Tutorials for 'Real Closed Fields and Integer Parts' Exercise Sheet 2: Definability and Preservation

General Note: All statements must always be proven. The bonus exercise is voluntary and will be awarded extra points.

Exercise 2.1 (\mathcal{L}_{mag} -Definability)

Consider the **language of magmas** $\mathcal{L}_{mag} = \{\circ\}$, where \circ denotes a binary function symbol.

- (a) Let $\varphi(x, y, z)$ be the \mathcal{L}_{mag} -formula $x \circ x = y \circ z$ and let $\psi(y, z)$ be the \mathcal{L}_{mag} -formula $\exists x \ x \circ x = y \circ z$.
 - (i) Determine the set that is defined by $\varphi(a, b, z)$ in the \mathcal{L}_{mag} -structure $(\mathbb{Z}, +)$, where $a, b \in \mathbb{Z}$.
 - (ii) Determine the set that is defined by $\varphi(a, b, z)$ in the \mathcal{L}_{mag} -structure (\mathbb{R}, \cdot) , where $a, b \in \mathbb{R}$.
 - (iii) Determine the subset of \mathbb{R}^2 that is defined by $\psi(y, z)$ in the \mathcal{L}_{mag} -structure (\mathbb{R}, \cdot) .

In some cases, you need to make a case distinctions depending on the parameters a and b.

- (b) Show that the set of (positive and negative) primes is \emptyset - \mathcal{L}_{mag} -definable in (\mathbb{Z}, \cdot) .
- (c) Show that, given two primes $p, q \in \mathbb{Z}$, there exists an \mathcal{L}_{mag} -automorphism $\sigma_{p,q}$ on (\mathbb{Z}, \cdot) that interchanges p and q. (Hint: Prime factorization!)
- (d) Show that the set of odd integers is not \emptyset - \mathcal{L}_{mag} -definable in (\mathbb{Z}, \cdot) .
- (e) Show that, given $z \in \mathbb{Z}$, the singleton $\{z\}$ is \emptyset - \mathcal{L}_{mag} -definable in (\mathbb{Z}, \cdot) if and only if $z \in \{-1, 0, 1\}$.
- (f) Show that the set $\{z \in \mathbb{Z} \mid z \ge 0\}$ is not \mathcal{L}_{mag} -definable in (\mathbb{Z}, \cdot) . (Hint: First prove that for any finite subset A of \mathbb{Z} there exist primes $p, q \in \mathbb{Z}$ such that p < 0 < q and $p \nmid a$ as well as $q \nmid a$ for any $a \in A$, and apply Proposition 2.2.21.)

Exercise 2.2 (Definable Operations and Orderings on Numbers)

- (a) Show that the standard addition and multiplication on \mathbb{R} are not \emptyset - $\mathcal{L}_{<}$ -definable in $\mathbb{R}_{<}$.
- (b) Show that the standard ordering < on \mathbb{Z} is not \emptyset - \mathcal{L}_g -definable in \mathbb{Z}_g , but the standard ordering < on ω is \emptyset - \mathcal{L}_{admon} -definable in ω_{admon} .

- (c) Show that subtraction, i.e. the binary operation $-: (x, y) \mapsto x y$, is an \mathcal{L}_{admon} -definable operation in \mathbb{Z}_{admon} and \mathbb{R}_{admon} , but that standard multiplication is not \emptyset - \mathcal{L}_{admon} -definable in either structure.
- (d) Show that the standard ordering < on \mathbb{R} is \emptyset - \mathcal{L}_r -definable in \mathbb{R}_r . Deduce that every subset of \mathbb{R}^n , where $n \in \mathbb{N}$, which is \mathcal{L}_{or} -definable in \mathbb{R}_{or} is also \mathcal{L}_r -definable in \mathbb{R}_r . What about the converse?

Exercise 2.3 (Quantifier-Free Formulas & Preservation Laws)

- (a) Write down a recursive definition of quantifier-free formulas in the style of Definition 2.2.9.
- (b) Show that for any quantifier-free \mathcal{L}_{or} -formula $\varphi(\underline{x})$ and any $q \in \mathbb{Q}$, we have

 $\mathbb{Q}_{\mathrm{or}} \models \varphi(q)$ if and only if $\mathbb{R}_{\mathrm{or}} \models \varphi(q)$.

(c) Find an \mathcal{L}_{or} -formula $\psi(\underline{x})$ and a $q \in \mathbb{Q}$ such that $\mathbb{Q}_{or} \models \psi(q)$ but $\mathbb{R}_{or} \not\models \psi(q)$.

Bonus Exercise

- (a) [Lecture Notes, Exercise 2.3.11]:
 - (i) Let $\psi \colon \mathbb{R}_{\text{or}} \cong \mathbb{R}_{\text{or}}$. Show that $\psi = \operatorname{id}_{\mathbb{R}}$.
 - (ii) Show that there are only countably many distinct \emptyset - \mathcal{L}_{or} -definable subsets of \mathbb{R} .
 - (iii) Deduce that there is a subset $A \subseteq \mathbb{R}$ that is not \emptyset - \mathcal{L}_{or} -definable but still preserved by all \mathcal{L}_{or} -automorphisms on \mathbb{R} .
- (b) Show that the set of real numbers is not definable in the field of complex numbers, i.e. show that \mathbb{R} is not \mathcal{L}_r -definable in \mathbb{C} .

Please hand in your solutions by Thursday, 28 April 2022, 11:45 (postbox 18 in F4).