \lor x = y \lor x > y)$ (trichotomy);
- (2) the \mathcal{L}_{r} -structure $(K, +, -, \cdot, 0, 1)$ is a field;
- (3) the ordering < is compatible with addition and multiplication, i.e. $(K,+,-,\cdot,0,1,<)$ fulfills the axioms
 - $\forall x, y, z \ (x < y \rightarrow x + z < y + z)$ (compatibility of < and +),
 - $\forall x, y \ ((0 < x \land 0 < y) \rightarrow 0 < x \cdot y)$ (compatibility of < and \cdot).

Exercise 1.2 (Homomorphisms and Expansion; cf. [Lecture Notes, Exercise 2.1.12]) Consider the \mathcal{L}_r -structure $\mathcal{M} = (M, +^{\mathcal{M}}, -^{\mathcal{M}}, \cdot^{\mathcal{M}}, 0^{\mathcal{M}}, 1^{\mathcal{M}})$ defined as follows:

- $M := \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \middle| a, b \in \mathbb{R} \right\} \subseteq \mathbb{R}^{2 \times 2}.$
- $+^{\mathcal{M}}$, $-^{\mathcal{M}}$ and $\cdot^{\mathcal{M}}$ are standard addition, subtraction and multiplication of matrices.
- $0^{\mathcal{M}} := \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $1^{\mathcal{M}} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Show that $\mathcal{M} \cong \mathbb{C}_r$ by finding a suitable \mathcal{L}_r -isomorphism, and deduce that \mathcal{M} is a field. Can the \mathcal{L}_r -structure \mathcal{M} be expanded to an \mathcal{L}_{or} -structure that is an ordered field (see Definition E.1.2)? Justify your answer.

Exercise 1.3 (Terms & Formulas)

- (a) Find three different \mathcal{L}_r -terms t with interpretation $t^{\mathbb{Z}} \colon \mathbb{Z} \to \mathbb{Z}, n \mapsto 2n$ (cf. [Lecture Notes, Exercise 2.2.7]).
- (b) Proceed by induction on the construction of terms to show that the interpretation $t^{\mathbb{R}}$ of any \mathcal{L}_r -term t is a polynomial function on \mathbb{R} , i.e. a map of the form

$$\mathbb{R}^n \to \mathbb{R}, \ \underline{a} \mapsto p(\underline{a})$$

for some $n \in \mathbb{N}$ and some polynomial $p \in \mathbb{R}[\underline{X}] = \mathbb{R}[X_1, \dots, X_n]$. Is the converse also true, i.e. can every polynomial function on \mathbb{R} be expressed as interpretation $t^{\mathbb{R}}$ of some \mathcal{L}_r -term t? Justify your answer.

(Hint: Apply Proposition 2.2.8 to answer the question.)

(c) Show that $\mathbb{Z}_{\leq} \models \forall x \exists y, z \ (y < x \land x < z)$ (cf. [Lecture Notes, Exercise 2.2.19]). (Note: This \mathcal{L}_{\leq} -sentence says that the standard linear ordering on \mathbb{Z} has no endpoints.)

- (d) Consider the structure ω_{semr} and specify^{*} a \mathcal{L}_{semr} -formula
 - (i) $\beta(x)$ with one free variable such that for any $n \in \omega$,

$$\omega_{\text{semr}} \models \beta(n)$$
 if and only if $n = 2$;

(ii) $\kappa(x,y)$ with two free variables such that for any $n, m \in \omega$,

$$\omega_{\text{semr}} \models \kappa(n,m)$$
 if and only if $n < m;$

(iii) $\delta(x, y)$ with two free variables such that for any $n, m \in \omega$,

$$\omega_{\text{semr}} \models \delta(n, m)$$
 if and only if $n \mid m$;

(iv) $\psi(x)$ with one free variable such that for any $n \in \omega$,

 $\omega_{\text{semr}} \models \psi(n)$ if and only if *n* is a prime number;

(v) φ with no free variables (i.e. a \mathcal{L}_{semr} -sentence) expressing that there are infinitely many pairs of twin primes (i.e. pairs of prime numbers that differ by 2).

*) It is not necessary to prove that the specified formula fulfills the required condition. Abbreviations may be used if their definition is provided.

Bonus Exercise

Consider the \mathcal{L}_r -formula $\varphi(x)$ given by $\exists y \ (y \cdot y) + 1 = x$.

- (i) For which values of a do we have $\mathbb{R}_{\mathbf{r}} \models \varphi(a)$?
- (ii) For which values of a do we have $\mathbb{Z}_r \models \varphi(a)$?

Please hand in your solutions by Thursday, 21 April 2022, 11:45 (postbox 18 in F4).