Tutorials for 'Real Closed Fields and Integer Parts' Exercise Sheet 3: Theories, Axiomatisations and Quantifier-Elimination

General Note: All statements must always be proven. The bonus exercise is voluntary and will be awarded extra points.

Exercise 3.1 (Theories and Models)

(a) Given a language \mathcal{L} and a set Σ of \mathcal{L} -sentences, let $Mod(\Sigma)$ be the class of \mathcal{L} -structures axiomatised by Σ . Show that

$$\mathrm{Th}(\mathrm{Mod}(\Sigma)) := \bigcap_{\mathcal{A} \in \mathrm{Mod}(\Sigma)} \mathrm{Th}(\mathcal{A})$$

is the deductive closure of Σ .

- (b) Let \mathcal{L} be a language and let \mathcal{M} be an \mathcal{L} -structure. Show that $Th(\mathcal{M})$ is a complete \mathcal{L} -theory (cf. [Lecture Notes, Exercise 2.5.4]).
- (c) Let \mathcal{L} be a language and let T be an \mathcal{L} -theory. Show that T is complete if and only if, whenever \mathcal{A} and \mathcal{B} are models of T, then $\mathcal{A} \equiv \mathcal{B}$.
- (d) For each of the five structures $\omega_{semr}, \mathbb{Z}_{semr}, \mathbb{Q}_{semr}, \mathbb{C}_{semr}$, write down an \mathcal{L}_{semr} -sentence which is satisfied by that structure but not by any of the other four structures.
- (e) Show that the \mathcal{L}_{exp} -theory T_{rcef} of real closed exponential fields is not complete.

Exercise 3.2 (Quantifier-Elimination)

- (a) Does the \mathcal{L}_{or} -theory T_{of} of ordered fields admit quantifier-elimination? Justify your answer. Hint: Consider an \mathcal{L}_{or} -sentence φ such that $T_{of} \not\models \varphi$.
- (b) Does the \mathcal{L}_{mag} -theory $\operatorname{Th}(\mathbb{Z}, \cdot)$ admit quantifier-elimination? Justify your answer. Hint: Show that for any quantifier-free \mathcal{L}_{mag} -formula $\varphi(\underline{x}, y)$ and any $\underline{a} \in \mathbb{Z}$ the set $\varphi(\underline{a}, (\mathbb{Z}, \cdot))$ is finite or cofinite in \mathbb{Z} .¹

Exercise 3.3 (Axiomatisation and Elementary Equivalence)

Let \mathcal{L} be a language and let \mathcal{M} and \mathcal{N} be \mathcal{L} -structures such that M is finite and $\mathcal{M} \equiv \mathcal{N}$. The aim of this exercise is to prove $\mathcal{M} \cong \mathcal{N}$ (cf. [Lecture Notes, Exercise 2.5.10]).

¹A subset $C \subseteq \mathbb{Z}$ is called **cofinite** in \mathbb{Z} if its complement $\mathbb{Z} \setminus C$ is finite.

(i) Denote by L₌ the empty language containing no relation, function, or constant symbols. For any n ∈ N, specify an L₌-sentence φ_{≥n} axiomatising the class of sets that contain at least n elements and an L₌-sentence φ_{=n} axiomatising the class of sets that contain exactly n elements, i.e. the L₌-sentences shall fulfill

> $\mathcal{A} \models \varphi_{\geq n}$ if and only if $|A| \geq n$, and $\mathcal{A} \models \varphi_{=n}$ if and only if |A| = n, respectively,

for any $\mathcal{L}_{=}$ -structure $\mathcal{A} = (A)$.

- (ii) Given $n \in \mathbb{N}$, show that the $\mathcal{L}_{=}$ -sentence $\varphi_{=n}$ has exactly one model up to $\mathcal{L}_{=}$ -isomorphism. Deduce that |M| = |N|.
- (iii) Write $M = \{a_1, \ldots, a_n\}$ for some $n \in \mathbb{N}$ and let $f: M \to N$ be a bijection that is not an \mathcal{L} -isomorphism. Find a quantifier-free \mathcal{L} -formula $\varphi_f(x_1, \ldots, x_n)$ such that

$$\mathcal{M} \models \varphi_f(a_1, \ldots, a_n)$$
 but $\mathcal{N} \not\models \varphi_f(f(a_1), \ldots, f(a_n)).$

(iv) Prove that $\mathcal{M} \cong \mathcal{N}$.

Bonus Exercise (Axiomatisation of ReCloFIP)

Consider the language $\mathcal{L}_{orip} = \mathcal{L}_{or} \cup \{Z\}$, where Z denotes a unary relation symbol, and the class

$$\mathcal{C}_{\text{rakuga}} := \left\{ \mathcal{K} = \left(K, +, -, \cdot, 0, 1, <, Z^{\mathcal{K}} \right) \mid K_{\text{or}} \text{ is a real closed field and} \\ Z(\mathcal{K}) \text{ is an integer part of } K \right\}$$

of \mathcal{L}_{orip} -structures. Find an axiomatisation for \mathcal{C}_{rakuga} .

Definition E.3.1. An ordered ring $(R, +, -, \cdot, 0, 1, <)$ is called **discretely ordered** if 1 is the least positive element.

Definition E.3.2. Let K be an ordered field. An \mathcal{L}_{or} -substructure Z of K is an **integer** part of K if it is a discretely ordered ring and for any $a \in K$ there exists $z \in Z$ such that $z \le a < z + 1$.

Please hand in your solutions by Thursday, 5 May 2022, 11:45 (postbox 18 in F4).