Tutorials for 'Real Closed Fields and Integer Parts'

Exercise Sheet 3: Theories, Axiomatisations and Quantifier-Elimination

General Note: All statements must always be proven. The bonus exercise is voluntary and will be awarded extra points.

Exercise 3.1 (Theories and Models)

(a) Given a language \mathcal{L} and a set Σ of \mathcal{L}-sentences, let $\operatorname{Mod}(\Sigma)$ be the class of \mathcal{L}-structures axiomatised by Σ. Show that

$$
\operatorname{Th}(\operatorname{Mod}(\Sigma)):=\bigcap_{\mathcal{A} \in \operatorname{Mod}(\Sigma)} \operatorname{Th}(\mathcal{A})
$$

is the deductive closure of Σ.
(b) Let \mathcal{L} be a language and let \mathcal{M} be an \mathcal{L}-structure. Show that $\operatorname{Th}(\mathcal{M})$ is a complete \mathcal{L}-theory (cf. [Lecture Notes, Exercise 2.5.4]).
(c) Let \mathcal{L} be a language and let T be an \mathcal{L}-theory. Show that T is complete if and only if, whenever \mathcal{A} and \mathcal{B} are models of T, then $\mathcal{A} \equiv \mathcal{B}$.
(d) For each of the five structures $\omega_{\text {semr }}, \mathbb{Z}_{\text {semr }}, \mathbb{Q}_{\text {semr }}, \mathbb{R}_{\text {semr }}, \mathbb{C}_{\text {semr }}$, write down an $\mathcal{L}_{\text {semr }}{ }^{-}$ sentence which is satisfied by that structure but not by any of the other four structures.
(e) Show that the $\mathcal{L}_{\text {exp }}$-theory $T_{\text {rcef }}$ of real closed exponential fields is not complete.

Exercise 3.2 (Quantifier-Elimination)

(a) Does the $\mathcal{L}_{\text {or }}$-theory $T_{\text {of }}$ of ordered fields admit quantifier-elimination? Justify your answer. Hint: Consider an $\mathcal{L}_{\text {or }}$-sentence φ such that $T_{\text {of }} \not \models \varphi$.
(b) Does the $\mathcal{L}_{\text {mag-theory }} \operatorname{Th}(\mathbb{Z}, \cdot)$ admit quantifier-elimination? Justify your answer.

Hint: Show that for any quantifier-free $\mathcal{L}_{\text {mag- }}$-formula $\varphi(\underline{x}, y)$ and any $\underline{a} \in \mathbb{Z}$ the set $\varphi(\underline{a},(\mathbb{Z}, \cdot \cdot))$ is finite or cofinite in \mathbb{Z}. ${ }^{1}$

Exercise 3.3 (Axiomatisation and Elementary Equivalence)

Let \mathcal{L} be a language and let \mathcal{M} and \mathcal{N} be \mathcal{L}-structures such that M is finite and $\mathcal{M} \equiv \mathcal{N}$. The aim of this exercise is to prove $\mathcal{M} \cong \mathcal{N}$ (cf. [Lecture Notes, Exercise 2.5.10]).

[^0](i) Denote by $\mathcal{L}_{=}$the empty language containing no relation, function, or constant symbols. For any $n \in \mathbb{N}$, specify an $\mathcal{L}_{=}$-sentence $\varphi_{\geq n}$ axiomatising the class of sets that contain at least n elements and an $\mathcal{L}_{=}$-sentence $\varphi_{=n}$ axiomatising the class of sets that contain exactly n elements, i.e. the \mathcal{L}_{-}-sentences shall fulfill
\[

$$
\begin{aligned}
& \mathcal{A} \models \varphi_{\geq n} \text { if and only if }|A| \geq n, \text { and } \\
& \mathcal{A} \models \varphi_{=n} \text { if and only if }|A|=n, \text { respectively, }
\end{aligned}
$$
\]

for any $\mathcal{L}_{=}$-structure $\mathcal{A}=(A)$.
(ii) Given $n \in \mathbb{N}$, show that the $\mathcal{L}_{=}$-sentence $\varphi_{=n}$ has exactly one model up to $\mathcal{L}_{=}$-isomorphism. Deduce that $|M|=|N|$.
(iii) Write $M=\left\{a_{1}, \ldots, a_{n}\right\}$ for some $n \in \mathbb{N}$ and let $f: M \rightarrow N$ be a bijection that is not an \mathcal{L}-isomorphism. Find a quantifier-free \mathcal{L}-formula $\varphi_{f}\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
\mathcal{M} \models \varphi_{f}\left(a_{1}, \ldots, a_{n}\right) \text { but } \mathcal{N} \not \vDash \varphi_{f}\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right) .
$$

(iv) Prove that $\mathcal{M} \cong \mathcal{N}$.

Bonus Exercise (Axiomatisation of ReCloFIP)
Consider the language $\mathcal{L}_{\text {orip }}=\mathcal{L}_{\text {or }} \cup\{Z\}$, where Z denotes a unary relation symbol, and the class

$$
\begin{aligned}
\mathcal{C}_{\text {rakuga }}:=\left\{\mathcal{K}=\left(K,+,-, \cdot, 0,1,<, Z^{\mathcal{K}}\right) \mid\right. & K_{\text {or }} \text { is a real closed field and } \\
& Z(\mathcal{K}) \text { is an integer part of } K\}
\end{aligned}
$$

of $\mathcal{L}_{\text {orip }}$-structures. Find an axiomatisation for $\mathcal{C}_{\text {rakuga }}$.
Definition E.3.1. An ordered ring $(R,+,-, \cdot, 0,1,<)$ is called discretely ordered if 1 is the least positive element.

Definition E.3.2. Let K be an ordered field. An $\mathcal{L}_{\text {or }}$-substructure Z of K is an integer part of K if it is a discretely ordered ring and for any $a \in K$ there exists $z \in Z$ such that $z \leq a<z+1$.

Please hand in your solutions by Thursday, 5 May 2022, 11:45 (postbox 18 in F4).

[^0]: ${ }^{1} \mathrm{~A}$ subset $C \subseteq \mathbb{Z}$ is called cofinite in \mathbb{Z} if its complement $\mathbb{Z} \backslash C$ is finite.

